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VECTOR SPACES

1.1 Vector Spaces

Definition 1.1.1. Let V be a non empty set and F be a field. Suppose there exists two
opeartions: (1) vector addition, which combines two elements of V denoted by ‘+′ and (2)
scalar multiplication, which combines an each element of F with an element of V denoted
by ‘·’ or simply by juxtaposition. Then V , along with the two operations, is called a vector
space over the field F if the following properties hold:
(A1) V is closed under addition, u+ v ∈V for all u,v ∈V .
(A2) Addition is associative, u+(v+w) = (u+ v)+w for all u,v,w ∈V .
(A3) Addition is commutative, u+ v = v+u for all u,v ∈V .
(A4) There is an element 0 ∈V , called the zero vector, such that u+0 = u for all u ∈V .
(A5) For each element u ∈V there exists an element −u ∈V , called the inverse of u, such

that u+(−u) = 0.
(M1) Closure property for scalar multiplication, αu ∈V for all α ∈ F and u ∈V .
(M2) α(βu) = (αβ )u for all α,β ∈ F and u ∈V .
(M3) Vector addition is distributive, α(u+ v) = αu+αv for all α ∈ F and u,v ∈V .
(M4) Distributivity over scalar addition, (α +β )u = αu+βu for all α,β ∈ F and u ∈V .
(M5) Unit scalar, 1u = u for all u ∈V .

The elements, no matter what they might really be, of V are called vectors and the elements
of the field F are called scalars. Obeserve that properties (A1)-(A5) shows that (V,+) is an
abelian group. Another important observation to make here is that the vector space V is a
composite object consisting of a non empty set V along with the two operations defined above
and a field F of scalars. The same underlying set V may be a part of a number of distinct
vector spaces by considering a different field F (see Example 1.1.31.1.3 and Example 1.1.51.1.5) or
altering the operations (see Example 1.1.31.1.3 and Example 1.1.71.1.7). When there is no ambiguity or
scope of any confusion, we may just state that V is a vector space or else we shall say that V is
a vector space over the field F thereby specifying the field.
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10 §1.1. Vector Spaces

1.1.1 Examples of vector spaces

In this section we give a variety of examples to be comfortable with the notion of vector space.

Example 1.1.2. The trivial vector space V = {0} for any field F . One may define the singleton
vector space V = {z} for some element z with the following operations:

z+ z = z and αz = z.

Here, the zero element is also z since V being singleton. So, z behaves like a zero vector is a
singleton vector space.

Example 1.1.3. Question: Is a field F also a vector space over itself? The answer is Yes. In
general, the set of n-tuples, F(n) = {(v1, . . . ,vn) : vi ∈ F, 1≤ i≤ n} is a vector space over the
field F with vector addition and scalar multiplication defined as follows:

(u1, . . . ,un)+(v1, . . . ,vn) := (u1 + v1, . . . ,un + vn);
α(u1, . . . ,un) := (αu1, . . . ,αun).

In particular, for n ∈N, Rn is a vector over R of reals and Cn is a vector space over the field C
of complex numbers.

Example 1.1.4. The set of infinite sequences of elements of a field F is a vector space over
the field F . More precisely, S (F) = {(x(n))n∈N : x(n) ∈ F} is a vector space over the field F
with vector addition and scalar multiplication defined as follows:

(x(1),x(2), . . .)+(y(1),y(2), . . .) := (x(1)+ y(1),x(2)+ y(2), . . .);
α(x(1),x(2), . . .) := (αx(1),αx(2), . . .).

In particular, C∞ and R∞ are vector spaces over C and R respectively.

Example 1.1.5. Let F be a field and K be a subfield of F . Then Fn is a vector space over
the field K with vector addition and scalar multiplication defined as in Example 1.1.31.1.3. In
particular, Cn is a vector space over R. Note that this is different from the one defined in
Example 1.1.31.1.3.

Example 1.1.6. The vector space of matrices: Let F be a field and m,n be positive integers.
Then the set Mm,n(F) of all m×n matrices with entries from F is a vector space over F with
usual matrix (entrywise) addition and scalar multiplication, i.e.

(A+B)i j := Ai j +Bi j and (αA)i j := αAi j.

Example 1.1.7. Let V = {(x,y) : x,y ∈ C} is a vector space over C with the following
opeations:

Vector addition: (x1,y1)+(x2,y2) := (x1 + x2 +1,y1 + y2 +1);
Scalar multiplication: α(x,y) := (αx+α−1,αy+α−1).

The zero vector here is 0 = (−1,−1) and the additive inverse of the element (x,y) is (−x−
2,−y−2). Note that the underlying set V here is C2. However, it is different from the vector
space C2 over C considered in Example 1.1.31.1.3 due to the operations defined differently.

PS01CMTH24 2018-19



§1.1. Vector Spaces 11

Example 1.1.8. Let F be a field. Then the set F [x] of all polynomials in x over F is a vector
space with usual operations (addition of two polynomials and multiplication of a polynomial
by an element of F).

Example 1.1.9. The vector space of polynomials, Fn[x]: Let Fn[x] be the set of all polynomials
of degree less than or equal to n in the variable x with coefficients from the field F (say
for example R or C). Then Fn[x] is a vector space over F with vector addition and scalar
multiplication defined as follows:

(a0 +a1x+ · · ·+anxn)+(b0 +b1x+ · · ·+bnxn) := (a0 +b0)+(a1 +b1)x+ · · ·+
(an +bn)xn;

α(a0 +a1x+ · · ·+anxn) := (αa0)+(αa1)x+ · · ·+(αan)xn,

where α,ai ∈ F , 1≤ i≤ n.

There is a relation between Example 1.1.31.1.3 and Example 1.1.91.1.9. Every element of Fn−1[x] is
of the form a0 +a1x+ · · ·+an−1xn−1, where ai ∈ F, 0 ≤ i ≤ n−1. If we map this element
onto an element (a0,a1, . . . ,an−1) of F(n), then we have one-one correspondence between
Fn−1[x] and F(n). Once homomorphism and isomorphism are defined, we can expect that they
are isomorphic.

Observe that Fn[x] is a subset of F [x] and it is also a vector space over F under the same
operations as of F [x]. Fn[x] is said to be a subspace of F [x]. Before we give more examples we
define subspace of a vector space.

Definition 1.1.10. Let V be a vector space over F . A subset W of V is called a subspace of
V if itself forms a vector space over F under the operations of V .

Exercise 1.1.11. Show that W is a subspace of V if and only if for every w1,w2 ∈W and
α,β ∈ F , αw1 +βw2 ∈W , i.e., w1 +w2 ∈W and αw1 ∈W if and only if αw1 +βw2 ∈W .

Now, we consider some examples which are subspaces of the vector space S (K) where
the field K is either R or C.

Example 1.1.12. Vector space of summable sequences. Let `1 be the set of all sequences
(x(n))n∈N over R (or C) such that ∑

∞
n=1 |x(n)|< ∞. Then `1 is a vector space over R (or C).

Hint: Using triangular inequality.

Example 1.1.13. Vector space of pth power summable sequences. Let `p is the set of all
sequences (x(n))n∈N over R (or C) such that ∑

∞
n=1 |x(n)|p < ∞. Then `p is a vector space over

R (or C).
Hint: |x(n)+ y(n)| ≤ |x(n)|+ |y(n)| ≤ 2max{|x(n)|, |y(n)|}. Hence,

|x(n)+ y(n)|p ≤ 2p(max{|x(n)|, |y(n)|})p = 2p max{|x(n)|p, |y(n)|p}
≤ 2p(|x(n)|p + |y(n)|p).

One can also use Minkowski’s inequality given below:(
∞

∑
n=1
|x(n)+ y(n)|p

) 1
p

≤

(
∞

∑
n=1
|x(n)|p

) 1
p

+

(
∞

∑
n=1
|y(n)|p

) 1
p

.
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12 §1.1. Vector Spaces

Example 1.1.14. The vector space `∞ of all bounded sequences.

Example 1.1.15. The vector space c of all convergent sequences.

Note that if x(n)→ a and y(n)→ a then x(n) + y(n)→ 2a. The set of all sequences
converging to a does not form a vector space unless a = 0. Thus, we have the following
example:

Example 1.1.16. The vector space c0 of all convergent sequences whose limit is 0. c0 is a
subspace of c.

Example 1.1.17. Let c00 be the set of all sequences with finitely many non-zero terms. Thus,
if (x(n))n∈N ∈ c00 then there exists k0 > 0 such that x(n) = 0 for all n > k0, i.e.

(x(n))n∈N = (x(1), . . . ,x(k0),0,0, . . .).

Then c00 is a vector space over the field K = R or C under the same operations of S (K).

Observe that, among all the spaces of sequences we saw so far, we have the following
relation:

c00 ⊂ `p ⊂ c0 ⊂ c⊂ `∞ ⊂S (K), 1≤ p < ∞

where K = R or C. There is a relation between the spaces c00 and K[x], where K = R or C
(Example 1.1.171.1.17 and Example 1.1.81.1.8). For any element (a(n)) = (a(1), . . . ,a(k),0,0, . . .) ∈ c00
we get an element p(x) = a(0)+a(1)x+ · · ·+a(k)xk ∈ K[x] and vice versa. Thus we have
one to one correspondence between c00 and K[x] and once we define isomorphism, we can see
that they are isomorphic.

Example 1.1.18. Let X be a non-empty set and F be a field. Let F (X ,F) denote the set of
all functions f : X → F . Then F (X ,F) is a vector space over F with pointwise addition and
scalar multiplication defined as follows:

( f +g)(x) := f (x)+g(x)
(α f )(x) := α f (x).

Example 1.1.19. Let X be a non-empty set and the field K =R or C. Let B(X ,K) denote the
set of all bounded functions from X to K, i.e.

B(X ,K) = { f : X → K : there exists M > 0 such that | f (x)| ≤M, for all x ∈ X}.

Then B(X ,K) is a vector space over K under the same operations as in F (X ,K).

Example 1.1.20. Let X be a metric (or topological) space and K =R or C. Then C(X ,K), the
set of all continuous functions from X to K, is a vector space over K under the same operations
as in F (X ,K).

Example 1.1.21. Is it true that intersection of two subspaces of a vector space is also a
subspace? The answer is Yes. Let Cb(X ,K) denote the set of all bounded continuous functions
from X to K. Then Cb(X ,K) is a vector space as

Cb(X ,K) =C(X ,K)∩B(X ,K).

If we assume X to be a compact metric (or topological) space and f ∈ C(X ,K) then
f (X)(⊂ R or C) is compact as we know that continuous image of compact set is compact.
By Heine-Borel theorem, f (X) is bounded and hence in case of compact space, Cb(X ,K) =
C(X ,K).

PS01CMTH24 2018-19



§1.1. Vector Spaces 13

Definition 1.1.22. Let f ∈C(X ,K) (continuity of function is not necessary) for a metric
(or topological) space X . Then f is said to be vanishing at infinity if for every ε > 0, there
exists a compact subset Y of X such that

| f (x)|< ε for x ∈ Y c,

where x ∈ Y c denoted the complement of Y . In other words, for each positive ε , the set
{x ∈ X : | f (x)| ≥ ε} is compact. The set of all continuous functions on X vanishing at
infinity is denoted by C0(X).
For example, X = K = R, f (x) = e−|x| vanishes at infinity. Also the function f : R→ R
given by f (x) = 1

1+x2 .

Definition 1.1.23. Let X be a metric (or a toplogical) space and f ∈C(X ,K) for K = R or
C. The support of f denoted by supp( f ) is the set of points in X where f is non-zero, i.e.,

supp( f ) := {x ∈ X : f (x) 6= 0}.

A function f : X → K is said to have compact support if there exists a compact subset Y of
X such that

f (x) = 0 for x ∈ Y c,

where x ∈ Y c denoted the complement of Y . In other words, the set {x ∈ X : f (x) 6= 0} is
compact. The set of all continuous functions on X with compact support is denoted by
Cc(X).
For example, f : R→ R defined by

f (x) =
{

1− x2 if |x|< 1
0 if |x| ≥ 1.

Example 1.1.24. C0(X) and Cc(X) are vector spaces over the field K with the operations of
F (X ,K).
Hint: Let f ,g ∈C0(X). Given ε > 0 there exists compact subset Y1 and Y2 of X such that

| f (x)|< ε

2
for all x ∈ Y c

1

|g(x)|< ε

2
for all x ∈ Y c

2

Take Y = Y1∪Y2. Then

|( f +g)(x)|= | f (x)+g(x)|< ε

2
+

ε

2
= ε for all x ∈ Y c.

Thus, f +g ∈C0(X). Similarly, one can show that α f ∈C0(X) which concludes that C0(X) is
a vector space. The proof of Cc(X) is similar.

1.1.2 Properties of Vector Space

Now, we see some properties of vector spaces. We have the following lemma. The proof is
easy and left as an exercise.

Dr. Jay Mehta jay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edu
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14 §1.1. Vector Spaces

Lemma 1.1.25. If V is a vector space over F then
1. The zero vector 0 ∈V is unique.
2. Additive inverse is unique.
3. α0 = 0 for α ∈ F.
4. 0v = 0 for all v ∈V .
5. (−α)v = −(αv) for α ∈ F, v ∈ V . In particular, for α = 1 we have −v = (−1)v.

Thus we get additive inverse from scalar multiplication.
6. If αv = 0 then either α = 0 or v = 0.

Definition 1.1.26. Let U and V be vector spaces over F . A map T : U →V of U into V is
said to be a homomorphism if for all u!,u2 ∈U and α ∈ F

1. T (u1 +u2) = T (u1)+T (u2);
2. T (αu1) = αT (u1).

If a homomorphism T : U →V is one-one, we call it an isomorphism.

A vector space homomorphism is also called a linear map, linear transformation, linear
operator or simply an operator. The set of all homomorphisms from U to V is denoted by
Hom (U,V ).

Definition 1.1.27. Two vector spaces U and V over the same field F are said to be isomor-
phic if there is an onto isomorphism from U to V . In other words, if there is a homomorphism
T : U →V such that T is one-one and onto. We denote it by U ∼=V .

Definition 1.1.28. Let U and V two vector spaces over the same field F . Let T : U →V be
a homomorphism.

1. The kernel (or the null space) of T is defined as {u ∈U : Tu = 0} where 0 is the
identity element of the addition in V . It is denoted by kerT .

2. The range space of T is defined as {Tu : u ∈U} and is denoted by R(T ).

Exercise 1.1.29. Show that kerT and R(T ) are subspaces of U and V respectively.

Definition 1.1.30 (Quotient Space). Let V be a vector space over F and let W be a subspace
of V . Then W is a normal subgroup of V . Considering V and W as abelian groups we
construct an abelian group V/W called the quotient group under the operation

(u+W )+(v+W ) = (u+ v)+W (u,v ∈V ).

We want to make V/W a vector space over F . For this purpose we define scalar multiplica-
tion as follows:

α(v+W ) = αv+W (α ∈ F,v+W ∈V/W ).

We must first check that the operation is well-defined, i.e., if u+W = v+W then we must

PS01CMTH24 2018-19



§1.1. Vector Spaces 15

have α(u+W ) = α(v+W ). Now,

u+W = v+W
⇒ u− v ∈W
⇒ α(u− v) ∈W (since W is a subspace)
⇒ αu−αv ∈W
⇒ αu+W = αv+W

This ensures that the scalar multiplication is well-defined. The other vector-space axioms
for V/W are easy to verify and left as an exercise. Thus, we have shown that V/W is a
vector space called the quotient space of V by W . More precisely, we have the following
lemma.

Lemma 1.1.31. If V is a vector space over F and W is a subspace of V , then V/W is a
vector space over F under the following operations:

1. (v1 +W )+(v2 +W ) = (v1 + v2)+W (v1 +W,v2 +W ∈V/W ).
2. α(v1 +W ) = αv1 +W (v1 +W ∈V/W, α ∈ F).

Theorem 1.1.32 (First Homomorphism Theorem). If T is a homomorphism of U onto V
with kernel W, then V is isomorphic to U/W. Conversely, if U is a vector space over F and
W a subspace of U, then there is a homomorphism of U onto U/W.

Proof. Since W = kerT is a subspace of U , U/W is a vector space over F . Define a map
S : U/W →V as

S(u+W ) = T (u) (u+W ∈U/W ). (1.1)

First we show that S is a well-defined map. Let u,v ∈U such that

u+W = v+W
⇒ u− v ∈W
⇒ T (u− v) = 0
⇒ Tu = T v (since T is a homomorphism)
⇒ S(u+W ) = S(v+W )

Next, we show that S is a homomorphism. For u+W,v+W ∈U/W ,

S((u+W )+(v+W )) = S((u+ v)+W )
= T (u+ v) (by definition of S)
= Tu+T v (since T is a homomorphism)
= S(u+W )+S(v+W ) (by definition of S)

and

S(α(u+W )) = S(αu+W )

= T (αu)
= αT (u) (∵ T is a homormophism)

= αS(u+W ).

Dr. Jay Mehta jay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edu
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16 §1.1. Vector Spaces

This shows that S is a homomorphism. Now we show that S is one-one. For this, let
u+W,v+W ∈U/W such that

S(u+W ) = S(v+W )
⇒ Tu = T v (by definition of S)
⇒ T (u− v) = 0 (since T is a homomorphism)
⇒ u− v ∈W (= kerT )
⇒ (u− v)+W =W = 0+W
⇒ u+W = v+W

Now, finally it remains to show that S is onto. Let v ∈V . Since T is onto, there exists u ∈U
such that Tu = v. But by definition of S, Tu = S(u+W ) = v. This shows that S is onto and
hence U/W is isomorphic to V .

Conversely, for a vector space U and its subspace W define a homomorphism φ : U→U/W
by φ(u) = u+W for u ∈U . Then clearly φ is an onto homomorphism. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Note: The homomorphism φ defined above is called the canonical or the natural homomor-
phism of U onto U/W .

Definition 1.1.33 (Internal Direct Sum). Let V be a vector space over F and let U1, . . . ,Un
be subspaces of V . V is said to be the internal direct sum of U1, . . . ,Un if every element
v ∈V can be written uniquely as v = u1 +u2 + · · ·+un, where ui ∈Ui, i = 1,2, . . . ,n. We
write V =U1⊕U2⊕·· ·⊕Un.

Definition 1.1.34 (External Direct Sum). Let V1,V2, . . . ,Vn be vector spaces over F . Con-
sider the set V of all ordered n-tuples (v1,v2, . . . ,vn) where vi ∈ Vi, i = 1,2, . . . ,n. We
say that two elements (v1,v2, . . . ,vn) and (v′1,v

′
2, . . . ,v

′
n) are equal if and only if for each i,

vi = v′i. For v = (v1,v2, . . . ,vn), v′ = (v′1,v
′
2, . . . ,v

′
n) ∈V and α ∈ F , we define

v+ v′ := (v1 + v′1,v2 + v′2, . . . ,vn + v′n)

and
α(v1,v2, . . . ,vn) := (αv1,αv2, . . . ,αvn).

Then V is a vector space over F with the operations defined above, called the external direct
sum of vector spaces V1,V2, . . . ,Vn and denoted by V =V1×V2×·· ·×Vn.

Theorem 1.1.35. If V is the internal direct sum of U1, . . . ,Un then V is isomorphic to the
external direct sum of U1, . . . ,Un.

Proof. Since V is internal direct sum of U1, . . . ,Un, we write V =U1⊕·· ·⊕Un. Then given
u ∈ V , u can be uniquely written as u = u1 + · · ·+ un, ui ∈ Ui, 1 ≤ i ≤ n. Define a map
T : V →U1×U2×·· ·×Un by

Tu = T (u1 +u2 + · · ·+un) = (u1,u2, . . . ,un).

Clearly, the map is well-defined. First we show that T is a homomorphism. Let u,v ∈V . Then
u and v can be uniquely written as u = u1 + · · ·+un and v = v1 + · · ·+ vn. Now,

T (u+ v) = T ((u1 + v1) · · ·+(un + vn))
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§1.2. Linear Independence and Bases 17

= (u1 + v1, . . . ,un + vn)

= (u1, . . . ,un)+(v1, . . . ,vn) = Tu+T v.

Also

T (αu) = T (α(u1 +u2 + · · ·+un)) = T (αu1 +αu2 + · · ·+αun)

= (αu1,αu2, . . . ,αun)

= α(u1,u2, . . . ,un) = αT (u).

Now, we show that T is one-one. Let u,v ∈V such that Tu = T v. Then

T (u1 + · · ·+un) = T (v1 + · · ·+ vn)

⇒ (u1, . . . ,un) = (v1, . . . ,vn)

⇒ ui = vi for all i = 1,2, . . . ,n
⇒ u1 + · · ·+un = v1 + · · ·+ vn

⇒ u = v.

Clearly, T is onto because for (u1, . . . ,un) ∈U1×·· ·×Un, u = u1 + · · ·+ un ∈ V such that
Tu = T (u1 + · · ·+un) = (u1, . . . ,un). Thus T is an isomorphism of V onto U1×·· ·×Un. �Dr. Jay Mehta,

Department of
Mathematics,
Sardar Patel
University.

Since internal direct sum and external direct sum are isomorphic as vector spaces, we will now
refer to it as merely direct sum without specifying internal or external.

1.2 Linear Independence and Bases

Definition 1.2.1. Let V be a vector space over F and v1,v2, . . . ,vn ∈V . Then an element of
the form α1v1+α2v2+ · · ·+αnvn, where αi ∈F, i= 1,2, . . . ,n is called a linear combination
(over F) of v1,v2, . . . ,vn.

Definition 1.2.2. Let V be a vector space over F and S be a non empty subset of V . Then
the set of all linear combinations of finite sets of elements of S, denoted by L(S), is called
the linear span or the span of S, i.e.,

L(S) = {α1v1 +α2v2 + · · ·+αnvn : v1,v2, . . . ,vn ∈ S, α1,α2, . . . ,αn ∈ F, n ∈ N}.

Lemma 1.2.3. L(S) is a subspace of V .

Proof. Let v = λ1s1 + . . .+λnsn and w = µ1t1 + . . .+ µmtm be two elements of L(S) where
λi,µi ∈ F and si, ti ∈ S. Thus, for α,β ∈ F ,

αv+βw = α(λ1s1 + . . .+λnsn)+β (µ1t1 + . . .+µmtm)
= (αλ1)s1 + . . .+(αλn)sn +(β µ1)t1 + . . .+(β µm)tm
∈ L(S)

Thus, L(S) is a subpace of V . �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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18 §1.2. Linear Independence and Bases

Now, we state the following lemma which gives the properties of linear span. The proof is
straightforward and easy and left as an exercise.

Lemma 1.2.4. Let S and T be two non-empty subsets of V . Then
1. S⊂ T implies L(S)⊂ L(T ).
2. L(S∪T ) = L(S)+L(T ).
3. L(L(S)) = L(S).
4. S is a subspace of V if and only if L(S) = S.

Definition 1.2.5. Let V be a vector space over F . Then V is said to be finite dimensional
(over F) if there is a finite set S such that L(S) =V .

For example, F(n) is finite dimensional over F for if S is a subset of F(n) consisting of n
vectors such that S = {(1,0, . . . ,0),(0,1,0, . . . ,0), . . . ,(0,0, . . . ,0,1)} then L(S) = F(n).

At this stage, we have just defined only what is a finite dimensional vector space. We will
define what is dimension of a vector space later.

Definition 1.2.6. Let V be a vector space over F and v1, . . . ,vn ∈ V . We say that they
are linearly dependent over F if there exists α1, . . . ,αn ∈ F , not all of them 0, such that
α1v1 + · · ·+αnvn = 0.

v1, . . . ,vn are said to be linearly independent if they are not linearly dependent, i.e., if
α1v1+α2v2+ · · ·+αnvn = 0 then αi = 0,∀i. Note that if v1, . . . ,vn are linearly independent
then none of them can be zero, for if v1 = 0 (say), then for any α 6= 0 in F we have
αv1 +0v2 + · · ·+0vn = 0.

Definition 1.2.7. A non-empty subset M of a vector space V is called linearly independent
over F if every finite subset of M is linearly independent over F .

Example 1.2.8. Clearly, in R3, (1,0,0),(0,1,0) and (0,0,1) are linearly independent over
R. Verify that p1(x) = x+1, p2(x) = 3x2 + x+3 and p3(x) = 3x2 +3x+5 are three linearly
dependent elements of R3[x] over R.

Remark 1.2.9. Observe that the notion of linear dependence is considered over the field F .
Hence it depends not only on the given vectors but also on the field. For example, the field of
complex numbers C can be considered as a vector space over R and also over C. The elements
v1 = 1 and v2 = i are linearly independent over R as there are no non-zero real numbers α1
and α2 such that (α1×1)+(α2× i) = 0. However, when considered over C, they are linearly
dependent since iv1 +(−1)v2 = 0.

1.2.1 Properties of linear independence and span

Let x = (−1,1,0), y = (1,−1,1) and z = (2,−2,3) denote three elements of R3. Let u =
(−4,4,0) ∈ R3. Then clearly u ∈ L({x,y,z}) since u can be written in as u = 5x+ 3y− z.
Note that u can also be written as u = 6x+ 6y− 2z. Thus in this case, the expression of
an element in the span of x,y,z is not unique. Now consider another set {e1,e2,e3} where
e1 = (1,0,0), e2 = (0,1,0) and e3 = (0,0,1) in R3. Clearly u also belongs to its span since u
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§1.2. Linear Independence and Bases 19

can be written as u =−e1 +4e2 +0e3. As in the previous case, is it possible to find another
representation of u in L({e1,e2,e3})? No? It seems that such expression is unique in this case.
What is the difference! One difference is that x,y,z are linearly dependent (z = x+3y) while
we know that e1,e2,e3 are L.I. This tempts us to ask the following question:
Question: If v1, . . . ,vn ∈V are linearly independent then is it true that every element in their
span has a unique representation (over F)?
The answer to this question is affirmative. More precisely, we have the following lemma:

Lemma 1.2.10. If v1, . . . ,vn ∈V are linearly independent, then every element in their linear
span can be uniquely expressed in the form λ1v1 + · · ·+λnvn with λi ∈ F.

Proof. By definition of linear span, every element in L({v1, . . . ,vn}) is of the form λ1v1 +
· · ·+λnvn. Suppose if possible v ∈ L({v1, . . . ,vn}) can be expressed in two different ways, say,
v = λ1v1 + · · ·+λnvn and v = µ1v1 + · · ·+µnvn. Then

λ1v1 + · · ·+λnvn = v = µ1v1 + · · ·+µnvn.

This implies,
(λ1−µ1)v1 +(λ2−µ2)v2 + · · ·+(λn−µn)vn = 0.

Since, v1,v2, . . . , ,vn are given to be linearly independent, we conclude that λi−µi = 0 for all
i and hence every element v ∈ L({v1, . . . ,vn}) has a unique representation. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Question 1.2.11. Is the converse true? That is if every element v ∈ L({v1, . . . ,vn}) has a
unique representation given in above lemma, then can we say that v1,v2, . . . ,vn are linearly
independent?

Theorem 1.2.12. Let V be a vector space over F, v1,v2, . . . ,vn ∈V and v1 6= 0. Then either
they are linearly independent or there exists a k ≤ n such that vk is a linear combination of
the preceding ones, v1,v2, . . . ,vk−1.

Proof. If v1,v2, . . . ,vn are all linearly independent then we are done. Suppose that v1, . . . ,vn are
not linearly independent. Then obviously n≥ 2 as {v1} is linearly independent. Since v1, . . . ,vn
are linearly dependent, there exist α1, . . . ,αn ∈ F , not all zero, such that α1v1 + · · ·+αnvn =
0. Let k be the largest integer such that αk 6= 0, i.e., αk+1 = αk+2 = · · · = αn = 0. This
k ≥ 2. If k = 1, then α1v1 = 0. Since α1 6= 0, v1 = 0. This is not possible. So, we get
α1v1 + · · ·+αkvk = 0. Since αk 6= 0, we have

vk = α
−1
k (−α1v1−α2v2−·· ·−αk−1vk−1)

= (−α
−1
k α1)v1 +(−α

−1
k α2)v2 + · · ·+(−α

−1
k αk−1)vk−1.

Thus, vk is a linear combination of its predecessors. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Corollary 1.2.13. Let V be a vector space over F and v1, . . . ,vn ∈ V such that W =
L({v1, . . . ,vn}). If v1, . . . ,vk are linearly independent then we can find a linearly independent
subset {v1, . . . ,vk,vi1, . . . ,vir} of {v1, . . . ,vn} whose linear span is also W.
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20 §1.2. Linear Independence and Bases

Proof. If v1, . . . ,vn are linearly independent, then we are done.
Assume that v1, . . . ,vn are linearly dependent. Then by the above theorem there is a v j such
that v j is a linear combination of v1, . . . ,v j−1, i.e.,

v j = β1v1 + · · ·+β j−1v j−1.

Since, v1, . . . ,vk are given to be linearly independent, j > k.
Claim: L({v1, . . . ,v j−1,v j+1, . . . ,vn}) =W .
Since {v1, . . . ,v j−1,v j+1, . . . ,vn} ⊂ {v1, . . . ,vn}, we have

L({v1, . . . ,v j−1,v j+1, . . . ,vn})⊂ L({v1, . . . ,vn}) =W.

Now, let w ∈W = L({v1, . . . ,vn}). Then there exists α1, . . . ,αn ∈ F such that w = α1v1+ · · ·+
αnvn. Then, we have

w = α1v1 + · · ·+α j−1v j−1 +α jv j +α j+1v j+1 + · · ·+αnvn

= α1v1 + · · ·+α j−1v j−1 +α j(β1v1 + · · ·+β j−1v j−1)+α j+1v j+1 + · · ·+αnvn

= (α1 +α jβ1)v1 +(α2 +α jβ2)v2 + · · ·+(α j−1 +α jβ j−1)v j−1 +α j+1v j+1 + · · ·+αnvn

Therefore, w ∈ L({v1, . . . ,v j−1,v j+1, . . . ,vn}). Hence, W = L({v1, . . . ,v j−1,v j+1, . . . ,vn}). If
v1, . . . ,v j−1,v j+1, . . . ,vn are linearly independent then we are done. If not, then continuing
this procedure, we get a subset {v1, . . . ,vk,vi1, . . . ,vir} of {v1, . . . ,vn} such that it is linearly
independent and W = L({v1, . . . ,vk,vi1, . . . ,vir}). �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Definition 1.2.14. Let V be a vector space over F . A subset S of V is called a basis of
V if S is linearly independent (that is every finite subset of S is linearly independent) and
L(S) =V .

Corollary 1.2.15. Let V be a finite-dimensional vector space over F and v1, . . . ,vn ∈ V
such that L({v1,v2, . . . ,vn}) = V . Then there exists a subset {u1, . . . ,um} of {v1, . . . ,vn}
such that {u1, . . . ,um} is a basis of V .

Lemma 1.2.16. Let V be a vector space and {v1,v2, . . . ,vn} be a basis of V . If {w1, . . . ,wm}
in V are linearly independent then m≤ n.

Proof. Since {v1,v2, . . . ,vn} is a basis of V , every element in V can be written as a linear
combination of v1,v2, . . . ,vn. In particular, wm ∈V can be written as a linear combination of
v1,v2, . . . ,vn. Therefore the set {wm,v1,v2, . . . ,vn} is linearly dependent and clearly

L({wm,v1,v2, . . . ,vn}) =V.

Therefore, we can find a proper subset {wm,vi1, . . . ,vir} of {wm,v1,v2, . . . ,vn}which is linearly
independent and which spans V , i.e., {wm,vi1, . . . ,vir} forms a basis of V . Thus, we have
inserted one w at the cost of at least on v from our set. Therefore, r ≤ n−1.
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Now, wm−1 can be written as a linear combination of the new basis {wm,vi1 , . . . ,vir}. Hence,
the set {ww−1,wm,vi1, . . . ,vir} is linearly dependent. Repeating the above procedure we can
find new basis of V of the form

{wm−1,wm,v j1, . . . ,v js} (s≤ n−2).

Continuing this way, we eventually come down to a stage where the basis of V is of the form

B = {w2,w3, . . . ,wm,vα ,vβ , . . .}.

Now, we write w1 as a linear combination of the new basis B of V given above. Since
w1,w2, . . . ,wm are linearly independent, w1 cannot be written as a linear combination of
w2, . . . ,wm. Hence, the basis B must contain some v.

To obtain the basis B, we have inserted m−1 w’s and each time removed at least one v, and
still there is some v left in B. This implies m−1≤ n−1 and so m≤ n. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Corollary 1.2.151.2.15 indicates that number of elements in a basis is less than or equal to
number of elements in a span. By Lemma 1.2.161.2.16, we can say that cardinality of any linearly
independent set is less than or equal to cardinality of a basis. Combining them, we have the
following relation:

Card(L.I. set)≤ Card(Basis)≤ Card(Span).

Corollary 1.2.17. If V is finite-dimensional vector space over F then any two bases of V
have the same number of elements.

Proof. Let {v1, . . . ,vn} and {w1, . . . ,wm} be two bases of V over F . In particular, w1, . . . ,wm ∈
V are linearly independent over F and considering {v1 . . . ,vn} as basis of V , by Lemma 1.2.161.2.16,
we have m≤ n.

Now, v1 . . . ,vn ∈V are linearly independent over F and considering {w1 . . . ,wn} as a basis
of V , by the above lemma, we have n≤ m. Hence, m = n. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Exercise 1.2.18. If T is an isomorphism of V onto W , prove that T maps a basis of V onto a
basis of W .

Solution. The problem is given as a seminar exercise. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Corollary 1.2.19. F(n) and F(m) are isomorphic if and only if n = m.

Proof. F(n) has a basis consisting of n vectors, (1,0, . . . ,0),(0,1,0, . . . ,0), . . . ,(0,0, . . . ,0,1).
F(m) has a similar basis consisting of m such elements. By above exercise, an isomorphism
maps basis onto a basis. Hence, by Corollary 1.2.171.2.17, m = n. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Exercise 1.2.20. If V is a finite dimensional vector space over F then V is isomorphic to F(n)

for some n.
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22 §1.2. Linear Independence and Bases

Solution. V is given to be a finite dimensional vector space over F . Let {v1,v2, . . . ,vn} be a
basis of V . Then every element v ∈V has a unique representation of the form

α1v1 +α2v2 + · · ·+αnvn (αi ∈ F, i = 1,2, . . . ,n).

We define a map T : V → F(n) by T (v) = T (α1v1 +α2v2 + · · ·+αnvn) = (α1,α2, . . . ,αn). It
is easy to see that T is an isomorphism of V onto F(n). Thus, V ∼= F(n). �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Definition 1.2.21. Let V be a finite dimensional vector space over F . The dimension of V
over F is the number of elements in any basis of V over F . It is usually denoted by dimV
and sometimes by dimF V (to stress that dimension of V is over the field F).

Exercise 1.2.22. Let V = {V : V is a vector space over F}. Define a relation ‘∼’ on V as
follows: for U,V ∈ V , U ∼ V if U is isomorphic to V . Show that ‘∼’ is an equivalence
relation, i.e., isomorphism of vector spaces is an equivalence relation.

Corollary 1.2.23. Let V and W be two finite dimensional vector spaces over F such that
their dimensions are same, i.e., dimV = dimW. Then V and W are isomorphic.

Proof. If dimV = dimW = n. Then by Exercise 1.2.201.2.20, V is isomorphic to F(n) and W is
isomorphic to F(n). Hence, by the transitivity property of the above exercise, V and W are
isomorphic. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

By Exercise 1.2.181.2.18 and Corollary 1.2.231.2.23, we have the following result:

Lemma 1.2.24. If V and W are two finite dimensional vector spaces over F then V and W
are isomorphic to each other if and only if dimV = dimW.

We have already seen that given a spanning set we can find its subset which forms a
basis. The following lemma show that given a linearly independent set we can extend it to a
basis.

Lemma 1.2.25. Let V be a finite-dimensional vector space over F such that u1, . . . ,um ∈
V are linearly independent. Then we can find vectors um+1, . . . ,um+r in V such that
u1, . . . ,um,um+1, . . . ,um+r is a basis of V .

Proof. Since V is a finite dimensional vector space it has a basis, say {v1, . . . ,vn}. Consider
the set B = {u1, . . . ,um,v1, . . . ,vn}. Clearly the set B spans V . Then by Corollary 1.2.131.2.13, there
is a linearly independent subset {u1, . . . ,um,vi1, . . . ,vir} of B such that it spans V . We just
write vi1 = um+1, . . . ,vir = um+r. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Lemma 1.2.26. Let V be finite dimensional vector space over F and W be a subspace of V .
Then W is finite dimensional and dimW ≤ dimV . Also, dimV/W = dimV −dimW.
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Proof. Let dimV = n. Then by Lemma 1.2.161.2.16, any n+1 elements in V are linearly dependent.
In particular, any n+1 elements in W are linearly dependent. Let {w1, . . . ,wm} be a maximal
linearly independent set in W , then m≤ n. We want to show that dimW = m. Let w ∈W then
set {w,w1, . . . ,wm} is linearly dependent and hence

αw+α1w1 + · · ·+αmwm = 0

such that not all the scalars αi’s are zero. If α = 0, then we have

α1w1 + · · ·+αmwm = 0.

Since w1, . . . ,wm are linearly independent, αi = 0 for all i= 1,2, . . . ,m which implies {w,w1, . . . ,wm}
is a linearly independent set. This is contradiction since {w1, . . . ,wm} is the largest linearly
independent set in W . Hence, α 6= 0 and so we can write

w = (−α
−1

α1)w1 + · · ·+(−α
−1

αm)wm.

This means w1, . . . ,wm spans W and since it is a L.I. set, it is basis of W . Thus it follows that
dimW ≤ dimV .

Now, w1, . . . ,wm is a basis of W and so it is a linearly independent set in V . Then by
Lemma 1.2.251.2.25, it can be extended to a basis, {w1, . . . ,wm,v1, . . . ,vr}, of V where dimV =m+r
and dimW = m.

If we show that {v1 +W, . . . ,vr +W} is a basis of V/W , then we are done as dimV/W =
r = (m+ r)−m = dimV −dimW . First we show that it spans V/W . Let v+W ∈ V/W for
some v ∈V . Now, since {w1, . . . ,wm,v1, . . . ,vr} is a basis of V , every v ∈V can be written as

v = α1w1 + . . .+αmwm +β1v1 + . . .+βrvr.

Then

v+W = α1(w1 +W )+ . . .+αm(wm +W )+β1(v1 +W )+ . . .+βr(vr +W )

= β1(v1 +W )+ . . .+βr(vr +W ) (as wi ∈W ⇒ wi +W = 0)

Thus, {v1 +W, . . . ,vr +W} spans V/W . Now, we show that it is a linearly independent set.
Let γ1(v1 +W )+ · · ·+ γr(vr +W ) = 0. Then γ1v1 + · · ·+ γrvr ∈W and so it can be written as
a linear combination of elements of the basis of W as follows:

γ1v1 + · · ·+ γrvr = λ1w1 + · · ·+λmwm

⇒ γ1v1 + · · ·+ γrvr−λ1w1 + · · ·+λmwm = 0.

Since {w1, . . . ,wm,v1, . . . ,vr} is a basis of V , above equation implies

γ1 = · · ·= γr = λ1 = · · ·= λm = 0.

Thus, {v1 +W, . . . ,vr +W} is a basis of V/W with r elements. Hence,

dimV/W = r = dimV −m = dimV −dimW.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Exercise 1.2.27. If A and B are subspaces of a vector space V then prove that (A+B)/B is
isomorphic to A/(A∩B), where

A+B = {v ∈V : v = a+b, a ∈ A, b ∈ B}.

Solution. Given as a seminar exercise. This result is known as the Second Isomorphism
Theorem. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Corollary 1.2.28. If A and B are are finite dimensional subspaces of a vector space V , then
(A+B) is finite dimensional and we have

dim(A+B) = dimA+dimB−dim(A∩B).

Proof. By Exercise 1.2.271.2.27, we have

(A+B)
B

∼=
A

(A∩B)
.

By Exercise 1.2.181.2.18, we know that if two vectors spaces are isomorphic then their dimensions
are same. Hence,

dim
(A+B)

B
= dim

A
(A∩B)

.

Then by Lemma 1.2.261.2.26, we have

dim(A+B)−dimB = dimA−dim(A∩B)
⇒ dim(A+B) = dimA+dimB−dim(A∩B).

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

1.3 Dual Spaces

Let V and W be two vector spaces over F . We have defined Hom(V,W ) to be the set of all
vector space homomorphisms from V into W . We intend to make it a vector space over F . For
S,T ∈ Hom(V,W ), we define S+T as

(S+T )(v) := S(v)+T (v)

for all v ∈V . Now, we check that S+T is a homomorphism. If v1,v2 ∈V and α ∈ F , then

(S+T )(v1 + v2) = S(v1 + v2)+T (v1 + v2) (by definition of S+T )
= (S(v1)+S(v2))+(T (v1)+T (v2)) (since S,T are homomorphisms)
= (S(v1)+T (v1))+(S(v2)+T (v2))

= (S+T )(v1)+(S+T )(v2) (by definition of S+T )

and

(S+T )(αv1) = S(αv1)+T (αv1) (by definition of S+T )
= αS(v1)+αT (v1) (since S,T are homomorphisms)
= α(S+T )(v1) (by definition of S+T ).

Thus, (S+T ) is a homomorphism of V into W i.e., S+T ∈ Hom(V,W ). The zero homo-
morphism 0 ∈ Hom(V,W ) is defined by 0(v) = 0 for all v ∈V and we have S+0 = S for all
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S ∈ Hom(V,W ). Also, for any S ∈ Hom(V,W ), let (−S) be defined by (−S)(v) = −(S(v)).
Thus, it is evident that Hom(V,W ) is an abelian group under the addition defined above.

Now, we define scalar multiplication on Hom(V,W ) to make it into a vector space over F .
For λ ∈ F and S ∈ Hom(V,W ). We define λS by

(λS)(v) := λ (S(v)) ( for all v ∈V ).

One can check that λS defined above is in Hom(V,W ). The other properties of vector space
can easily verified. Thus, we have the following result:

Lemma 1.3.1. Let V and W be vector spaces over F. Then Hom(V,W ) is a vector space
over F under the operations defined above.

Proof. Seminar exercise (partly discussed in class). �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Exercise 1.3.2. If S,T ∈Hom(V,W ) and {v1, . . . ,vm} be a basis of V over F . If S(vi) = T (vi)
for all i = 1, . . . ,m, then prove that S = T . In other words, if two homomorphisms agree on
the basis then they must be same.

Solution. Seminar exercise. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

When V and W are finite dimensional vector spaces, the following theorem relates the
dimension of Hom(V,W ) to that of V and W .

Theorem 1.3.3. Let V and W be vector spaces over F of dimensions m and n respectively.
Then Hom(V,W ) is of dimension mn over F.

Proof. We prove the theorem by finding a basis of Hom(V,W ) containing mn elements. Let
{v1, . . . ,vm} be a basis of V over F and {w1, . . . ,wn} be a basis of W over F . If v ∈ V then
v = λ1v1 + · · ·+λmvm where λ1, . . . ,λm are uniquely determined elements of F .

For 1≤ i≤ n and 1≤ j ≤ m, define Ti j : V →W by Ti j(v) = λ jwi for v ∈V . Observe that
on basis elements Ti j is defined as

Ti j(vk) =

{
wi if j = k
0 if j 6= k.

First we show that Ti j is a homomorphism. For this, let u,v∈V such that u=α1v1+ · · ·+αmvm
and v = β1v1 + · · ·+βmvm and γ,µ ∈ F . Then

Ti j(γu+µv) = Ti j(γ(α1v1 + · · ·+αmvm)+µ(β1v1 + · · ·+βmvm))

= Ti j((γα1 +µβ1)v1 + · · ·+(γαm +µβm)vm)

= (γα j +µβ j)wi (by definition of Ti j)
= γα jwi +µβ jwi

= γTi j(u)+µTi j(v).

Thus, Ti j ∈Hom(V,W ). Let B = {Ti j : 1≤ i≤ n, 1≤ j≤m}. Then B consists of mn elements
of Hom(V,W ). If we show that B is a basis of Hom(V,W ) over F then we are done.
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For this, first we shall show that B spans Hom(V,W ). Let S ∈ Hom(V,W ). Then we have
to show that S = L(B), i.e., S is a linear combination of Ti j’s. For a basis element v1 of V ,
S(v1) ∈W . So, S(v1) can be written as a linear combination of elements in the basis of W . Let
S(v1) = α11w1 +α21w2 + · · ·+αn1wn. In fact, for all j = 1,2, . . . ,m,

S(v j) = α1 jw1 +α2 jw2 + · · ·+αn jwn. (1.2)

Now, consider

S0 = ∑
1≤i≤n
1≤ j≤m

αi jTi j

= α11T11 +α21T21 + · · ·+αn1Tn1 +α12T12 +α22T22 + · · ·+αn2Tn2 + · · ·+
+α1mT1m +α2mT2m + · · ·+αnmTnm

Note that S0 ∈ L(B). If we show that S = S0 then we have S ∈ L(B) and we are done. By
(above) Exercise 1.3.21.3.2 it suffices to show that S0(vk) = S(vk) for all basis elements vk of V .
Now, we compute the value of S0 at vk.

S0(vk) =

 ∑
1≤i≤n
1≤ j≤m

αi jTi j

(vk)

= α11T11(vk)+ · · ·+αn1Tn1(vk)+α12T12(vk)+ · · ·+αn2Tn2(vk)+ · · ·+
+α1mT1m(vk)+ · · ·+αnmTnm(vk)

=
n

∑
i=1

αikwi (by definition of Ti j)

= α1kw1 +α2kw2 + · · ·+αnkwn

= S(vk) (by equation (1.21.2)).

Thus, S(vk) = S0(vk) for all k = 1,2, . . . ,m and hence S ∈ L(B).
Now, we show that the set B is linearly independent. For βi j ∈ F , let

∑
1≤i≤n
1≤ j≤m

βi jTi j = 0.

Then we have to show that βi j = 0 for all i = 1,2, . . . ,n and j = 1,2, . . . ,m. Applying this to
the basis element vk of V , we have ∑

1≤i≤n
1≤ j≤m

βi jTi j

(vk) = 0

⇒
n

∑
i=1

βikwi = 0 (by definition of Ti j)

⇒ β1kw1 +β2kw2 + · · ·+βnkwk = 0.

Since, {w1,w2, . . . ,wn} is a basis of W , we have βik = 0 for all i = 1,2, . . . ,n. This is true for
all k = 1,2, . . . ,m. Hence, βi j = 0 ∀ i, j. This shows that B is a linearly independent set and
hence a basis of Hom(V,W ). Hence, dim(Hom(V,W )) = mn. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Remark 1.3.4. As a consequence of above theorem, if V 6= {0} and W 6= {0} are finite
dimensional vector spaces of dimension m and n respectively then m≥ 1 and n≥ 1 and hence
dim(Hom(V,W )) = mn ≥ 1. This means Hom(V,W ) does not just contain only one trivial
homomorphism 0, i.e. Hom(V,W ) 6= 0.

Corollary 1.3.5. If dimF V = m then dimF Hom(V,V ) = m2.

Proof. In the theorem put W =V . So m = n and hence mn = m2. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Corollary 1.3.6. If dimF V = m then dimF Hom(V,F) = m.

Proof. We know that F(n) is a vector space over F of dimension n. Here, F is a vector space
of dimension is 1 over F . Put W = F in the above theorem, then we have dimF Hom(V,F) =
m. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Definition 1.3.7 (Dual space). Let V be a vector space over a field F . A homomorphism
from V to F is also called a linear functional. The collection of all linear functionals on V
is denoted by V̂ = Hom(V,F) is a vector space over F and called the dual space or simply
the dual of V over F . Thus,

V̂ = { f : V → F : f is a homomorphism}.

Remark 1.3.8. By Corollary 1.3.61.3.6, if V is finite dimensional then dimV = dimV̂ . Then
we can say that V is isomorphic to its dual V̂ . However, this is true only when V is finite
dimensional. If V is not finite dimensional then no such isomorphism exists.

Definition 1.3.9. Let V be a finite dimensional vector space over F and let {v1,v2, . . . ,vn} be
a basis of V over F . Let v̂i be an element of V̂ defined as v̂i(α1v1 +α2v2 + · · ·+αnvn) = αi,
i.e.,

v̂i(v j) =

{
1 if i = j
0 if i 6= j.

Then v̂i are same as Ti j in the previous theorem with W = F here which is one dimensional
over F . Thus, ˆv1, . . . ,v̂n forms a basis of V̂ . This basis is called the dual basis of v1, . . . ,vn.

Lemma 1.3.10. Let V be a finite dimensional vector space over F and v ∈V , v 6= 0. Then
there is an element f ∈ V̂ such that f (v) 6= 0.

Proof. If v 6= 0 then {v} is linearly independent. Therefore by Lemma 1.2.251.2.25, it can be
extended to a basis {v = v1,v2, . . . ,vn} of V . As in above definition, define f : V → F by
f (αv+α2v2 + · · ·+αnvn) = α . Then f ∈ V̂ and f (v) = 1 6= 0. Hence, the lemma. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

The above lemma is true for infinite dimensional vector spaces also but here we are concerned
only for finite dimensional vector space V .
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1.3.1 Second dual

Let V be a vector space over F and v0 ∈V . For every f ∈ V̂ denote the map f 7→ f (v0) by Tv0 .
That is Tv0( f ) = f (v0) for f ∈ V̂ . Thus, Tv0 is a map from V̂ to F . Furthermore, we check that
Tv0 is a homomorphism. For any f ,g ∈ V̂ and λ ∈ F ,

Tv0( f +g) = ( f +g)(v0) = f (v0)+g(v0) = Tv0( f )+Tv0(g);
Tv0(λ f ) = (λ f )(v0) = λ ( f (v0)) = λTv0( f ).

Thus, Tv0 : V̂ → F is a homomorphism, i.e., it is an element of dual space of V̂ . We say that
Tv0 is an element of second dual of V defined as follows:

Definition 1.3.11. Let V be a vector space over F and V̂ denote the dual space of V . Then
the set of all homomorphisms from V̂ to F is a vector space over F called the second dual

of V and denote by ̂̂V i.e.,

̂̂V = {T : V̂ → F : T is a homomorphism}.

As seen above for every v0 ∈ V we get an element Tv0 ∈
̂̂V . We can thus define a map

v0 7→ Tv0 from V to ̂̂V and we expect it to be isomorphism. More precisely, we have the
following theorem:

Theorem 1.3.12. Let V be a vector space over F. Then V is isomorphic to a subspace of̂̂V , i.e., there is an isomorphism of V into ̂̂V . If V is finite dimensional then V ∼= ̂̂V (V is

isomorphic to ̂̂V ).

Proof. Define a map ψ : V → ̂̂V by ψ(v) = Tv where Tv is defined as above, Tv( f ) = f (v)
for f ∈ V̂ . First we show that ψ is a homomorphism. For this we have to show that for any
v,w ∈V and λ ∈ F ,

ψ(v+w) = ψ(v)+ψ(w) and ψ(λv) = λψ(v).

That is we have to show that

Tv+w = Tv +Tw and Tλv = λTv.

Now,

Tv+w( f ) = f (v+w) (by definition of T )
= f (v)+ f (w) (since f is a homomorphism of V into F)

= Tv( f )+Tw( f ) (by definition of T )
= (Tv +Tw)( f ).

Also,

Tλv( f ) = f (λv) (by definition of T )
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= λ f (v) (since f is a homomorphism of V into F)

= λ (Tv( f )) (by definition of T ).
= (λTv)( f )

Thus, ψ : V → ̂̂V is a homomorphism. Now we show that ψ is one-one. To show this, we shall
show that if ψ(v) = 0 then v = 0. Now,

ψ(v) = 0⇒ Tv = 0

⇒ Tv( f ) = 0 for all f ∈ V̂

⇒ f (v) = 0 for all f ∈ V̂ .

Thus, ψ(v) = 0 implies f (v) = 0 for all f ∈ V̂ . If v 6= 0 then by Lemma 1.3.101.3.10, there exists at
least one f ∈ V̂ such that f (v) 6= 0. But here we have f (v) = 0 for all f ∈ V̂ . Hence v must be
0 which concludes that ψ is one-one.

When V is finite dimensional we know that

dim(V ) = dim(V̂ ) = dim(
̂̂V ).

Since, ψ is an isomorphism, by equality of dimensions, we conclude that ψ is onto. Hence, V

is isomorphic to its second dual ̂̂V . �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

The above theorem holds even when V is infinite dimensional. However, in case of infinite
dimensional vector space V , the isomorphism ψ is not onto.

Definition 1.3.13. Let V be a vector space and W be a subspace of V . The annihilator of
W is denoted by W 0 and defined as

W 0 = { f ∈ V̂ | f (w) = 0 for all w ∈W}.

Exercise 1.3.14. If V is a vector space and U,W are subspaces of V then prove that:
1. W 0 is a subspace of V̂ .
2. If U ⊂W , then W 0 ⊂U0.

Question 1.3.15. Is the converse of (2) in above true? That is, given W 0 ⊂U0 can we say that
U ⊂W?

Definition 1.3.16. Let V be a vector space and W be a subspace of V . If f ∈ V̂ , i.e.,
f : V → F be a linear functional, then the restriction of f to W , f̃ or f

∣∣
W is a map from W

to F and defined as

f̃ = f
∣∣
W : W → F such that f̃ (w) = f (w), for all w ∈W.

For w1,w2 ∈W and α,β ∈ F ,

f̃ (αw1 +βw2) = f
∣∣
W (αw1 +βw2)

= f (αw1 +βw2) (by definition of f̃ )
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= α f (w1)+β f (w2) (since f is a homomorphism)

= α f
∣∣
W (w1)+β f

∣∣
W (w2)

= α f̃ (w1)+β f̃ (w2)

Thus, f̃ : W → F is a homomorphism. Hence, if f ∈ V̂ then f̃ = f
∣∣
W ∈ Ŵ .

Theorem 1.3.17. Let V be a finite dimensional vector space over F and W be a subspace
of V . Then Ŵ is isomorphic to V̂/W 0 and dimW 0 = dimV −dimW.

Proof. Define a map φ : V̂ → Ŵ by φ( f ) = f̃ = f
∣∣
W for all f ∈ V̂ . If we show that φ is an onto

homomorphism with kerφ =W 0, then by Theorem 1.1.321.1.32 (First Homomorphism Theorem),
we have Ŵ ∼= V̂/W 0 and we are done.
First we show that φ is a homomorphism: For f1, f2 ∈ V̂ and α ∈ F ,

φ( f1 + f2)(w) = ( f1 + f2)
∣∣
W (w)

= ( f1 + f2)(w)
= f1(w)+ f2(w)

= f1
∣∣
W (w)+ f2

∣∣
W (w)

= (φ( f1)+φ( f2))(w)

Thus, φ( f1 + f2)(w) = (φ( f1)+φ( f2))(w) for all w ∈W . This implies,
φ( f1 + f2) = φ( f1)+φ( f2). Also,

φ(α f1)(w) = (α f1)
∣∣
W (w)

= α f1(w)

= α( f1
∣∣
W )(w) = αφ(w).

Thus, φ(α f1) = αφ( f1). Hence, φ is a homomorphism.
Now, we show that kerφ =W 0: By definition,

kerφ = { f ∈ V̂ : φ( f ) = 0}
= { f ∈ V̂ : f̃ = f

∣∣
W = 0} (where f̃ ∈ Ŵ )

= { f ∈ V̂ : f (w) = 0 for all w ∈W}
= W 0.

Next, we show that φ is onto. Let h ∈ Ŵ . Then we want to find f ∈ V̂ such that φ( f ) = f̃ = h
i.e., f

∣∣
W = h. Let {w1, . . . ,wm} be a basis of W . Then by Lemma 1.2.251.2.25, it can be extended to

a basis {w1, . . . ,wm,v1, . . . ,vr} of V . Let W1 = L({v1, . . . ,vr}). Then V =W ⊕W1, i.e., every
v ∈V can be uniquely written as v = w+w1, where w ∈W and w1 ∈W1. For h ∈ Ŵ , define a
function f : V → F by f (v) = f (w+w1) = h(w). Then by definition of f , clearly f

∣∣
W = h,

i.e., φ( f ) = h. We have to just check that f ∈ V̂ . Let v,v′ ∈V and α,β ∈ F . Then v = w+w1
and v′ = w′+w′1 where w,w′ ∈W , w1,w′1 ∈W1 and

f (αv+βv′) = f
(
α(w+w1)+β (w′+w′1)

)
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= f
(
(αw+βw′)+(αw1 +βw′1)

)
= h(αw+βw′) (by definition of f )
= αh(w)+βh(w′) (since h is a linear functional on W )

= α f (v)+β f (v′) (by definition of f ).

Thus, f is a linear functional on V , i.e., f ∈ V̂ and by the definition of φ( f ) = f̃ = h. Hence,
φ is onto. We have proved that Ŵ ∼= V̂/W 0. Hence, by Lemma 1.2.261.2.26, we have dimŴ =
dimV̂ −dimW 0. Since, V is given to be finite dimensional, we know that dimV̂ = dimV and
hence,

dimW 0 = dimV −dimW.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

From the technique used to prove that φ is onto in the above theorem, we can deduce the
following result:

Exercise 1.3.18. If V is finite dimensional and W is a subspace of V prove that there is a
subspace W1 of V such that V =W

⊕
W1.

Solution. Seminar exercise. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Example 1.3.19. Consider a subspace W = {(x,y,z) : x+ 2y+ z = 0} of R3. Find W 0 and
state its dimension.

Solution. By definition of annihilator,

W 0 = { f(α,β ,γ) ∈ R̂3 : f (w) = 0, w ∈W}.

Note that

W = {(x,y,−x−2y) : x,y ∈ R}
= {x(1,0,−1)+ y(0,1,−2) : x,y ∈ R}

and hence dimW = 2. Then by above theorem,

dimW 0 = dimR3−dimW = 3−2 = 1.

Now, let f(α,β ,γ) ∈W 0. Then

f(α,β ,γ)(1,0,−1) = f(α,β ,γ)(0,1,−2) = 0.

This implies, α− γ = 0 and β −2γ = 0. Therefore, α = γ and β = 2γ. Thus,

f(α,β ,γ) = f(γ,2γ,γ).

So, W 0 = { f(γ,2γ,γ) ∈ R̂3 : γ ∈ R}. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Exercise 1.3.20. If F is the field of real numbers, then find W 0 where
(a) W is spanned by (1,2,3) and (0,4,−1).
(b) W is spanned by (0,0,1,−1), (2,1,1,0) and (2,1,1,−1).
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Solution. Seminar exercise. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Now, observe that W ⊂V and W 00 ⊂ ̂̂V are subspaces of V and its second dual respectively.
As such they are not comparable. However, as seen before, we have an identification of V tô̂V by the isomorphism ψ : V → ̂̂V defined as v0 7→ Tv0 . In this sense, we have the following
corollary:

Corollary 1.3.21. W 00 =W.

Proof. First we show that W ⊂W 00. For this, let w ∈W . Then we have to show that
ψ(w) = Tw ∈W 00. Observe that for any f ∈W 0 (i.e., f (w) = 0 for all w ∈W ),

Tw( f ) = f (w) = 0.

Thus, Tw ∈ ̂̂V such that Tw( f ) = 0 for all f ∈W 0. Then by definition of annihilator Tw ∈W 00

and hence W ⊂W 00.
Now, considering W 0 as a subspace of V̂ by Theorem 1.3.171.3.17 (above), we have

Ŵ 0 ∼= ̂̂V/W 00

and hence

dim(Ŵ 0) = dim(
̂̂V )−dim(W 00)

⇒ dim(W 0) = dim(V )−dim(W 00)

⇒ dim(V )−dim(W ) = dim(V )−dim(W 00) (by previous theorem)

⇒ dim(W ) = dim(W 00).

We have W ⊂W 00 and dim(W ) = dim(W 00), it follows that W =W 00. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

1.3.2 An application to the system of Linear equations

Theorem 1.3.171.3.17 has an application to the study of systems of linear homogeneous equations.
Consider the system of m equations in n unknowns

a11x1 + · · ·+a1nxn = 0,
a21x1 + · · ·+a2nxn = 0,

...
...

am1x1 + · · ·+amnxn = 0,

where ai j ∈ F . Let U be the subspace of F(n) spanned by the m vectors (a11, . . . ,a1n),
(a21, . . . ,a2n), . . . ,(am1, . . . ,amn). Then the dimension of U is called the rank of the above
system. The following theorem gives the number of linearly independent solutions to such a
system of rank r:
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Theorem 1.3.22. If the system of homogeneous linear equations:

a11x1 + · · ·+a1nxn = 0,
a21x1 + · · ·+a2nxn = 0,

...
...

am1x1 + · · ·+amnxn = 0,

where ai j ∈ F is of rank r, then there are n− r linearly independent solutions in F(n).

Proof. Let U = L({(a11, . . . ,a1n),(a21, . . . ,a2n), . . . ,(am1, . . . ,amn)}) be the subspace of F(n).
Since the system is given to be of rank r, we have dimU = r.

Let v1 = (1,0, . . . ,0), v2 = (0,1,0, . . . ,0), . . . ,vn = (0, . . . ,0,1) be standard basis of F(n)

and {v̂1, v̂2, . . . , v̂n} be its corresponding dual basis in F̂(n). Then every f ∈ F̂(n) can be written
as f = x1v̂1 + x2v̂2 + · · ·+ xnv̂n, where xi ∈ F . Now,

f ∈U0⇔ f (ai1,ai2, . . . ,ain) = 0
⇔ f (ai1v1 +ai2v2 + · · ·+ainvn) = 0
⇔ (x1v̂1 + x2v̂2 + · · ·+ xnv̂n)(ai1v1 +ai2v2 + · · ·+ainvn) = 0
⇔ x1ai1 + x2ai2 + · · ·+ xnain = 0

since by definition of dual basis v̂i(v j) = 0 for i 6= j and v̂i(vi) = 1.
Thus, if f ∈U0 then the equations in the system are satisfied. Conversely, if (x1, . . . ,xn) is
a solution then there is an element x1v̂1 + x2v̂2 + · · ·+ xnv̂n in U0. Hence, we conclude that
the number of linearly independent solutions of the above system is same as dimU0. By
Theorem 1.3.171.3.17,

dimU0 = dimF(n)−dimU = n− r.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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LINEAR TRANSFORMATIONS

We have seen that Hom(V,W ) is a vector space over the field F given that V and W are vector
spaces over F . Furthermore, if V and W are finite dimensional then we know that

dim(Hom(V,W )) = dim(V )×dim(W ).

In the last chapter, we considered its special case when W = F , i.e., Hom(V,F) = V̂ with
dim(Hom(V,F)) = dimV if V is finite dimensional over F .

In this chapter, we will concentrate on the case where W = V , i.e. Hom(V,V ), where V
is considered to be a finite-dimensional vector space over F . Thus, Hom(V,V ), the set of all
homomorphisms of V into itself, is a vector space over F under the following operations: for
T1,T2 ∈ Hom(V,V ) and α ∈ F ,

(T1 +T2)(v) = T1(v)+T2(v)
(αT1)(v) = α(T1(v)).

Also, if V is finite dimensional over F then

dim(Hom(V,V )) = (dimV )2.

2.1 The Algebra of Linear Transformations

Let V be a vector space over a field F . Let T1,T2 ∈Hom(V,V ). Since T2(v) ∈V for any v ∈V ,
T1(T2(v)) makes sense. So, we define the product of two linear transformations T1 and T2 by

(T1T2)(v) = T1(T2(v)) for any v ∈V.

We have to check that T1T2 ∈ Hom(V,V ), i.e., T1T2 is a homomorphism from V to V . For any
u,v ∈V and α,β ∈ F

(T1T2)(αu+βv) = T1(T2(αu+βv))

35
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= T1(αT2(u)+βT2(v)) (since T2 ∈ Hom(V,V ))

= αT1(T2(u))+βT1(T2(v)) (since T1 ∈ Hom(V,V ))

= α(T1T2)(u)+β (T1T2)(v).

As an easy exercise one can also check the following properties of the product in Hom(V,V ):
1. T1(T2 +T3) = T1T2 +T1T3;
2. (T2 +T3)T1 = T2T1 +T3T1;
3. T1(T2T3) = (T1T2)T3;
4. α(T1T2) = (αT1)T2 = T1(αT2);

for all T1,T2,T3 ∈ Hom(V,V ) and all α ∈ F .
Properties 1, 2 and 3 makes Hom(V,V ) an associative ring. Property 4 involves both scalar

multiplication and product in Hom(V,V ) and hence connects its character as a vector space
and an associative ring. In addition to these, Hom(V,V ) has a unit element with respect to
multiplication. Let I ∈Hom(V,V ) defined by I(v) = v for all v ∈V . Then I is the unit element
as for any T ∈ Hom(V,V ), one has IT = T I = T . This makes Hom(V,V ) a ring with unit
element.

Thus, Hom(V,V ) is an associative ring as well as a vector space over F . We call such an
algebraic structure as an algebra over F , formally defined as follows:

Definition 2.1.1. An associative ring A is called an algebra over F if A is a vector space
over the field F such that for all a,b ∈ A and all α ∈ F , α(ab) = (αa)b = a(αb).

Examples 2.1.2. We consider some examples of algebras (vector spaces which are also
associative rings):

1. As seen above, Hom(V,V ) is an algebra over F . From now and in what follows,
we use the notation A(V ) for Hom(V,V ). Thus, A(V ) is an algebra (over F) of all
homomorphisms (linear transformations) of V into V . Sometimes we shall also denote
it by AF(V ) to emphasis the role of F .

2. The vector space F(n) is an algebra over F where the product of any two elements
(a1,a2, . . . ,an),(b1,b2, . . . ,bn) ∈ F(n) is defined as follows:

(a1,a2, . . . ,an)(b1,b2, . . . ,bn) = (a1b1,a2b2, . . . ,anbn).

3. The vector space F [x] of all polynomials with coefficients from a field F becomes an
algebra with the product defined as product of two polynomials.

Remark 2.1.3. The vector space Fn[x], i.e. the space of all polynomials with coefficients in a
field F and of degree at most n, fails to be an algebra as it is not closed under multiplication.
xn× xn = x2n /∈ Fn[x].

Theorem 2.1.4. If A is an algebra over F with unit element then A is isomorphic to a
subalgebra of A(V ) for some vector space V over F.

Proof. Since A is an algebra over F it is also a vector space over F . We shall use V = A to
prove the theorem i.e., we show that A is isomorphic to a subalgebra of A(A ).
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§2.1. The Algebra of Linear Transformations 37

For a ∈ A , let Ta : A → A by Ta(v) = av, (v ∈ A ). We now show that Ta is a linear
transformation on A . For v1,v2 ∈A , and α ∈ F ,

Ta(v1 + v2) = a(v1 + v2) = av1 +av2 = Ta(v1)+Ta(v2).

Ta(αv1) = a(αv1) = α(av1) = αTa(v1).

Thus, Ta ∈ A(A ).
Now, define a map ψ : A → A(A ) by ψ(a) = Ta for every a ∈A . We prove the theorem

by showing that ψ is an isomorphism of A into A(A ). First we show that ψ is an (algebra)
homorphism. For this we have to show that for any a,b ∈A and α,β ∈ F ,

ψ(αa+βb) = αψ(a)+βψ(b), (for vector space homomorphism)
i.e. Tαa+βb = αTa +βTb.

and

ψ(ab) = ψ(a)ψ(b), (for ring homomorphism)
i.e., Tab = TaTb.

Now, for every v ∈A ,

Tαa+βb(v) = (αa+βb)v = α(av)+β (bv) = αTa(v)+βTb(v) = (αTa +βTb)(v).

Also,
Tab(v) = (ab)v = a(bv) = Ta(Tb(v)) = (TaTb)(v).

Thus, ψ is an algebra homomorphism of A into A(A ).
Now, we show that ψ is one-one. For this we shall show that kerψ = {0}.

kerψ = {a ∈A : ψ(a) = 0}
= {a ∈A : Ta = 0}
= {a ∈A : Ta(v) = 0 for all v ∈A }.

Thus, we have a ∈ kerψ if Ta(v) = 0 for all v ∈ A . Since A is an algebra there is a unit
element e ∈ A . In particular, Ta(e) = 0 which implies ae = a = 0. Hence, kernel of ψ

consists of only one element 0. This proves that ψ is a one-one map and hence it is an
isomorphism. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Definition 2.1.5. Let A be an algebra over F with unit element e and let p(x) = α0+α1x+
· · ·+αnxn be a polynomial in F [x]. Then for any a ∈ A , by p(a) we mean the element
α0e+α1a+ · · ·+αnan in A . We say that a satisfies p(x) if p(a) = 0.

Lemma 2.1.6. Let A be an algebra, with unit element, over F. Suppose that dimension of
A is m over F. Then every element in A satisfies some nontrivial polynomial in F [x] of
degree at most m.
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38 §2.1. The Algebra of Linear Transformations

Proof. Let e be the unit element of A and let a ∈A . Consider m+1 elements e,a,a2, . . . ,am

in A . Since, dimA = m, these m+ 1 elements must be linearly dependent over F . This
implies, there exists α0,α1, . . . ,αm in F , not all zero, such that

α0e+α1a+ · · ·+αmam = 0.

This means that a satisfies the nontrivial polynomial q(x) = α0 +α1x+ · · ·+αmxm of degree
at most m in F [x]. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 2.1.7. If V is an n-dimensional vector space over F, then given any element
T ∈ A(V ), there exists a nontrivial polynomial q(x) ∈ F [x] of degree at most n2 such that
q(T ) = 0.

Proof. Here dimV = n over F . Then A(V ) is an algebra and dimA(V ) = n2 over F . By
previous lemma, every element T ∈ A(V ) satisfies a polynomial q(x) ∈ F [x] of degree at most
n2, i.e., q(T ) = 0. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Definition 2.1.8. Let V be a finite dimensional vector space over F . A nontrivial polynomial
p(x) in F [x] of lowest degree such that p(T ) = 0 is called a minimal polynomial for T over
F .

If T satisfies another polynomial h(x) then p(x)|h(x).

Exercise 2.1.9. Let V be a finite dimensional vector space over F and T ∈ A(V ). Then
p(x) ∈ F [x] is a minimal polynomial for T if and only if for any other polynomial, say h(x),
satisfied by T , we have p(x)|h(x).

Solution. Hint: Use division algorithm. Given as a seminar exercise. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Definition 2.1.10. An element T ∈ A(V ) is said to be right invertible if there exists an
S ∈ A(V ) such that T S = 1. Here, 1 denotes the unit element of A(V ), i.e. 1(v) = v for all
v ∈V .

Similarly, an element T ∈ A(V ) is said to be left invertible if there exists a U ∈ A(V )
such that UT = 1.

Exercise 2.1.11. If T ∈ A(V ) is both left invertible and right invertible then prove that the left
inverse and the right inverse must be equal and that the inverse is unique.

Definition 2.1.12. An element T ∈ A(V ) is said to be invertible or regular if it is both left
invertible and right invertible; that is, if there is an element S ∈ A(V ) such that ST = T S = 1.
We write S as T−1.

An element in A(V ) is said to be singular if it is not regular, i.e., if it is not invertible.

It may be possible that an element in A(V ) is left invertible but not right invertible or
vice-versa. We consider one such instance in the following example:
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Example 2.1.13. Consider the vector space V = R[x], the set of all polynomials in x with real
coefficients, over the field R. For any q(X) ∈V , q(x) = a0 +a1x+ · · ·+anxn define elements
S,T ∈ A(V ) by

S(q(x)) =
d
dx

q(x)

T (q(x)) =
∫ x

1
q(x)dx.

Then

ST (q(x)) = S(T (q(x))

= S
(

a0

∫ x

1
1dx+a1

∫ x

1
xdx+ · · ·+an

∫ x

1
xndx

)
= S

(
(a0x−a0)+

(
a1

x2

2
− a1

2

)
+ · · ·+

(
an

xn+1

n+1
− an

n+1

))
= a0 +a1x+ · · ·+anxn = q(x).

Thus, ST (q(x)) = q(x) for all q(x) ∈V which means ST = 1. However, T S 6= 1 as

T S(q(x)) = T (a1 +2a2x+ · · ·+nanxn−1)

= a1

∫ x

1
1dx+2a2

∫ x

1
xdx+ · · ·+nan

∫ x

1
xn−1dx

= (a1x−a1)+(a2x2−a2)+ · · ·+(anxn−an)

6= q(x).

Thus, T is left invertible but not right invertible. In other words, we can say that S is right
invertible but not left invertible.

Remark 2.1.14. Notice that in above example V = R[x] is an infinite dimensional vector
space. However, it is not possible that a linear transformation only left invertible or only right
invertible in case of finite dimensional vector space. We shall show that, for finite-dimensional
vector space V , an element in A(V ) which is left invertible or right invertible is invertible.

Theorem 2.1.15. If V is finite dimensional over F, then T ∈ A(V ) is invertible if and only
if the constant term in the minimal polynomial for T is not 0.

Proof. Let p(x) = α0+α1x+ · · ·+αkxk ∈ F [x], αk 6= 0 be the minimal polynomial for T over
F . First assume that the constant term in p(x) is non-zero i.e., α0 6= 0. Since, T satisfies p(x),
we have P(T ) = 0. This implies,

αkT k +αk−1T k−1 + · · ·+α1T +α0I = 0
⇒ T (αkT k−1 +αk−1T k−2 + · · ·+α1) =−α0I

⇒ T
(
− 1

α0
(αkT k−1 +αk−1T k−2 + · · ·+α1)

)
= I

Similarly, (
− 1

α0
(αkT k−1 +αk−1T k−2 + · · ·+α1)

)
T = I
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40 §2.1. The Algebra of Linear Transformations

Therefore,

S =− 1
α0

(αkT k−1 + · · ·+α1I)

acts as an inverse of T and hence T is invertible.
Conversely, assume that T is invertible then we have to show that α0 6= 0. Suppose if

possible, α0 = 0. Then p(T ) = 0 implies

α1T +α2T 2 + · · ·+αkT k = T (α1I +α2T 2 + · · ·+αkT k−1) = 0.

Since, T is invertible, multiplying by T−1 to the left on both sides of the above relation, we get
α1I+α2T + · · ·+αkT k−1 = 0. This means T satisfies the polynomial q(x) = α1+α2x+ · · ·+
αkxk−1 with deg(q(x)) = k−1 < k = deg(p(x)). This is contradiction as p(x) is the minimal
polynomial of T . So our assumption that α0 = 0 must be false and hence α0 6= 0. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Corollary 2.1.16. Let V be a finite dimensional vector space over F. If T ∈ A(V ) is
invertible then T−1 is a polynomial expression in T over F.

Proof. Since T is invertible, by above theorem, α0I+α1T + · · ·+αkT k = with α0 6= 0. Then,
as seen in the theorem, T T−1 = I where

T−1 =− 1
α0

(α1I +α2T + · · ·+αkT k−1) (αi ∈ F).

Clearly, T−1 is a polynomial expression in T over F . �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Corollary 2.1.17. Let V be a finite dimensional vector space over F. If T ∈A(V ) is singular,
then there exists an S 6= 0 in A(V ) such that ST = T S = 0.

Proof. Since T is singular (not invertible), by above theorem, the constant term in the minimal
polynomial for T must be zero. Then the minimal polynomial for T will be of the form
p(x) = α1x+α2x2 + · · ·+αkxk. Hence, p(T ) = 0 implies

T (α1I +α2T + · · ·αkT k−1) = (α1I +α2T + · · ·αkT k−1)T = 0.

If we take S = α1I +α2T + · · ·αkT k−1 then S 6= 0 as α1 +α2x+ · · ·αkxk−1 is of lower degree
than p(x). Hence, we found S ∈ A(V ) and S 6= 0 such that ST = T S = 0. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Corollary 2.1.18. Let V be a finite dimensional vector space over F. If T ∈ A(V ) is right
invertible (or left invertible) then T is invertible.

Proof. Suppose T is right invertible. That is there exists a U ∈ A(V ) such that TU = I. Let
if possible, T is not invertible (singular). Then by above corollary, there exists an S ∈ A(V ),
S 6= 0 such that ST = T S = 0. Then, we have

0 = ST = (ST )U = S(TU) = S1 = S 6= 0,

which is a contradiction. So, T must be regular. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Theorem 2.1.19. Let V be a finite dimensional vector space over F. Then T ∈ A(V ) is
singular if and only if there exists a v ∈V , v 6= 0 such that T (v) = 0.

In other words, T is regular if and only if it is one-one (or kerT = {0}).

Proof. First, let us assume that T is singular. We know that, T is singular if and only if there
exists an S 6= 0 in A(V ) such that ST = T S = 0. Since S 6= 0, there is an element w ∈V such
that S(w) 6= 0. Let v = S(w). Then T (v) = T (S(w)) = (T S)(w) = 0 (since T S = 0). This
proves the first part.

Conversely, assume that T (v) = 0 for some v 6= 0 in V . We have to show that T is singular.
Suppose, on the contrary, that T is regular. Then since T (v) = 0, multiplying both sides by
T−1, we have T−1(T (v)) = T−10 = 0 and hence v = 0. This is a contradiction since we have
assumed v 6= 0. Thus, T must be singular. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Definition 2.1.20. If T ∈ A(V ), then the range of T is denoted by T (V ) and defined by

T (V ) = {T (v) | v ∈V}.

Clearly, the range of T is a subspace of V . Note that the range of T is all of V , i.e.,
T (V ) =V if and only if T is onto.

Theorem 2.1.21. If V is a finite dimensional vector space over F, then T ∈ A(V ) is regular
if and only if T maps V onto V .

Proof. First we consider that T is regular and show that T is onto. Since T is regular, for
any v ∈V (co-domain), we can write it as v = T (T−1(v)), where T−1(v) ∈V (domain). Thus
T (V ) =V .

Conversely given that T is onto we have to show that T is regular. Suppose, if possible,
T is singular. Then there exist a v1 6= 0 in V such that T (v1) = 0. Since v1 6= 0, the sin-
gleton set {v1} is linearly independent. We extend it to a basis {v1,v2, . . . ,vn} of V . Then
{T (v1),T (v2), . . . ,T (vn)} is a basis of T (V ) and so every element in T (V ) is spanned by the el-
ements w1,w2, . . . ,wn where wi = T (vi) for i= 1,2, . . . ,n. But, we have w1 = T (v1) = 0. Thus,
T (V ) is spanned by only n−1 elements, w2, . . . ,wn. Therefore, dimT (V )≤ n−1< n= dimV .
Thus, T (V ) 6=V and hence T is not onto, which is a contradiction. So, T must be regular. �Dr. Jay Mehta,

Department of
Mathematics,
Sardar Patel
University.

Remark 2.1.22. Above theorem indicates the difference between regular elements and singular
elements of A(V ) in terms their range, in finite dimensional cases. In other words, by above
theorem, T ∈ A(V ) is regular if and only if dimT (V ) = dimV . Thus, we can compute and use
dim(T (V )) to check whether given T ∈ A(V ) is regular or singular.

Combining Theorems 2.1.192.1.19 and 2.1.212.1.21, when V is finite dimensional, we can say that T is
regular if and only if T is both one-one and onto. In other words, if T fails to be either one-one
or onto or both then T must be singular.

Definition 2.1.23. Let V be a finite dimensional vector space over F and T ∈ A(V ). Then
the dimension of the range of T over F is called the rank of T . We denote the rank of T by
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r(T ). That is,
r(T ) = dim(T (V )).

Exercise 2.1.24. Prove that S ∈ A(V ) is regular if and only if whenever v1, . . . ,vn ∈ V are
linearly independent, then S(v1),S(v2), . . . ,S(vn) are also linearly independent.

Solution. Seminar exercise. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Lemma 2.1.25. Let V be a finite dimensional vector space over F and S,T ∈ A(V ). Then
1. r(T S)≤ r(T );
2. r(ST )≤ r(T );
3. If S is regular then r(ST ) = r(T S) = r(T ).

Proof. 1. Since S(V )⊂V , (T S)(V )=T (S(V ))⊂T (V ). By Lemma 1.2.261.2.26, dim((T S)(V ))≤
dim(T (V )), i.e., r(T S)≤ r(T ).

2. Suppose that r(T ) = m. Therefore, T (V ) has a basis of m elements w1, . . . ,wm and so

T (V ) = L({w1, . . . ,wm}).

But then

S(T (V )) = S
(
L({w1, . . . ,wm})

)
= L({Sw1, . . . ,Swm})

Then, dimension of (ST )(V ) = S(T (V )) is at most m. Hence

r(ST ) = dim((ST )(V ))≤ m = dim(T (V )) = r(T ).

3. Since S is regular, by Theorem 2.1.212.1.21, S(V ) = V . Therefore, (T S)(V ) = T (S(V )) =
T (V ) and hence r(T S) = r(T ).
On the other hand, if r(T ) = m and {w1,w2, . . . ,wm} is a basis of T (V ). Then,

T (V ) = L({w1, . . . ,wm}).

Then as before,

S(T (V )) = S
(
L({w1, . . . ,wm})

)
= L({Sw1, . . . ,Swm})

Since S is regular, it maps linearly independent set to a linearly independent set (by
above exercise). So, {Sw1, . . . ,Swm} is linearly independent and hence forms a basis for
S(T (V )) over F . Hence,

r(ST ) = dim(ST )(V ) = dim(S(T (V ))) = m = dim(T (V )) = r(T ).

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Corollary 2.1.26. Let V be finite dimensional over F and S,T ∈ A(V ). Then
1. r(ST )≤min{r(T ),r(S)}.
2. If S is regular then r(T ) = r(S−1T S).

Proof. First part easily follows from the above theorem. We shall show the second conse-
quence. If S is regular, then by above theorem, we have

r(S−1T S) = r((S−1T )S) = r(S(S−1T )) = r((S−1S)T ) = r(T ).

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Definition 2.1.27. Let V be a finite dimensional vector space over F . Two elements
S,T ∈ A(V ) are said to be similar if there exists a regular element C ∈ A(V ) such that
S =C−1TC. If S and T are similar, we denote it by S∼ T .

Exercise 2.1.28. Show that ‘∼’ defined above is an equivalence relation, i.e., being similar is
an equivalence relation on A(V ).

Solution. Seminar exercise. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Exercise 2.1.29. If S,T ∈ A(V ) are similar then show that they have the same rank i.e.,
r(S) = r(T ). What about the converse?

2.2 Characteristic Roots

Definition 2.2.1. Let V be a vector space over F and T ∈ A(V ). A scalar λ ∈ F is called
a characteristic root (or eigenvalue) of T if there is a non-zero vector v in V such that
T v = λv.

The vector v 6= 0 in V such that T v= λv is called the characteristic vector (or eigenvector)
of T corresponding to the eigenvalue λ .

Proposition 2.2.2. Let V be a finite dimensional vector space over F. If T ∈ A(V ) and
λ ∈ F, then λ is a characteristic root of T if and only if T −λ I is singular.

Proof. Suppose λ is a characteristic root of T then there exists a v 6= 0 in V such that T v = λv.
Then (T −λ I)(v) = 0 which implies that T is not one-one. Hence, T −λ I is singular.

Conversely, assume that T −λ I is singular. Then T −λ I is not one-one. So, there exists a
v 6= 0 such that (T −λ I)(v) = 0. Then T v = λv and hence λ is a characteristic of T . �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Lemma 2.2.3. Let V be a finite dimensional vector space over F and T ∈ A(V ). If λ ∈ F
is a characteristic root of T , then for any polynomial q(x) ∈ F [x], q(λ ) is a characteristic
root of q(T ).
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Proof. Since λ is a characteristic root of T , there exists v ∈V , v 6= 0 such that T v = λv. Then

T 2v = T (T v) = T (λv) = λT (v) = λ (λv) = λ
2v.

Continuing this way, we get T kv = λ kv. Now, let q(x) = α0 + α1x + · · ·+ αnxn be any
polynomial in F [x]. Then,

q(T )v = (α0I +α1T + · · ·+αnT n)v
= α0Iv+α1T v+ · · ·+αnT nv
= α0v+α1λv+ · · ·+αnλ

nv
= (α0 +α1λ + · · ·+αnλ

n)v = q(λ )v.

Thus, we have q(T )v = q(λ )v which means that q(λ ) is a characteristic root of q(T ). �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Corollary 2.2.4. Let V be a finite dimensional vector space over F and T ∈ A(V ). If λ ∈ F
is a characteristic root of T then λ is a root of the minimal polynomial of T .

Proof. Let p(x) ∈ F [x] be the minimal polynomial of T . Since λ is a characteristic root of
T , there exists a v 6= 0 in V such that T v = λv. By above theorem, p(T )v = p(λ )v. Since
p(T ) = 0, we have p(λ )(v) = 0⇒ p(λ ) = 0 (by properties of vector space and as v 6= 0).
Hence, λ is a root of p(x). �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Corollary 2.2.5. Let V be an n-dimensional vector space over F and T ∈ A(V ). Then the
number of characteristic roots of T is at most n2.

Proof. Since dimV = n, as we have seen before there exits a q(x) ∈ F [x] of degree at most n2

such that q(T ) = 0.
Let p(x) ∈ F [x] be the minimal polynomial of T . Then

deg(p(x))≤ deg(q(x))≤ n2.

Therefore, the number of roots of p(x) is finite and at most n2.
By above corollary, if λ is a characteristic root of T then λ is a root of p(x). As the number

of roots of p(x) is at most n2, the number of characteristic roots of T is also at most n2. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 2.2.6. Let V be a finite dimensional vector space over F. Let S,T ∈ A(V ) and let
S be regular. Then

1. T and S−1T S have the same minimal polynomial.
2. λ ∈ F is a characteristic root of T if and only if it is a characteristic root of S−1T S.

Proof. 1. Since S is regular, (S−1T S)2 = (S−1T S)(S−1T S) = S−1T 2S. Similarly, for any
k ∈ N, we have

(S−1T S)k = S−1T kS.
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Now, let q(x) = α0 +α1x+α2x2 · · ·+αnxn be any polynomial in F [x]. Then

q(S−1T S) = α0I +α1(S−1T S)+α2(S−1T S)2 + · · ·+αn(S−1T S)n

= α0(S−1S)+α1(S−1T S)+α2(S−1T 2S)+ · · ·+αn(S−1T nS)

= S−1(α0I +α1T +α2T 2 + · · ·+αnT n)S

= S−1q(T )S.

Thus, q(S−1T S) = 0 if and only if q(T ) = 0. Therefore, T and S−1T S have the same
minimal polyomial.

2. Let λ be a characteristic root of T . Then T v = λv for some v 6= 0 in V . Since S is regular,
by Theorem 2.1.192.1.19, S is one-one and since v 6= 0, we have Sv 6= 0. Let u = S−1v 6= 0.
Now,

(S−1T S)(u) = (S−1T S)(S−1v)

= S−1(T v)

= S−1(λv)

= λ (S−1v)
= λu.

Thus, (S−1T S)(u) = λu. Therefore, λ is a characteristic root of S−1T S.
Conversely, assume that λ is a characteristic root of S−1T S. Then there exists a v 6= 0 in
V such that (S−1T S)(v) = λv. Applying S to the left on both sides, we get

(T S)(v) = S(λv)
⇒ T (Sv) = λ (Sv).

Since S is regular, it is one-one and since v 6= 0, u = Sv 6= 0. This implies, Tu = λu and
hence λ is a characteristic root of T .

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

The following theorem gives the relation between the characteristic vectors of T ∈ A(V )
corresponding to distinct characteristic roots of T .

Theorem 2.2.7. Let V be a finite dimensional vector space over F and T ∈ A(V ). If
λ1,λ2, . . . ,λk in F are distinct characteristic roots of T and v1,v2, . . . ,vk are characteristic
vectors of T corresponding to λ1,λ2, . . . ,λk respectively, then v1,v2, . . . ,vk are linearly
independent.

Proof. We give the proof by applying Principle of Mathematical Induction on k. Clearly, the
result holds for k = 1 as v1(6= 0) is linearly independent.

Assume that the result holds for k− 1. That is, if v1,v2, . . . ,vk−1 are characteristic vec-
tors of T corresponding to distinct characteristic roots λ1,λ2, . . . ,λk−1 respectively, then
v1,v2, . . . ,vk−1 are linearly independent.

Now, we prove the result for k. Let v1,v2, . . . ,vk be the characteristic vectors of T cor-
responding to distinct characteristic roots λ1,λ2, . . . ,λk respectively. We have to show that
v1,v2, . . . ,vk are linearly independent. Let α1,α2, . . . ,αk ∈ F such that

α1v1 +α2v2 + · · ·+αkvk = 0. (2.1)
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Then we have to show that αi = 0 for all i = 1,2, . . . ,k. Applying T , we get

α1T v1 +α2T v2 + · · ·+αkT vk = 0.

Since T vi = λivi, we have

α1λ1v1 +α2λ2v2 + · · ·+αkλkvk = 0. (2.2)

Multiplying equation (2.12.1) by λk and subtracting it from (2.22.2), we get

α1(λ1−λk)v1 +α2(λ2−λk)v2 + · · ·+αk−1(λk−1−λk)vk−1 = 0.

By induction hypothesis, since v1,v2, . . . ,vk−1 are linearly independent, we conclude that

αi(λi−λk) = 0 for all i = 1,2, . . . ,k−1.

As, λ1,λ2, . . . ,λk are distinct characteristic roots, λi−λk 6= 0 and hence αi = 0 for all i =
1,2, . . . ,k−1. Then equation (2.12.1) reduces to

αkvk = 0.

Since, vk 6= 0, we have αk = 0 and hence v1,v2, . . . ,vk are linearly independent. This proves
the result by induction. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Corollary 2.2.8. If T ∈ A(V ) and dimV = n, then T can have at most n distinct character-
istic roots.

Proof. Any set of distinct characteristic roots of T gives a corresponding set of linearly
independent characteristic vectors of T by above theorem. Since dimV = n, any linearly
independent set can have at most n elements. Hence, T can have at most n distinct characteristic
roots. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Corollary 2.2.9. If T ∈ A(V ) and dimV = n. If T has n distinct characteristic roots in F,
then there is a basis of V over F consisting of characteristic roots of T .

Proof. Let λ1,λ2, . . . ,λn in F be the n distinct characteristic roots of T . Then by above theorem,
the set of corresponding characteristic vectors, {v1,v2, . . . ,vn} is linearly independent. Since,
dimV = n, the set {v1,v2, . . . ,vn} forms a basis of V over F . Thus, V has a basis consisting of
characteristic vectors of T . �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

2.3 Matrices

Let V be an n-dimensional vector space over F with basis {v1,v2, . . . ,vn}. If T ∈ A(V ) then
T is completely determined by its value on the basis of V . Since T : V → V , the elements
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T v1,T v2, . . . ,T vn must all be in V and hence can be uniquely expressed as a linear combination
of v1,v2, . . . ,vn over F . Thus,

T v1 = α11v1 +α21v2 + · · ·+αn1vn
T v2 = α12v1 +α22v2 + · · ·+αn2vn

...
...

T vn = α1nv1 +α2nv2 + · · ·+αnnvn,

where αi j ∈ F , 1≤ i, j ≤ n.
This system of equations can be compactly written as follows:

T v j =
n

∑
i=1

αi jvi for j = 1,2, . . . ,n.

Thus, the ordered set of n2 elements αi j ∈ F completely describes T .

Definition 2.3.1. Let V be an n-dmensional vector space over F with basis v1,v2, . . . ,vn. If
T ∈ A(V ) then the matrix of T in the basis v1,v2, . . . ,vn is denote by m(T ) and defined as

m(T ) =


α11 α12 · · · α1n
α21 α22 · · · α2n

...
... . . . ...

αn1 αn2 · · · αnn

 ,

where T v j = ∑
n
i=1 αi jvi. Instead of writing the whole square matrix every time we shall also

denote it as (αi j). Thus,

m(T ) = (αi j), where T v j =
n

∑
i=1

αi jvi.

Note: Note that if T v j = ∑
n
i=1 αi jvi = α1 jv1 +α2 jv2 + · · ·+αn jvn, then we write the coef-

ficients αi j of vi as a column vector in the matrix (αi j), i.e., the jth column of the matrix

m(T ) = (αi j) is written as


α1 j
α2 j

...
αn j

.

Exercise 2.3.2. Let F be a field and Mn(F) be the collection of all n× n matrices over F .
Show that Mn(F) is an algebra with usual addition of matrices, scalar multiplication and
product of matrices.

Question: Is it always true that given an element T in A(V ) we can always find a matrix (αi j)
in Mn(F) corresponding to T and vice-versa?

This is answered by the following theorem:

Theorem 2.3.3. If V is an n-dimensional vector space over F, then A(V ) and Mn(F) are
isomorphic as algebras over F.

More precisely, if {v1,v2, . . . ,vn} is a basis of V over F, if T ∈ A(V ) and m(T ) is the
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matrix of T in the basis {v1,v2, . . . ,vn} then the mapping φ : A(V )→ Mn(F) defined as
φ(T ) = m(T ) is an algebra isomorphism of A(V ) onto Mn(F).

Proof. First we show that φ is an algebra homomorphism.
Let S,T ∈A(V ) and α,β ∈F . Let the matrix of S and T be given by (αi j) and (βi j) respectively.
That is, φ(S) = m(S) = (αi j) and φ(T ) = m(T ) = (βi j), where

Sv j =
n

∑
i=1

αi jvi and T v j =
n

∑
i=1

βi jvi.

First we show that φ is a linear map, i.e., φ(αS+βT ) = αφ(S)+βφ(T ).
Now, to find m(αS+βT ), consider

(αS+βT )v j = αS(v j)+βT (v j)

= α

n

∑
i=1

αi jvi +β

n

∑
i=1

βi jvi

=
n

∑
i=1

(ααi j +ββi j)vi

Thus, m(αS+βT ) = (ααi j +ββi j) and hence

φ(αS+βT ) = m(αS+βT )
= (ααi j +ββi j)

= α(αi j)+β (βi j)

= αm(S)+βm(T )
= αφ(S)+βφ(T ).

Thus, for any S,T ∈ A(V ) and α,β ∈ F ,

φ(αS+βT ) = αφ(S)+βφ(T ).

Thus, φ is a linear map (a vector space homomorphism). To show that φ is an algebra
homomorphism, it remains to show that φ(ST ) = φ(S)φ(T ), i.e., we have to show that
m(ST ) = m(S)m(T ).

We know that, i jth entry of the product of two matrices (αi j) and (βi j) is given as

γi j =
n

∑
k=1

αikβk j, (2.3)

where (γi j) = (αi j)(βi j).
First we find the matrix of ST . For this, we consider (ST )v j, j = 1,2, . . . ,n. Now,

(ST )v j = S(T v j)

= S

(
n

∑
k=1

βk jvk

)

=
n

∑
k=1

βk jS(vk) (since S is linear)
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=
n

∑
k=1

βk j

(
n

∑
i=1

αi jvi

)

=
n

∑
i=1

(
n

∑
k=1

αikβk j

)
vi

=
n

∑
i=1

γi jvi (by (2.32.3))

Therefore,
m(ST ) = (γi j) = (αi j)(βi j) = m(S)m(T ).

So, φ(ST ) = φ(S)φ(T ) and hence, φ is an algebra homomorphism.

Now we show that φ is one-one. Let T ∈ A(V ) such that φ(T ) = 0. Then m(T ) = 0 and
hence T v j = 0 for all j = 1,2, . . . ,n. Then for any v ∈ V , since v1,v2, . . . ,vn is a basis of V ,
we have

v = µ1v1 +µ2v2 + · · ·+µnvn

⇒ T (v) = µ1T v1 +µ2T v2 + · · ·+µnT vn = 0

Thus, we have T v = 0 for all v ∈V and hence T = 0 which proves that φ is one-one. Thus, φ

is an isomorphism of A(V ) into Mn(F).
Finally, we show that φ is onto. Let (αi j) ∈Mn(F) be any n×n matrix. We have to find a

T ∈ A(V ) such that φ(T ) = m(T ) = (αi j). Define T on the basis {v1,v2, . . . ,vn} as

T v j =
n

∑
i=1

αi jvi.

Extend T linearly on V , then we see that T ∈ A(V ) and φ(T ) = (αi j). Hence, φ is onto.

Another argument for showing that φ is onto:
We know that dimension of A(V ) = Hom(V,V ) over F is n2. Also, dimension of the vector
space Mn(F) over F is n2. Thus, φ is isomorphism of A(V ) into Mn(F) and dimA(V ) =
dimMn(F), and so φ is onto. Hence,

A(V )∼= Mn(F).

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Let us consider an example to see, given a linear transformation, how to obtain a matrix.

Example 2.3.4. Let F be a field and V = Fn−1[x] be the vector space of all the polynomials of
degree at most n−1. Define D : V →V as follows:

D(α0 +α1x+α2x2 + · · ·+αn−1xn−1) = α1 +2α2x+ · · ·+(n−1)αn−2xn−2.

Then clearly D ∈ A(V ). D is nothing but the differentiation operator. We find the matrix of D
with respect to the standard basis of Fn−1[x], i.e., v1 = 1, v2 = x, v3 = x2, . . . ,vn = xn−1. Now,

D(v1) = D(1) = 0 = 0v1 +0v2 + · · ·+0vn
D(v2) = D(x) = 1 = 1v1 +0v2 + · · ·+0vn

...
...

D(vn) = D(xn−1) = (n−1)xn−2 = 0v1 +0v2 + · · ·+(n−1)vn−1 +0vn
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Therefore, by the definition of a matrix of a linear transformation, the matrix of D in the
standard basis {1,x,x2, . . . ,xn−1} is given by

m1(D) =



0 1 0 0 · · · 0
0 0 2 0 · · · 0
0 0 0 3 · · · 0
...

...
...

... . . . ...
0 0 0 0 · · · (n−1)
0 0 0 0 · · · 0


.

We know that matrix of a linear transformation depends on the chosen (ordered) basis of V .
In the next example, we examine the matrix of D defined above but with a different basis of V .

Example 2.3.5. Let V = Fn−1[x] and D ∈ A(V ) defined as above. Let u1 = 1, u2 = 1+ x,
u3 = 1+ x2, . . . ,un = 1+ xn−1. Check! that u1,u2, . . . ,un forms a basis of V over F . We find
the matrix of D in this basis. Now,

D(u1) = D(1) = 0 = 0u1 +0u2 + · · ·+0un
D(u2) = D(1+ x) = 1 = 1u1 +0u2 + · · ·+0un
D(u3) = D(1+ x2) = 2x = 2(u2−u1) =−2u1 +2u2 +0u3 + · · ·+0un

...
...

D(un) = D(1+ xn−1) = (n−1)xn−2 = (n−1)(un−u1)
=−(n−1)u1 +0u2 + · · ·+0un−2 +(n−1)un−1 +0vn

Therefore, the matrix of D in the basis {1,1+ x,1+ x2, . . . ,1+ xn−1} is given by

m2(D) =



0 1 −2 −3 · · · −(n−1)
0 0 2 0 · · · 0
0 0 0 3 · · · 0
...

...
...

... . . . ...
0 0 0 0 · · · (n−1)
0 0 0 0 · · · 0


.

Definition 2.3.6. Two matrices A and B in Mn(F) are said to be similar if there is an
invertible matrix C ∈Mn(F) such that A =C−1BC.

Exercise 2.3.7. If T ∈ A(V ) is invertible then prove that φ(T−1) = (φ(T ))−1.

Remark 2.3.8. We have seen from the above two examples that the same linear transformation
D has different matrices m1(D) and m2(D) corresponding to two different bases of V . Is there
any relation between m1(D) and m2(D)? It is therefore an interesting question to ask, at this
stage, that is there any relation between different matrices of the same linear transformation?
This question is answered by the following given below.

Theorem 2.3.9. Let V be an n-dimensional vector space over F and T ∈ A(V ). Suppose T
has the matrix m1(T ) with respect to the basis B1 = {v1,v2, . . . ,vn} and the matrix m2(T )
with respect to the basis B2 = {w1,w2, . . . ,wn} of V over F, then m1(T ) and m2(T ) are
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similar i.e., there is an invertible element C ∈Mn(F) such that m2(T ) =C−1m1(T )C.

Proof. Let m1(T ) = (αi j) and m2(T ) = (βi j), where

T v j =
n

∑
i=1

αi jvi and Tw j =
n

∑
i=1

βi j, j = 1,2, . . . ,n.

Define Sv j = w j for j = 1,2, . . . ,n.
Extend S linearly on V , i.e., for v = α1v1 +α2v2 + · · ·+αnvn define

S(v) = α1w1 +α2w2 + · · ·+αnwn.

Then S ∈ A(V ) and since S maps basis B1 of V onto basis B2 of V over F by Theorem 2.1.212.1.21,
S is regular (because S is onto). Now,

T S(v j) = T (w j) (since Sv j = w j)

=
n

∑
i=1

βi jwi

=
n

∑
i=1

βi jSvi (since wi = Svi)

= S

(
n

∑
i=1

βi jvi

)
(since S is linear).

Since S is regular, multiplying both sides by S−1 (to the left), we get

(S−1T S)(v j) =
n

∑
i=1

βi jvi.

This means the matrix of (S−1T S) with respect to the basis B1 of V is (βi j). Thus,

m1(S−1T S) = (βi j) = m2(T ).

Since φ : A(V )→Mn(F) given by T 7→ m(T ) is an onto isomorphism, we have

m1(S−1T S) = (βi j) = m2(T )

⇒ m1(S−1)m1(T )m1(S) = m2(T )

⇒ m1(S)−1m1(T )m1(S) = m2(T ).

Therefore, m1(T ) and m2(T ) are similar. Particularly,

C−1m1(T )C = m2(T ),

where the matrix C can be chosen to be m1(S). �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

We try to understand the above theorem by an example. In Examples 2.3.42.3.4 and 2.3.52.3.5, we
saw that D has two different matrices m1(D) and m2(D) with respect to different bases of
V = Fn−1[x]. We shall now show that they are similar.
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Example 2.3.10. As considered in Examples 2.3.42.3.4 and 2.3.52.3.5, let V = F3[x] and D be the
differentiation operator defined by

D(α0 +α1x+α2x2 +α3x3) = α1 +2α2x+3α3x2.

Then, we have seen that, the matrix of D in the basis v1 = 1,v2 = x,v3 = x2,v4 = x3 is given
by

m1(D) =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


and the matrix of D with respect to basis u1 = 1,u2 = 1+ x,u3 = 1+ x2,u4 = 1+ x3 is given
by

m2(D) =


0 1 −2 −3
0 0 2 0
0 0 0 3
0 0 0 0

 .

We want to find a matrix C such that C−1m1(D)C =m2(D). For this we need to find an element
S ∈ A(V ) such that C = m1(S). As defined in the above theorem, let the linear transformation
S on F3[x] be defined as follows:

S(v1) =u1 = 1 = v1,

S(v2) =u2 = 1+ x = v1 + v2,

S(v3) =u3 = 1+ x2 = v1 + v3,

S(v4) =u4 = 1+ x3 = v1 + v4.

Then the matrix of S in the basis v1,v2,v3,v4 is

C = m1(S) =


1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

 .

Then, by a little computation, one can check that

C−1 = m1(S)−1 =


1 −1 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1


and

C−1m1(D)C =


1 −1 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0




1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1



=


0 1 −2 −3
0 0 2 0
0 0 0 3
0 0 0 0

= m2(D). (Verify!)
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Proposition 2.3.11. Let B1 = {v1,v2, . . . ,vn} and B2 = {w1,w1, . . . ,wn} be bases of a
vector space V over F. Let S,T ∈ A(V ) and let A = (αi j) ∈Mn(F). Suppose that A is the
matrix of T with respect to the basis B1 and A is the matrix of S with respect to the basis B2.
Then S and T are similar.

Proof. Since A is the matrix of T and S in basis B1 and B2 respectively, we have

T v j =
n

∑
i=1

αi jvi and Sw j =
n

∑
i=1

αi jwi (1≤ j ≤ n).

Define P : V →V as follows: for v ∈V , v = γ1v1 + γ2v2 + · · ·+ γnvn, put

P(v) = γ1w1 + γ2w2 + · · ·+ γnwn.

Thus, P maps basis B1 onto B2 and hence P is onto. Therefore, by Theorem 2.1.212.1.21, P is
regular. Now, for 1≤ j ≤ n,

SPv j = Sw j (since Pv j = w j)

=
n

∑
i=1

αi jwi

=
n

∑
i=1

αi jPvi (since wi = Pvi)

= P

(
n

∑
i=1

αi jvi

)
(since P is linear)

= PT v j.

Thus, SP(v j) = PT (v j) for all j = 1,2, . . . ,n. Since B1 = {v1,v2, . . . ,vn} is a basis of V over
F , we conclude that

SP = PT.

Since P is regular, multiplying by P−1 (to the left) on both sides in the above equality, we get

P−1SP = T.

Hence, S and T are similar. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

We conclude this unit (chapter) by making the following remark:

Remark 2.3.12. By Theorem 2.3.92.3.9, we can say that if the same linear transformation on V
has two different matrices in two different bases of V , then the two matrices must be similar.
By Proposition 2.3.112.3.11, we say that if two different linear transformations on V has the same
matrix in two different bases of V , then the two linear transformations must be similar.
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CANONICAL FORMS

We have seen the definition of similar linear transformations. It is an easy exercise (Exer-
cise 2.1.282.1.28) to see that the relation of similarity is an equivalence relation and the equivalence
class of an element of A(V ) is called its similarity class.

When can we say that two linear transformations are similar? We shall exhibit that the
matrix of a linear transformation in some basis has particular nice form. These matrices are
called canonical forms. To check whether two linear transformations are similar or not, we
shall compare their canonical forms. If these forms are same then the linear transformations
are similar. There are many possible canonical forms, for example, triangular form, Jordan
form, etc. We shall study some of them in this unit.

3.1 Triangular Form

Definition 3.1.1. Let V be a vector space over F and T ∈ A(V ). A subspace W of V is
called invariant under T if T (W )⊂W (i.e. Tw ∈W for all w ∈W ).

Example 3.1.2. Let V be a vector space over F and let I ∈ A(V ) be the identity operator on V .
Let W be a subspace of V . Then is invariant under I as W = I(W )⊂W .

Thus, every subspace W of V is invariant under the identity map I.

Example 3.1.3. Clearly, W = {0} is invariant under any T ∈ A(V ) as T{0} ⊂ {0}. Also,
W =V is invariant under any T ∈ A(V ) as T (V )⊂V .

Thus, {0} and V are always invariant under any given T ∈ A(V ).

Example 3.1.4.

b

b

(x, x)

(2x, 2x)

W

R

R

0

Let V = R2 and T : R2→ R2 be defined by

T (x,y) = (x+ y,x+ y),

where (x,y) ∈ R2. Let W = {(x,x) : x ∈ R} be a subspace of
V = R2. Then clearly, W is invariant under T defined above,
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since for any (x,x) ∈W , T (x,x) = (2x,2x) ∈W. Thus, T (W )⊂
W .

Theorem 3.1.5. Let V be a finite dimensional vector space over F and let T ∈ A(V ). Let W
be a subspace of V which is invariant under T . Then T induces a map T =V/W →V/W
defined by

T (v+W ) = T v+W, w ∈W

such that T is well defined and T ∈ A(V/W ). Further, T satisfies very polynomial in F [x]
which is satisfied by T . In particular, if p1(x) ∈ F [x] is the minimal polynomial for T over
F and p(x) ∈ F [x] is the minimal polynomial for T , then p1(x)|p(x).

Proof. First we show that T is well-defined. Let v1 +W,v2 +W ∈V/W such that

v1 +W = v2 +W
⇒ v1− v2 ∈W
⇒ T (v1− v2) = T v1−T v2 ∈W (∵W is invariant under T )
⇒ T v1 +W = T v2 +W.

This shows that T is well-defined.
Next, we show that T is a linear transformation i.e., T ∈ A(V/W ).

Let v1 +W,v2 +W ∈V/W and α,β ∈ F . Then

T (α(v1 +W )+β (v2 +W )) = T ((αv1 +βv2)+W )

= T (αv1 +βv2)+W (by definition of T )
= (αT v1 +βT v2)+W (since T is linear)
= α(T v1 +W )+β (T v2 +W )

= αT (v1 +W )+βT (v2 +W ) (by definition of T ).

Thus, T : V/W →V/W is a linear transformation.
Now, we show that T satisfies every polynomial satisfied by T . Before we can show this,

we have to show the following:
If W is invariant under T then T (W ) ⊂W . Then, T 2(W ) = T (T (W )) ⊂W . Thus, W is
invariant under T 2 also. Similarly, for any k ∈ N, W is invariant under T k. Now, for any
v+W ∈V/W ,

(T )2 = T (T (v+W ))

= T (T v+W )

= T (T v)+W

= T 2v+W

= T 2(v+W ).

Therefore, (T )2 = T 2 and if follows by induction that

(T )k = T k for any k ∈ N. (3.1)

Similarly, one can easily show the following:
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• If W is invariant under S and T then W is invariant under S+T and

S+T = S+T . (3.2)

• If W is invariant under T and α ∈ F then W is invariant under αT and

αT = αT . (3.3)

We also note that, I ∈ A(V/W ) is the identity map on V/Wand the map 0 is the zero map on
V/W .

Now, let q(x) = α0 +α1x+α2x2 +αnxn ∈ F [x] be a polynomial satisfied by T , i.e.,

q(T ) = 0

⇒ α0I +α1T +α2T 2 +αnT n = 0

⇒ α0I +α1T +α2T 2 + · · ·+αnT n = 0

⇒ α0I +α1T +α2T 2 + · · ·+αnT n = 0 (by equation (3.23.2))

⇒ α0I +α1T +α2T 2 + · · ·+αnT n = 0 (by equation (3.33.3))

⇒ α0I +α1T +α2T 2
+ · · ·+αnT n

= 0 (by equation (3.33.3))

⇒ q(T ) = 0.

Thus, any polynomial q(x) ∈ F [x] which is satisfied by T is satisfied by T .
Now, let p1(X)∈F [x] be minimal polynomial for T and p(x)∈F [x] be minimal polynomial

for T . Then, by above, p(T ) = 0⇒ p(T ) = 0. Since, minimal polynomial for T divides every
other polynomial satisfied by T , we have p1(x)|p(x). �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Let V be finite dimensional over F and T ∈ A(V ). We have seen, by Corollary 2.2.42.2.4, that if
λ ∈ F is a characteristic root of T then λ is a root of minimal polynomial for T . The following
lemma exactly states its converse.

Lemma 3.1.6. Let V be a finite dimensional vector space over F and T ∈ A(V ). If λ ∈ F
is a root of the minimal polynomial for T , then λ is a characteristic root of T .

Proof. Let p(x) ∈ F [x] be the minimal polynomial for T and λ ∈ F be a root p(x), i.e.
p(λ ) = 0. Therefore,

p(x) = (x−λ )q(x),

where 0 6= q(x) ∈ F [x] and degq(x)< deg p(x).
As p(x) is the minimal polynomial for T and degq(x)< deg p(x), we have q(T ) 6= 0. Then
there exists some w ∈V such that

v = q(T )(w) 6= 0.

Now, 0 = p(T )(w) = (T −λ I)q(T )(w). This implies

(T −λ I)v = 0.

Hence, T v = λv and hence λ is a characteristic root of T . �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Remark 3.1.7. Combining Corollary 2.2.42.2.4 and Lemma 3.1.63.1.6, we can say that λ ∈ F is a root
of minimal polynomial for T ∈ A(V ) if and only if λ is a characteristic root of T .
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Definition 3.1.8. Let G be a field and n ∈ N. A matrix (αi j) ∈Mn(F) is said to be upper
triangular if all its entries below the main diagonal are 0, i.e.,

αi j = 0 for i > j.

A matrix (αi j) is said to be lower triangular if all its entries above the main diagonal are
0, i.e.,

αi j = 0 for i < j.

Equivalently, for T ∈ A(V ), the matrix of T is said to be upper triangular if

T v1 = α11v1

T v2 = α12v1 +α22v2

...
T vi = α1iv1 +α2iv2 + · · ·+αiivi

...
T vn = α1nv1 +α2nv2 + · · ·+αnnvn,

i.e., if T vi is a linear combination of only vi and its preceding ones, v1,v2, . . . ,vi−1 in the basis
of V .

Theorem 3.1.93.1.9. Let V be a finite dimensional vector space over F and T ∈ A(V ). If all the
roots of the minimal polynomial for T are in F then there is a basis of V with respect to which
the matrix of T is (upper) triangular.

Since by Remark 3.1.73.1.7, we know that, λ ∈ F is a characteristic root of T if and only if λ is
a root of the minimal polynomial for T , the above theorem can be restated as follows:

Theorem 3.1.9. Let V be a finite dimensional vector space over F and T ∈ A(V ). If all the
characteristic roots of T are in F then there is a basis of V with respect to which the matrix
of T is (upper) triangular.

Proof. We shall prove the theorem by principle of mathematical induction on the dimension n
of V .
• Let dimV = 1.
Let λ ∈ F be a characteristic root of T . Then there exists a 0 6= v ∈ V such that T v = λv.
Since, v 6= 0 and dimV = 1, clearly {v} is a basis of V . The matrix of T with respect to the
basis {v} is (λ ) which is a triangular matrix.

• Assume that the result is true for dimV = n−1.

• Let dimV = n.
Assume that all the characteristic roots of T are in F . Let λ1 ∈ F be a characteristic root of T .
Then there is a v1 6= 0 in V such that T v1 = λ1v1. Let

W = L({v1}) = {αv1 : α ∈ F}.
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Then W is a one-dimensional subspace of V . Also for any w ∈W , w = αv1, we have

Tw = T (αv1) = α(T v1) = α(λv1) = λ (αv1) ∈W.

Thus, W is invariant under T . Then by Theorem 3.1.53.1.5, T induces a map T : V/W → V/W
such that T ∈ A(V/W ) and minimal polynomial for T divides the minimal polynomial for T .
Since all the roots of minimal polynomial for T are the roots of the minimal polynomial for T ,
the map T also satisfies the (condition) hypothesis of the theorem.

Also, we know that

dim(V/W ) = dimV −dimW = n−1.

Then by induction hypothesis there is a basis {v2 +W,v3 +W, . . . ,vn +W} of V/W such that
the matrix of T , say (αi j)2≤i, j≤n, in this basis is upper triangular. Equivalently,

T (v2 +W ) = α22(v2 +W )

T (v3 +W ) = α23(v2 +W )+α33(v3 +W )

...

T (vn +W ) = α2n(v2 +W )+α3n(v3 +W )+ · · ·+αnn(vn +W ).

Claim: {v2,v3, . . . ,vn} is linearly independent.
Let β2,β3, . . . ,vn ∈ F such that β2v2 +β3v3 + · · ·+βnvn = 0. Then

(β2v2 +β3v3 + · · ·+βnvn)+W = 0+W =W
⇒ β2(v2 +W )+β3(v3 +W )+ · · ·+βn(vn +W ) =W

Since v2 +W,v3 +W, . . . ,vn +W are linearly independent (being basis of V/W ), we have
β2 = β3 = · · ·= βn = 0. This proves our claim.

Also, since v2 +W,v3 +W, . . . ,vn +W are linearly independent, vi +W 6= W and hence
vi /∈W for all 2≤ i≤ n. But W = L({v1]}) and so v1 cannot be written as a linear combination
of v2, . . . ,vn. Therefore, {v1,v2, . . . ,vn} must be linearly independent. Since, dimV = n, the
set {v1,v2, . . . ,vn} forms a basis of V .

Finally, we show that the matrix of T in the basis {v1,v2, . . . ,vn} is upper triangular.
We have, T v1 = λ1v1. Take λ1 = α11, then T v1 = α11v1. Now, we have

T (v2 +W ) = α22v2 +W
⇒ T v2−α22v2 ∈W
⇒ T v2−α22v2 = α12v1 (for some α12 ∈ F, since W = L({v1})
⇒ T v2 = α12v1 +α22v2.

Similarly, it follows that for any 1≤ j ≤ n, there is α1 j ∈ F such that

T v j−
j

∑
i=2

αi jv j = α1 jv1 ∈W.

Thus,

T v j =
j

∑
i=1

αi jv j.

Therefore, the matrix of T with respect to the basis {v1,v2, . . . ,vn} is upper triangular. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Exercise 3.1.10. Let V be a finite dimensional vector space over F , T ∈ A(V ) and m(T ) be
the matrix of T . Show that T and m(T ) have the same characteristic roots.

Alternatively Theorem 3.1.93.1.9 can also be stated in the following form:

Corollary 3.1.11. If the matrix A ∈Mn(F) has all its characteristic roots in F, then A is
similar to a triangular matrix, i.e., there is an invertible matrix C ∈Mn(F) such that C−1AC
is a triangular matrix.

Theorem 3.1.12. Let V be an n-dimensional vector space over F. If T ∈ A(V ) has all its
characteristic roots (or roots of the minimal polynomial) of T are in F, then T satisfies a
polynomial of degree n over F.

Proof. Since all the characteristic roots of T are in F , by (above) Theorem 3.1.93.1.9, we can find
a basis v1,v2, . . . ,vn of V such that the matrix of T in this basis is upper triangular, i.e.,

T v1 = α11v1

T v2 = α12v1 +α22v2

...
T vn = α1nv1 +α2nv2 + · · ·+αnnvn.

Now, from first equation, we have

(T −α11I)v1 = 0⇒ (T −α22I)(T −α11I)v1 = 0.

Also, by the second equation above, we have

(T −α11I)(T −α22I)v2 = (T −α11I)(T v2−α22v2)

= (T −α11I)(α12v1)

= α12(T −α11I)v1

= 0 (by first equation)

Inductively, we get
(T −α11I)(T −α22I) · · ·(T −αiiI)vi = 0

for all i = 1,2, . . . ,n. Therefore,

(T −α11I)(T −α22I) · · ·(T −αnnI) = 0.

Hence, T satisfies a polynomial q(x) = (x−α11)(x−α22) · · ·(x−αnn) of degree n over F . �Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

3.2 Canonical Forms: Nilpotent Tranformations

Definition 3.2.1. Let V be a vector space over F and T ∈ A(V ). Then T is called nilpotent
if there is a positive integer n such that T n = 0. The smallest such n is called the index of
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nilpotence of T , i.e., if n is the index of nilpotence then

T n = 0 but T n−1 6= 0.

Exercise 3.2.2. If T ∈ A(V ) is nilpotent and if α ∈ F such that α 6= 0 then prove that αI +T
is regular and its inverse (αI +T )−1 is a polynomial in T .

Solution. Seminar exercise. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Lemma 3.2.3. Let V be a vector space over F and T ∈ A(V ) be nilpotent. Then α0+α1T +
. . .+αmT m, where α0,α1, . . . ,αm ∈ F is invertible, if α0 6= 0.

Proof. Note that, α1T + . . .+αmT m = (α1I +α2T + . . .+αmT m−1)T.
Since T is nilpotent, T n = 0 for some n ∈ N. Then

(α1T + . . .+αmT m)n = (α1I +α2T + . . .+αmT m−1)nT n = 0.

Therefore, if T is nilpotent then α1T + . . .+αmT m is also nilpotent. Then by the above
exercise, if α0 6= 0 then α0I +α1T + . . .+αmT m is invertible. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Note: We observe that, by the above exercise, the inverse of α0 +α1T + . . .+αmT m is a
polynomial in T .

Lemma 3.2.4. Let V be a vector space over F and let T ∈ A(V ) be nilpotent with the index
of nilpotence n1. Let v ∈V be such that T n1−1v 6= 0. Let

V1 = L({v,T v, . . . ,T n1−1v}).

Then dimension of V1 is n1, V1 is invariant under T and the matrix of T
∣∣
V1

is

Mn1 =


0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0


n1×n1

.

Proof. Since V1 is already the span of v,T v, . . . ,T n1−1v, to show that dimV1 = n1 we have
to show that v,T v, . . . ,T n1−1v are linearly independent. Suppose if possible, v,T v, . . . ,T n1−1v
are linearly dependent. Then for α0,α1, . . . ,αn1−1 ∈ F , we have

α0v+α1T v+ · · ·+αn1−1T n1−1v = 0 (3.4)

for some αi’s non-zero. Let s be the first integer such that αs 6= 0. Then (3.43.4) becomes

αsT sv+αs+1T s+1v+ · · ·+αn1−1T n1−1v = 0

⇒ (αsI +αs+1T + · · ·+αn1−1T n1−1−s)T sv = 0. (3.5)
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Since T is nilpotent and αs 6= 0, by Lemma 3.2.33.2.3, (αsI +αs+1T + · · ·+αn1−1T n1−1−s) is
regular. Applying its inverse to the left on both sides of (3.53.5), we get T sv = 0. Therefore,

T n1−1v = T n1−1−s(T sv) = 0

which is a contradiction, since the index of nilpotence is given to be n1. Hence, all αi’s must
be 0 and so the set {v,T v, . . . ,T n1−1v} is linearly independent. Hence,

dimV1 = n1.

Now, we show that V1 is invariant under T .

T (V1) = T (L({v,T v, . . . ,T n1−1v}))
= L({T v,T 2v, . . . ,T n1−1v}) (since T n1v = 0)

⊂ L({v,T v, . . . ,T n1−1v}) =V1.

Therefore, V1 is invariant under T and as a result, T
∣∣
V1

: V1→V1 is a homomorphism.

Now, we find the matrix of T
∣∣
V1

.

T
∣∣
V1
(v) = T v (= 0v+T v+0T 2v+ · · ·+0T n1−1v)

T
∣∣
V1
(T v) = T (T v) = T 2(v)

...

T
∣∣
V1
(T n1−1v) = T (T n1−1v) = T n1v = 0.

Therefore, the matrix of T
∣∣
V1

is

m(T
∣∣
V1
) = Mn1 =


0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

... . . . ...
...

0 0 · · · 1 0


n1×n1

.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

The lemma is used in proving the lemma succeeding it, i.e. to prove that there exists another
subspace W invariant under T such that V = V1⊕W . The proof of the following lemma is
easy and is left as an exercise for the students.

Lemma 3.2.5. Let V,T,n1 and V1 be as in previous lemma. If u∈V1 be such that T n1−ku= 0
for some 0 < k ≤ n1, then u = T ku0 for some u0 ∈V1.

Proof. Exercise. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Let V,T,n1 and V1 be as in Lemma 3.2.43.2.4. Then we have the following result:
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Lemma 3.2.6. There exists a subspace W if V such that W is invariant under T and
V1⊕W =V .

Proof. Let W be a subspace of V of largest possible dimension such that
• W is invariant under T ;
• V1∩W = {0}.

Since V1∩W = {0}, to show that V =V1⊕W , it remains to show that V1 +W =V . Suppose
if possible, we have V1 +W (V . Then there exists and element z ∈V such that z /∈V1 +W .

Note that, n1 being the index of nilpotence of T , we have T n1 = 0. Therefore, T n1z = 0 ∈
V1 +W . Then there exists an integer k, 1≤ k ≤ n1 such that

T kz ∈V1 +W

but T iz /∈V1 +W i < k. (3.6)

Thus, T kz = u+w, where u ∈V1 and w ∈W . But then,

0 = T n1z = T n1−k(T kz) = T n1−k(u+w) = T n1−ku+T n1−kw.

Therefore, T n1−ku =−T n1−kw. Since V1 and W are invariant under T , we have T n1−ku ∈V1
and T n1−kw ∈W and hence

T n1−ku =−T n1−kw ∈V1∩W = {0}.

This implies,
T n1−ku = 0.

Then by previous lemma, T ku0 = u for some u0 ∈V1. Therefore,

T kz = u+w = T ku0 +w⇒ T k(z−u0) = w.

Take z1 = z−u0, then T kz1 = w ∈W . Since W is invariant under T , we have

T mz1 ∈W for all m≥ k.

Now, we show that for i < k, T iz1 /∈W . Suppose, if possible, T iz1 ∈W (i < k). Then

T iz = T iz−T iu0 +T iu0

= T iz1 +T iu0 ∈V1 +W (since T iu0 ∈V1 and T iz1 ∈W ).

This is not possible by our choice of k in (3.63.6). Therefore,

T iz1 /∈W for all i < k. (3.7)

Let W1 be the subspace of V spanned by W and z1,T z1, . . . ,T k−1z1, i.e.,

W1 = L(W ∪{z1,T z1, . . . ,T k−1z1}).

Since T iz1 /∈W for i < k, W is a proper subspace of W1, i.e., W (W1. Also, since T kz1 ∈W
and W is invariant under T , we get that W1 must be invariant under T .
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Due to our assumption that W is the invariant subspace of V of largest dimension such that
V1∩W = {0} and W (W1, W1 also being invariant, we must have

{0}(V1∩W1.

Then there must be an element w′ 6= 0 in V1∩W1 such that

w′ = w0 +α0z1 +α1T z1 + · · ·+αk−1T k−1z1

for some w0 ∈W and αi ∈ F , i = 0,1, . . . ,k−1. If all the αi’s are zero then we get w′ = w0 ∈
V1∩W = {0} (∵ w0 ∈W ) which is a contradiction as w′ 6= 0. Therefore, at least one αi must
be non-zero. Let 1≤ s≤ k−1 be the smallest integer such that αs 6= 0. Then, we have

w′ = w0 +αsT sz1 + · · ·+αk−1T k−1z1

= w0 +(αsI +αs+1T + · · ·+αk−1T k−1−s)T sz1 ∈V1 (∵ w′ ∈V1∩W1). (3.8)

Since αs 6= 0, by Exercise 3.2.23.2.2, the element αsI +αs+1T + · · ·+αk−1T k−1−s is invertible
and its inverse, say R, is a polynomial in T . Since, R is a polynomial in T and W and V1 are
invariant under T , it is clear that W and V1 are also invariant under R. Then applying R on
both sides of (3.83.8), we get

Rw′ = Rw0 +T sz1 ∈ R(V1)⊂V1.

Therefore, T sz1 ∈ V1 +R(W ) ⊂ V1 +W , where s ≤ k−1 < k. This is contradiction to (3.73.7).
Hence, V =V1 +W and since V1∩W = {0}, we have V =V1⊕W. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Lemma 3.2.7. Let V be a finite dimensional vector space over F and T ∈ A(V ). Let
V = V1⊕V2⊕ ·· · ⊕Vk, where each subspace Vi (1 ≤ i ≤ k) is of dimension ni and is
invariant under T . Then there is a basis of V in which the matrix of T is of the form

A1 0 · · · 0
0 A2 · · · 0
...

... . . . ...
0 0 · · · Ak


where each Ai is an ni×ni matrix of Ti = T

∣∣
Vi

: Vi→Vi i.e., matrix of the linear transforma-
tion induced by T on Vi (1≤ i≤ k).

Proof. For i = 1,2, . . . ,k, choose a basis {vi
1,v

i
2, . . . ,v

i
ni
} of Vi. Since V =V1⊕V2⊕·· ·⊕Vk,

the basis of V is given by

B =
k⋃

i=1

{vi
1,v

i
2, . . . ,v

i
ni
}

= {v1
1,v

1
2, . . . ,v

1
n1
,v2

1,v
2
2, . . . ,v

2
n2
, . . . ,vk

1,v
k
2, . . . ,v

k
nk
}.

Since each Vi is invariant under T , we have T (vi
j) ∈ Vi for all i = 1,2, . . . ,k and for all

j = 1,2, . . . ,ni. Thus, in the matrix of T in basis B, T vi
j is a linear combination of vi

1,v
i
2, . . . ,v

i
ni

only and other coefficients are zero.
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Let Ai be the matrix of Ti = T
∣∣
Vi

in the basis {vi
1,v

i
2, . . . ,v

i
ni
}. Then by the definition of the

matrix of a linear transformation, the matrix of T in the basis B is of the form

A1 0 0 · · · 0 0
0 A2 0 · · · 0 0
0 0 A3 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · Ak−1 0
0 0 0 · · · 0 Ak


.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 3.2.8. Let V be a finite dimensional vector space over F and T ∈ A(V ) be
nilpotent with index of nilpotence n1. Then there is a basis of V in which the matrix of T is
of the form 

Mn1 0 · · · 0
0 Mn2 · · · 0
...

... . . . ...
0 0 · · · Mnk


where n1 ≥ n2 ≥ ·· · ≥ nk and dimV = n1 +n2 + · · ·+nk.

Proof. Since n1 is the index of nilpotence of T , T n1−1 6= 0. Therefore, there exists v ∈V such
that T n1−1v 6= 0. Let

V1 = L({v,T v, . . . ,T n1−1v}).

Then by Lemma 3.2.63.2.6, there exists a subspace W1 of V invariant under T , i.e., T (W ) ⊂W1
such that

V =V1⊕W1.

Let T1 = T
∣∣
V1

, then by Lemma 3.2.43.2.4, we have a basis of V1 in which matrix of T1 = T
∣∣
V1

is
Mn1 . Let T2 be the linear transformation on W1 induced by T , i.e., T2 = T

∣∣
W1

. Since, W1 is
invariant under T , we can say that it is invariant under T2. Also, for any w ∈W1

T n1
2 w = T n1w = 0.

Therefore, the index of nilpotence of T2, say n2, (being smallest such integer) must less than
or equal to n1, i.e., n2 ≤ n1. Also, we have T2(W1)⊂W1.
Then there is a w1 ∈W1 such that T n2−1

2 w1 6= 0. Let

V2 = L({w1,T2w1,T 2
2 w1, . . . ,T

n2−1
2 w1}).

Then by Lemma 3.2.63.2.6, there is a subspace W2 invariant under T2 such that W1 =V2⊕W2.
We take T2 = T

∣∣
V2

. Then by Lemma 3.2.43.2.4, dimV2 = n2 and the matrix of T2 in the basis

{w1,T2w1,T 2
2 w1, . . . ,T

n2−1
2 w1} of V2 is Mn2 .

Continuing this way, we get subspaces V1,V2, . . . ,Vk of V such that dimVi = ni (1≤ i≤ k),
n1 ≥ n2 ≥ ·· · ≥ nk,

T (Vi)⊂Vi
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and the matrix of Ti = T
∣∣
Vi

is Mni . Then by (previous) Lemma 3.2.73.2.7 there is a basis of V in
which the matrix of T is of the form

Mn1 0 · · · 0
0 Mn2 · · · 0
...

... . . . ...
0 0 · · · Mnk

 .

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

This form of the matrix above is called the canonical representation of the nilpotent linear
transformation T .

Definition 3.2.9. The integers n1,n2, . . . ,nk in the canonical representation of nilpotent
T ∈ A(V ) are called invariants of T .

Definition 3.2.10. Let T ∈ A(V ) be nilpotent. A subspace M of V is called cyclic with
respect to T if

1. T m(M) = {0} but T m−1(M) 6= {0},
2. there is an element z ∈M such that {z,T z, . . . ,T m−1z} forms a basis of M,

Example 3.2.11. The subspaces V1,V2, . . . ,Vk obtained in the proof of Theorem 3.2.83.2.8 are
cyclic with respect to T .

Lemma 3.2.12. Let M be a subspace of a vector space V and T ∈ A(V ) be nilpotent. If
dim(M) = m and M is cyclic with respect to T , then dim(T kM) = m− k for all k ≤ m.

Proof. Since M is cyclic, the set {z,T z, . . . ,T m−1z} forms a basis of M, i.e.,

M = L({z,T z, . . . ,T m−1z}).

Then,
T kM = L({T kz,T k+1z, . . . ,T m−1z}) (since T m(M) = {0}).

Clearly, {T kz,T k+1z, . . . ,T m−1z} is linearly independent as it is a subset of an linearly inde-
pendent set {z,T z, . . . ,T m−1z}. Therefore, {T kz,T k+1z, . . . ,T m−1z} forms a basis of T kM and
hence dim(T kM) = m− k. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 3.2.13. Let V be a finite dimensional vector space over F and T ∈ A(V ) be
nilpotent. Then the invariants of T are unique.

In other words,
if V1,V2, . . . ,Vk are cyclic with respect to T such that V =V1⊕V2⊕·· ·⊕Vk with dimVi =

ni (1≤ i≤ k), n1 ≥ n2 ≥ ·· · ≥ nk,
and U1,U2, . . . ,Ul are cyclic with respect to T such that V = U1⊕U2⊕ ·· ·⊕Ul with

dimUi = mi (1≤ i≤ l), m1 ≥ m2 ≥ ·· · ≥ ml ,
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then k = l and mi = ni for all i.

Proof. Suppose V1,V2, . . . ,Vk are cyclic with respect to T such that

V =V1⊕V2⊕·· ·⊕Vk

with dimVi = ni (1≤ i≤ k), n1 ≥ n2 ≥ ·· · ≥ nk and also U1,U2, . . . ,Ul are cyclic with respect
to T such that

V =U1⊕U2⊕·· ·⊕Ul

with dimUi = mi (1≤ i≤ l), m1 ≥ m2 ≥ ·· · ≥ ml .
We have to show that k = l and m j = n j for all j. If this is not the case then let i be the first

integer such that mi 6= ni. Without the loss of generality, we may assume that

mi < ni. (3.9)

Since V =V1⊕V2⊕·· ·⊕Vk,

T miV = T miV1⊕T miV2⊕·· ·⊕T miVk.

Therefore, by (above) Lemma 3.2.123.2.12 (and considering only upto Vi but not upto Vk), we have

dim(T miV )≥ (n1−mi)+(n2−mi)+ · · ·+(ni−mi). (3.10)

Also since V =U1⊕U2⊕·· ·⊕Ul , we have

T miV = T miU1⊕T miU2⊕·· ·⊕T miUi−1 (∵ T miU j = {0}, i≥ j).

Therefore, by previous lemma we have

dim(T miV ) = (m1−mi)+(m2−mi)+ · · ·+(mi−1−mi).

Since i was the first integer such that mi 6= ni, we have m1 = n1, m2 = n2,
ldots,mi−1 = ni−1. Then, the above equation becomes

dim(T miV ) = (n1−mi)+(n2−mi)+ · · ·+(ni−1−mi). (3.11)

Substituting the value of dim(T miV ) from equation (3.113.11) in equation (3.103.10), we have

(n1−mi)+(n2−mi)+ · · ·+(ni−1−mi)≥ (n1−mi)+(n2−mi)+ · · ·+(ni−mi)

⇒ 0≥ ni−mi

⇒ mi ≥ ni.

This is contradiction to (3.93.9). Hence, k = l and mi = ni for all i. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 3.2.14. Two nilpotent linear transformations are similiar if and only if they have
the same invariants.
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Proof. Let S,T ∈A(V ) be two nilpotent linear transformations. Suppose S and T have different
invariants, say n1,n2, . . . ,nk and m1,m2, . . . ,ml respectively. Then by previous theorem and
remark, their respective matrices

m(S) =


Mn1 0 · · · 0

0 Mn2 · · · 0
...

... . . . ...
0 0 · · · Mnk

 and m(T ) =


Mm1 0 · · · 0

0 Mm2 · · · 0
...

... . . . ...
0 0 · · · Mml


cannot be similar. Hence, S and T cannot be similar.

Conversely, suppose that S and T have the same invariants, say n1,n2, . . . ,nk. Then by
Theorem 3.2.83.2.8, there are bases B1 = {v1,v2, . . . ,vn} and B2 = {w1,w2, . . . ,wn} of V such that
the matrix of S in the basis B1 and the matrix of T in the basis B2 is

mB1(S) =


Mn1 0 · · · 0

0 Mn2 · · · 0
...

... . . . ...
0 0 · · · Mnk

= mB2(T ).

We have seen, in Proposition 2.3.112.3.11, that if two linear transformations have same matrix in
different bases, then they must be similar. Hence, S and T are similar. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Let us compute a couple of examples of invariants.

Example 3.2.15. Find the invariants of the linear tranformation T : F3 → F3 defined by
T (x,y,z) = (y,z,0), where x,y,z ∈ F .

Solution. It is clear to see that the index of nilpotence of T is 3 as T 3(x,y,z) = (0,0,0) for all
(x,y,z) ∈ F3. Hence, the invariant of T is dimF3 = n1 = 3. Now,

T (1,0,0) = (0,0,0)
T (0,1,0) = (1,0,0)
T (0,0,1) = (0,1,0)

Thus, the matrix of T in standard basis of F3 is given by0 1 0
0 0 1
0 0 0

 .

Note that v = (0,0,1) and T n1−1 = T 2v = (1,0,0) 6= (0,0,0). Hence, v,T v,T 2v forms a basis
of V1 = F3 and the matrix of T in the canonical form is

Mn1 =

0 0 0
1 0 0
0 1 0

 .

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Example 3.2.16. Find the invariants of T : R3→ R3 defined by

T (x1,x2,x3) = (x2,0,0).

Solution. The index of nilpotence of T is n1 = 2 as clearly, T 2 = 0. Then the invariants
(as in Theorem 3.2.83.2.8) n1 and n2 such that n1 ≥ n2 and dimR3 = n1 +n2 are n1 = 2, n2 = 1.
Note that, as seen in Lemma 3.2.43.2.4 and Lemma 3.2.63.2.6, we can find v = (0,1,0) ∈ R3 such that
T n1−1v = T v = (1,0,0) 6= (0,0,0). Then R3 can be written as

R3 =V1⊕V2,

where basis of V1 = {v,T v}= {(0,1,0),(1,0,0)} and V2 = L({(0,0,1)}. Then the matrix of

T
∣∣
V1

is given by Mn1 =

(
0 0
1 0

)
while Mn2 =

(
0
)
. Then the canonical representation of T is

as follows: (
Mn1 0

0 Mn2

)
=

0 0 0
1 0 0
0 0 0

 .

Note that this is not the matrix of T in the standard basis. The matrix of T in the standard
basis of R3 is given by 0 0 0

0 1 0
0 0 0


�

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

3.3 Canonical Forms: Jordan (Decomposition) Form

Lemma 3.3.1. Let V be a finite dimensional vector space over F and T ∈ A(V ). Suppose
that V =V1⊕V2, where V1 and V2 are subspaces of V invariant under T . Let T1 = T

∣∣
V1

and
T2 = T

∣∣
V2

. If the minimal polynomial of T1 over F is p1(x) while minimal polynomial of T2

over F is p2(x) then the minimal polynomial of T over F is the least common multiple of
p1(x) and p2(x).

Proof. Let p(x) ∈ F [x] be the minimal polynomial for T . Then p(T ) = 0. Thus for v1 ∈V1,
by definition of T1, we have T1v1 = T v1. Therefore,

p(T1)v1 = p(T )v1 = 0.

Similarly, for any v2 ∈V2, since T2v2 = T v2, we have

p(T2)v2 = p(T )v2 = 0.

Thus, p(T ) = 0⇒ p(T1) = 0 and p(T2) = 0.
Since p1(x) and p2(x) are minimal polynomials for T1 and T2 respectively,

p1(x)|p(x) and p2(x)|p(x).
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Let q(x) be the L.C.M. of p1(x) and p2(x). Then,

q(x)|p(x). (3.12)

On the other hand, we know that both p1(x) and p2(x) divides their least common multiple
q(x), i.e.,

p1(x)|q(x) and p2(x)|q(x).

Therefore, q(T1) = 0 and q(T2) = 0.
Now, let v ∈V . Since V =V1⊕V2, there exists v1 ∈V1 and v2 ∈V2 such that

v = v1 + v2.

Then,

q(T )v = q(T )v1 +q(T )v2

= q(T1)v1 +q(T2)v2 = 0.

Thus, q(T ) = 0. Since p(x) is the minimal polynomial for T , and T satisfies q(x), we conclude
that

p(x)|q(x). (3.13)

By equations (3.123.12) and (3.133.13), we have p(x) = q(x). Hence, the minimal polynomial for T is
the least common multiple of p1(x) and p2(x). �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Corollary 3.3.2. If V =V1⊕V2⊕·· ·⊕Vk, where each Vi is invariant under T and if pi(x)
is the minimal polynomial for Ti = T

∣∣
Vi

over F, then the minimal polynomial of T over F is
the least common multiple of p1(x), p2(x), . . . , pk(x).

Notations: Suppose V is a finite dimensional vector space over F and T ∈ A(V ).
Suppose p(x) ∈ F [x] is the minimal polynomial for T . Consider

p(x) = q1(x)l1q2(x)l2 · · ·qk(x)lk ,

where qi(x), (i = 1,2, . . . ,k) are distinct irreducible polynomials in F [x] and l1, l2, . . . , lk are
positive integers. For i = 1,2, . . . ,k, consider

Vi = {v ∈V : qi(T )liv = 0}= ker(qi(T )li).

Then Vi is a subspace of V which is invariant under T . This is because, if v ∈Vi then

qi(T )li(T v) = T (qi(T )liv) = T (0) = 0.

Therefore, T vi ∈Vi and hence each Vi is invariant under T .

Theorem 3.3.3. With the above notations, Vi 6= {0}, for each i = 1,2, . . . ,k,
V =V1⊕V2⊕·· ·⊕Vk, and the minimal polynomial of Ti = T

∣∣
Vi

is qi(x)li .
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Proof. First we show that Vi 6= {0} for all i = 1,2, . . . ,k. For k = 1 there is nothing to prove.
So, we may assume k > 1. Consider

h1(x) = q2(x)l2q3(x)l3 · · ·qk(x)lk ,

h2(x) = q1(x)l1q3(x)l3 · · ·qk(x)lk ,

...

hi(x) = q1(x)l1 · · ·qi−1(x)li−1qi+1(x)li+1 · · ·qk(x)lk .

That is

hi(x) =
p(x)

qi(x)li
, i = 1,2, . . . ,k.

Clearly, for i = 1,2, . . . ,k, deghi(x)< deg p(x). Since p(x) is the minimal polynomial for T ,
we have hi(T ) 6= 0 and so hi(T )(V ) 6= {0}. Now, for v ∈V ,

qi(T )lihi(T )v = p(T )v = 0.

Therefore, hi(T )v ∈ ker(qi(T )li) =Vi and hence we have

{0} 6= hi(T )(V )⊂Vi. (3.14)

∴ Vi 6= {0}.

Now, we show that V =V1⊕V2⊕·· ·⊕Vk. For this we have to show that for 1≤ i≤ k:
• Every v ∈V can be written as v = v1 + v2 + · · ·+ vk, where vi ∈Vi.
• If u1 +u2 + · · ·+uk = 0 with ui ∈Vi then each ui = 0.

Since GCD of h1(x),h2(x), . . . ,hk(x) is 1, there exists a1(x),a2(x), . . . ,ak(x) ∈ F [x] such that

a1(x)h1(x)+a2(x)h2(x)+ · · ·+ak(x)hk(x) = 1.

Therefore,
a1(T )h1(T )+a2(T )h2(T )+ · · ·+ak(T )hk(T ) = I.

Then for any v ∈V ,

v = a1(T )h1(T )v+a2(T )h2(T )v+ · · ·+ak(T )hk(T )v.

Now, by (3.143.14), hi(T )⊂Vi for all i = 1,2, . . . ,k and Vi is invariant under T (by above descrip-
tion in Notations), we have

ai(T )hi(T )v ∈Vi.

Therefore,
v = v1 + v2 + · · ·+ vk,

where vi = ai(T )hi(T )v ∈Vi, i = 1,2, . . . ,k. Thus, we can write V as

V =V1 +V2 + · · ·+Vk.

To show that V is the direct sum, i.e., V =V1⊕V2⊕·· ·⊕Vk it is enough to show that if

u1 +u2 + · · ·+uk = 0 (3.15)
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with ui ∈Vi then each ui = 0.
Suppose if possible, some ui is not 0, say u1 6= 0. Then by (3.153.15), we get

h1(T )u1 +h1(T )u2 + · · ·+h1(T )uk = h1(T )0 = 0. (3.16)

Now, for 2≤ i≤ k, ui ∈Vi = ker(qi(T )li)⇒ qi(T )liui = 0 and so

h(T )ui = q2(T )l2q3(T )l3 · · ·qk(T )lkui = 0.

So equation (3.163.16) reduces to h1(T )u1 = 0. Also since u1 ∈ V1 = ker(q1(T )l1), we have
q1(T )l1u1 = 0. Now, as GCD of h1(x) and q1(x)l1 is 1, there exists λ (x),µ(x) ∈ F [x] such that

λ (x)h1(x)+µ(x)q1(x)l1 = 1.

∴ λ (T )h1(T )+µ(T )q1(T )l1 = I.

∴ λ (T )h1(T )u1 +µ(T )q1(T )l1u1 = u1.

∴ u1 = 0.

This is a contradiction to our assumption that u1 6= 0. Therefore, all ui’s must be 0 and hence

V =V1⊕V2⊕·· ·⊕Vk.

Now, consider Ti = T
∣∣
Vi

. Then we show that the minimal polynomial for Ti is qi(x)li .

By definition of Vi(= ker(qi(T )li), since qi(T )li(Vi) = {0} we have qi(Ti)
li = 0. Therefore,

the minimal polynomial of Ti must divide qi(x)li and hence it will be of the form qi(x) fi , where
fi ≤ li. Then by Corollary 3.3.23.3.2, the minimal polynomial of T over F is the LCM of q1(x) f1 ,
q2(x) f2, . . . ,qk(x) fk and since qi(x) are distinct and irreducible, the minimal polynomial must
be their product, i.e.,

q1(x) f1,q2(x) f2 , . . . ,qk(x) fk .

But (by notations given above), the minimal polynomial for T is

p(x) = q1(x)l1q2(x)l2 · · ·qk(x)lk

and so, we have

q1(x)l1q2(x)l2 · · ·qk(x)lk = q1(x) f1 ,q2(x) f2, . . . ,qk(x) fk .

Therefore, fi = li for all i = 1,2, . . . ,k. Hence, qi(x)li is the minimal polynomial for Ti. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Remark 3.3.4. We know that, by Remark 3.1.73.1.7, λ ∈ F is a root of the minimal polynomial
for T ∈ A(V ) if and only if λ is a characteristic root of T . If all the characteristic roots of T
lie in F then the minimal polynomial p(x) ∈ F [x] for T has the following nice form:

p(x) = (x−λ1)
l1(x−λ2)

l2 · · ·(x−λk)
lk ,

where λ1,λ2, . . . ,λk are distinct characteristic roots of T . The irreducible factor qi(x) is now
qi(x) = x−λi. Note that, λi is the only characteristic root of T on Vi.
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Corollary 3.3.5. Let V be a finite dimensional vector space over F and T ∈ A(V ) be such
that all the characteristic roots of T lie in F (i.e., all the roots of the minimal polynomial for
T are in F). If λ1,λ2, . . . ,λk ∈ F are the distinct characteristic roots of T , then the minimal
polynomial p(x) for T is

p(x) = (x−λ1)
l1(x−λ2)

l2 · · ·(x−λk)
lk

and
V =V1⊕V2⊕·· ·⊕Vk,

where Vi = ker(T −λiI)li = {v ∈V : (T −λiI)liv = 0}, i = 1,2, . . . ,k.

We are now in the position to state the condition when the matrix of T ∈ A(V ) will be in
special recognizable form. Before we exhibit this condition, consider the following definition:

Definition 3.3.6. The matrix 

λ 0 0 · · · 0 0
1 λ 0 · · · 0 0
0 1 λ · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · λ 0
0 0 0 · · · 1 λ


(3.17)

with λ ’s on the diagonal, 1’s on the subdiagonal (entries just under the diagonal), and 0’s
elsewhere, is called the basic Jordan block belonging to λ .

Theorem 3.3.7 (Jordan Decomposition). Let V be a finite dimensional vector space over F
and T ∈ A(V ) be such that all its distinct characteristic roots are in F (i.e., all the roots of
minimal polynomial for T are in F). Then there is a basis of V in which the matrix of T is
of the form

J =


J1

J2
. . .

Jk


where for i = 1,2, . . . ,k each

Ji =


Bi1

Bi2
. . .

Biri


and where Bi1 ,Bi2 , . . . ,Biri

are basic Jordan blocks belonging to λi (as given in (3.173.17)).

Proof. Suppose λ1,λ2, . . . ,λk ∈ F are distinct characteristic roots of T (or roots of the minimal
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polynomial). Then by previous corollary, the minimal polynomial for T is of the form

p(x) = (x−λ1)
l1(x−λ2)

l2 · · ·(x−λk)
lk ,

V = V1⊕V2⊕·· ·⊕Vk,

where Vi = ker(T −λiI)li , i = 1,2, . . . ,k. Also, each Vi is invariant under T and the minimal
polynomial for Ti = T

∣∣
Vi

is (x−λi)
li . Therefore, for i = 1,2, . . . ,k,

(Ti−λiI)li = 0.

Thus, Ti−λiI is nilpotent and hence by Theorem 3.2.83.2.8 there is a basis of Vi in which the matrix
of Ti−λiI is of the form 

Mi1 0 · · · 0
0 Mi2 · · · 0
...

... . . . ...
0 0 · · · Miri

 .

Since, Ti can be written as Ti = (Ti−λiI)+λiI, the matrix of Ti can be written as

m(Ti) = m(Ti−λiI)+m(λiI)

=


Mi1

Mi2
0

. . .0 Miri

+


λi

λi
0

. . .0
λi



=


Bi1

Bi2
0

. . .0 Biri

= Ji.

Since V =V1⊕V2⊕·· ·⊕Vk and each Vi is invariant under T , by Lemma 3.2.73.2.7 there is a basis
of V in which the matrix of T is of the form

J =


J1 0 · · · 0
0 J2 · · · 0
...

... . . . ...
0 0 · · · Jk

 .

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

The above matrix J is called the Jordan canonical form of T . We conclude this section by
leaving the following result as an exercise:

Exercise 3.3.8. Two linear transformation in AF(V ) having all their characteristic roots in
F are similar if and only if they have the same Jordan form (except for the order of their
characteristic roots).
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TRACE, TRANSPOSE, DETERMINANTS AND
CLASSIFICATION OF QUADRATICS

4.1 Trace and Transpose

Definition 4.1.1. Let F be a field and A ∈Mn(F). If A = (αi j), then the trace of A is

tr(A) =
n

∑
i=1

αii,

i.e., the trace of a matrix A is the sum of all the diagonal entries of A.

Note that, trace of a matrix is an element of F . Thus, trace (of a matrix is a) function

tr : Mn(F)→ F is given by A 7→ tr(A).

The following lemma lists some of the fundamental properties of the trace function. The first
two properties proves that trace function ‘tr’ is a linear function.

Lemma 4.1.2. Let F be a field. Then for A,B ∈Mn(F) and λ ∈ F,
1. tr(λA) = λ tr(A).
2. tr(A+B) = tr(A)+ tr(B).
3. tr(AB) = tr(BA).

Proof. Suppose A = (αi j) and B = (βi j). Then
1. λA = (λαi j). Therefore,

tr(λA) =
n

∑
i=1

λαii = λ

n

∑
i=1

αii = λ tr(A).

75
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2. A+B = (αi j +β i j). Therefore,

tr(A+B) =
n

∑
i=1

(αii +βii)

=
n

∑
i=1

αii +
n

∑
i=1

βii

= tr(A)+ tr(B).

Thus, tr is a linear map on Mn(F).

3. Suppose AB = (γi j), where γi j =
n

∑
k=1

αikβk j and BA = (µi j), where µi j =
n

∑
k=1

βikαk j.

Then,

tr(AB) =
n

∑
i=1

γii

=
n

∑
i=1

(
n

∑
k=1

αikβki

)

=
n

∑
k=1

(
n

∑
i=1

βkiαik

)
(interchanging the order of summation)

=
n

∑
k=1

µkk = tr(BA).

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Corollary 4.1.3. Let F be a field and A ∈Mn(F). Let C ∈Mn(F) be an invertible matrix.
Then tr(C−1AC) = tr(A).

In other words, “two similar matrices have the same trace”.

Proof. If A and B are similar matrices then there exist an invertible matrix C such that
B =C−1AC. Then,

tr(B) = tr(C−1AC)

= tr((C−1A)C)

= tr(C(C−1A)) (by property 3 above)
= tr(A).

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Using the definition of trace of a matrix, we now define trace of a linear transformation.

Definition 4.1.4. Let T ∈ A(V ). Then tr(T ), the trace of T , is the trace of m1(T ), where
m1(T ) is the matrix of T in some basis of V .
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Remark 4.1.5. Since by previous corollary, trace of similar matrices is same, the definition
of trace of a linear transformation T makes sense. For if m2(T ) is the matrix of T in some
other basis of V then m1(T ) and m2(T ) are similar matrices and their trace being same, tr(T )
remains the same.

We recall the definition of a splitting field.

Definition 4.1.6. Suppose F is a field and p(x) ∈ F [x]. The smallest field K such that F is
a subfield of K and K contains all the roots of p(x) is called the splitting field of p(x).
Example: The splitting field of x2 + 1 ∈ R[x] or in Q[x] is C. The splitting field of
x2−2 ∈Q[x] is Q(

√
2).

Lemma 4.1.7. If T ∈ A(V ), then tr(T ) is the sum of all the characteristic roots of T counted
according to their multiplicity.

Proof. Let A be the matrix of T and p(x) ∈ F [x] be the minimal polynomial for T (i.e. for A).
Let K be the splitting field of p(x). Then all the roots of p(x) are in K, i.e., all the characteristic
roots of T are in K. Then by Theorem 3.3.73.3.7, the matrix A is similar to Jordan form matrix
J ∈Mn(K) of T . Then,

tr(T ) = tr(A) = tr(J).

Since in matrix J the characteristic roots of T appear on the diagonal, the tr(J) is the sum of
all the diagonal entries of the matrix J counted according to their multiplicities. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

As an application of the above lemma, we make the following remark:

Remark 4.1.8. The trace of a nilpotent linear transformation (or matrix) be 0.
By the above lemma, trace of a linear transformation (or its matrix) is the sum of its

characteristic roots. We know that, 0 is the only characteristic root of a nilpotent linear
transformation and hence its trace is 0.

Question 4.1.9. What about the converse of the above remark, i.e. if the trace of a linear
transformation (or its matrix) is 0, can we say that it is nilpotent?

Solution. The converse is not true in general. If trace of a matrix is 0, it may not necessarily
be nilpotent. Consider the following example: �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Example 4.1.10. Let A =

(
0 1
1 0

)
then tr(A) = 0. However, A2 = I, A3 = A. So A is not

nilpotent.

Thus, we now know that if tr(T ) = 0 then T may not be nilpotent. Now, the question
remains that under what additional conditions we can conclude that T is nilpotent. This is
answered by the following lemma:

Lemma 4.1.11. Let F be a field of characteristic 0, V be a vector space over F and
T ∈ A(V ). Then T is nilpotent if and only if tr(T i) = 0 for all i≥ 1.
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Proof. If T is nilpotent, then T i is also nilpotent and hence tr(T i) = 0 for all i≥ 1.
Conversely, suppose tr(T i) = 0 for all i≥ 1. Let p(x) = α0 +α1x+ · · ·+αmxm ∈ F [x] be

the minimal polynomial for T . Then,

0 = p(T ) = α0I +α1T + · · ·+αmT m.

Taking trace on both the sides, we get

0 = α0 tr(I)+α tr(T )+ · · ·+αm tr(T m).

Since tr(T i) = 0 for all i≥ 1, from above equation, we have

α0n = 0⇒ α0 = 0 (∵ characteristic of F is 0).

Since the constant term in the minimal polynomial for T is 0, by Theorem 2.1.152.1.15, T is singular
and hence by Theorem 2.1.192.1.19, 0 is a characteristic root of T .

Let K be the splitting field of p(x). We can consider T as a matrix in Mn(F) and hence in
Mn(K). Since K is the extension of the field F such that all the roots of p(x) (i.e. characteristic
roots of T ) are in K, by Theorem 3.1.93.1.9, we can bring T to a triangular form in Mn(K). Since 0
is a characteristic root of T , the matrix T is of the form

0 β2 · · · βn
0 α2
... . . . *
0 0

αn

=

(
0 ∗
0 T2

)
,

where

T2 =

α2
. . . *

0
αn


is an (n−1)× (n−1) (upper triangular) matrix and * denotes the entries in K. Now,

T k =

(
0 ∗
0 T k

2

)
and hence 0 = tr(T k) = tr(T k

2 ). Thus, T2 is an (n−1)× (n−1) matrix with tr(T k
2 ) = 0 for all

k≥ 1. Repeating the same argument for T2 and continuing this way, we get α2 = · · ·= αn = 0.
Thus, T can be converted to a triangular matrix with all the entries of main diagonal equal to 0.
Then (by a seminar exercise) T is nilpotent. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Exercise 4.1.12. Prove that there do not exists A,B ∈Mn(F) such that AB−BA = I, where F
is a field of characteristic 0.

Solution. Suppose there exists A,B ∈Mn(F) such that AB−BA = I. Then taking trace on
both the sides, we get

n = tr(I) = tr(AB−BA)
= tr(AB)− tr(BA) (∵ tr(A+B) = tr(A)+ tr(B))
= tr(AB)− tr(AB) (∵ tr(AB) = tr(BA))
= 0

which is not possible since characteristic of the field F is 0. Hence, the result. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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As an immediate application of Lemma 4.1.114.1.11, we have the following result usually known
as Jacobson lemma.

Lemma 4.1.13 (Jacobson lemma). Let F be a field of characteristic 0 and V be a vector
space over F. If S,T ∈ A(V ) such that ST −T S commutes with S, then ST −T S is nilpotent.

Proof. For any k ≥ 1, we compute (ST −T S)k. Now,

(ST −T S)k = (ST −T S)k−1(ST −T S)

= (ST −T S)k−1ST − (ST −T S)k−1T S

= S(ST −T S)k−1T − (ST −T S)k−1T S (∵ ST −T S commutes with S)
= SB−BS,

where B = (ST −T S)k−1T . Hence,

tr((ST −T S)k) = tr(SB−BS)
= tr(SB)− tr(BS) (∵ tr(A+B) = tr(A)+ tr(B))
= tr(SB)− tr(SB) (∵ tr(AB) = tr(BA))
= 0

for all k ≥ 1. Then by previous lemma, ST −T S is nilpotent. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Definition 4.1.14. If A = (αi j) ∈ Mn(F) then the transpose of A, denoted by A′, is the
matrix A′ = (γi j), where γi j = α ji for all 1≤ i, j ≤ n.
Thus, the transpose of A a matrix is obtained by interchanging rows and columns of A.

Some of the basic properties of the transpose are given in the following lemma:

Lemma 4.1.15. For all A,B ∈Mn(F) and λ ∈ F, prove that
1. (λA)′ = λA′.
2. (A+B)′ = A′+B′.
3. (AB)′ = B′A′.
4. (A′)′ = A.

Proof. Homework (given as a seminar exercise). �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Exercises 4.1.16. Prove the following:
1. Let p(x)∈ F [x]. Then p(A) = 0 if and only if p(A′) = 0. Hence, the minimal polynomial

for A and A′ are same.
2. A is invertible if and only if A′ is invertible and

(A′)−1 = (A−1)′.

3. λ is a characteristic root of A if and only if λ is a characteristic root of A′.
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Definition 4.1.17. A matrix A ∈Mn(F) is said to be a symmetric matrix if A′ = A.
Thus, if A = (αi j) is symmetric then

αi j = α ji (for all i, j).

Definition 4.1.18. A matrix A ∈Mn(F) is said to be a skew-symmetric matrix if A′ =−A.
Thus, if A = (αi j) is skew-symmetric then

αi j =−α ji (for all i, j, i 6= j).

Lemma 4.1.19. Let F be a field with characteristic different from 2. Then every matrix
Mn(F) can be uniquely written as a sum of a symmetric and a skew-symmetric matrix.

Proof. Let A ∈ Mn(F) and let A = B+C, where B ∈ Mn(F) is any symmetric matrix and
C ∈Mn(F) be any skew-symmetric matrix, i.e., B′ = B and C′ =C. Now,

A′ = (B+C)′ = B′+C′ = B−C.

Therefore, A+A′ = 2B and A−A′ = 2C. Hence,

B =
(A+A′)

2
and C =

(A−A′)
2

.

Thus, A can be written as

A = B+C =
(A+A′)

2
+

(A−A′)
2

.

It is easy to verify that B = (A+A′)
2 is a symmetric matrix and C = (A−A′)

2 is a skew-symmetric
matrix. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

4.2 Determinants

Definition 4.2.1. Let F be a field and A ∈Mn(F). Then the determinant of A, written as
det(A), is the element of F defined as

det(A) = ∑
σ∈Sn

(−1)σ
α1σ(1)α2σ(2) · · ·αnσ(n),

where

(−1)σ =

{
1 if σ is an even permuation;
−1 if σ is an odd permutation.

Remark 4.2.2. The determinant function is a function on Mn(F) and takes values in F ,

det : Mn(F)→ F defined by A 7→ det(A).
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Lemma 4.2.3. The determinant of a (lower) triangular matrix is the product of its entries
on the main diagonal, i.e.,

if A = (αi j) ∈Mn(F) is a lower triangular matrix, then det(A) = α11α22 · · ·αnn.

Proof. Note that, since A = (αi j) is a lower triangular matrix,

αi j = 0 if j > i. (4.1)

Now by definition of determinant,

det(A) = ∑
σ∈Sn

(−1)σ
α1σ(1)α2σ(2) · · ·αnσ(n). (4.2)

If σ(1) 6= 1. Then obviously σ(1)> 1 and hence by equation (4.14.1), the element α1σ(1) = 0.
Thus, in the expansion of det(A) given in (4.24.2) above, the non-zero contribution comes from
only those terms where σ(1) = 1.

Now, σ is a permutation (which is a one-one function) and σ(1) = 1 and so σ(2) 6= 1.
If σ(2) > 2, then again because of the condition (4.14.1), α2σ(2) = 0. Thus, to get a non-zero
contribution in the expansion (4.24.2) of det(A), σ(2) = 2.

Continuing this way, we get σ(i)= i for all i= 1,2, . . . ,n. Then σ is the identity permutation
which is an even permutation. Hence, by (4.24.2) we have

det(A) = α11α22 · · ·αnn.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Lemma 4.2.4. Determinants of a matrix and its transpose are same, i.e., if A is in Mn(F)
and A′ is its transpose then

det(A) = det(A′).

Proof. Let A = (αi j) ∈Mn(F). Then A′ = (βi j), where βi j = α ji for all i, j = 1,2, . . . ,n and

det(A′) = ∑
σ∈Sn

(−1)σ
β1σ(1)β2σ(2) · · ·βnσ(n)

= ∑
σ∈Sn

(−1)σ
ασ(1)1ασ(2)2 · · ·ασ(n)n

= ∑
σ∈Sn

(−1)σ
α1σ−1(1)α2σ−1(2) · · ·αnσ−1(n)

= ∑
σ−1∈Sn

(−1)σ−1
α1σ−1(1)α2σ−1(2) · · ·αnσ−1(n)

= ∑
σ∈Sn

(−1)σ
α1σ(1)α2σ(2) · · ·αnσ(n)

= det(A).

Note that the above sum is over all permutations σ ∈ Sn and if σ is a permutation then so is
σ−1. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Corollary 4.2.5. The determinant of an upper triangular matrix is the product of its entries
on the main diagonal, i.e.,

if A = (αi j) ∈Mn(F) is a lower triangular matrix, then det(A) = α11α22 · · ·αnn.

Proof. Let A= (αi j)∈Mn(F) be an upper triangular matrix. Then A′ will be a lower triangular
matrix. Then, by by lemma 4.2.34.2.3

det(A′) = α11α22 · · ·αnn.

But by previous lemma, det(A) = det(A′) and hence,

det(A) = α11α22 · · ·αnn.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Notation: Given a matrix A = (αi j) ∈Mn(F), consider the vector v1 = (α11,α12, . . . ,α1n) to
be the first row of the matrix A. Similarly, let v2 = (α21,α22, . . . ,α2n) be the second row vector
and so on.Then we may also denote

det(A) = d(v1,v2, . . . ,vn).

With this notation, we now state the next lemma which says that ‘if all the elements of in
one row of a matrix A ∈Mn(F) is multiplied by a fixed element γ ∈ F then det(A) is itself
multiplied by λ ’.

Lemma 4.2.6. If A ∈Mn(F) and λ ∈ F then

d(v1, . . . ,vi−1,λvi,vi+1, . . . ,vn) = λ d(v1, . . . ,vi−1,vi,vi+1, . . . ,vn).

Proof.

d(v1, . . . ,vi−1,λvi,vi+1, . . . ,vn)

= ∑
σ∈Sn

(−1)σ
α1σ(1) · · ·αi−1,σ(i−1)(λαiσ(i))αi+1,σ(i+1) · · ·αnσ(n)

= λ ∑
σ∈Sn

(−1)σ
α1σ(1) · · ·αiσ(i) · · ·αnσ(n)

= λ d(v1, . . . ,vi−1,vi,vi+1, . . . ,vn).

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Lemma 4.2.7. If A ∈Mn(F) and ui = (βi1,βi2, . . . ,βin) then

d(v1, . . . ,vi−1,vi +ui,vi+1, . . . ,vn)

= d(v1, . . . ,vi−1,vi,vi+1, . . . ,vn)+d(v1, . . . ,vi−1,ui,vi+1, . . . ,vn).
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Proof.

d(v1, . . . ,vi−1,vi +ui,vi+1, . . . ,vn)

= ∑
σ∈Sn

(−1)σ
α1σ(1) · · ·αi−1,σ(i−1)(αiσ(i)+βiσ(i))αi+1,σ(i+1) · · ·αnσ(n)

= ∑
σ∈Sn

(−1)σ
α1σ(1) · · ·αi−1,σ(i−1)αiσ(i)αi+1,σ(i+1) · · ·αnσ(n)

+ ∑
σ∈Sn

(−1)σ
α1σ(1) · · ·αi−1,σ(i−1)βiσ(i)αi+1,σ(i+1) · · ·αnσ(n)

= d(v1, . . . ,vi−1,vi,vi+1, . . . ,vn)+d(v1, . . . ,vi−1,ui,vi+1, . . . ,vn).

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Remark 4.2.8. The above lemma does not say that det(A+B) = det(A)+det(B); as this is
false. For example,

A =

(
1 0
0 0

)
and B =

(
0 0
0 1

)
,

then det(A) = det(B) = 0 but A+B = I and hence det(A+B) = 1.
The lemma says the following:

Suppose A and B in Mn(F) have all rows same except ith row. Also, all the rows of the new
matrix are same as that of A and B except the ith row. If the ith row of the new matrix is
the sum of the ith row of A and B, then the determinant of the new matrix is det(A)+det(B).
Consider the following example:

Example 4.2.9. If

A =

(
1 2
3 4

)
and B =

(
1 1
3 4

)
,

then det(A) =−2, det(B) = 1, and det
(

2 3
3 4

)
=−1 = det(A)+det(B).

Note that the second row of all the three matrices are same while the first row of the new
matrix is the sum of the entries in first row of A and B.

Lemma 4.2.10. If two rows of A = (αi j) ∈Mn(F) are equal (i.e., vr = vs for r 6= s), then
det(A) = 0.

Proof. Since r 6= s, for any permutation σ ∈ Sn, we have σ(r) 6= σ(s) (as a permutation is
one-one). Also, since rth row and sth row of A are same,

αr j = αs j for all j = 1,2, . . . ,n. (4.3)

Given σ ∈ Sn, consider the transposition τ = (σ(r),σ(s)), i.e.,

τ(σ(r)) =σ(s),
τ(σ(s)) =σ(r),
τ(σ(i)) =σ(i) for all i 6= r, i 6= s.
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Then by (4.34.3) and by above relations, we have

αrσ(r) = αsσ(r) = αsτσ(s)

and
αsσ(s) = αrσ(s) = αrτσ(r).

Therefore,

α1σ(1)α2σ(2) · · ·αrσ(r) · · ·αsσ(s) · · ·αnσ(n) = α1τσ(1)α2τσ(2) · · ·αsτσ(s) · · ·αrτσ(r) · · ·αnτσ(n).

Since τ is a transposition, it is an odd permutation and hence

(−1)τσ =−(−1)σ .

Therefore, from above we have

(−1)σ
α1σ(1)α2σ(2) · · ·αrσ(r) · · ·αsσ(s) · · ·αnσ(n)

= − (−1)τσ
α1τσ(1)α2τσ(2) · · ·αsτσ(s) · · ·αrτσ(r) · · ·αnτσ(n). (4.4)

In the expansion
det(A) = ∑

σ∈Sn

(−1)σ
α1σ(1)α2σ(2) · · ·αnσ(n),

we pair the term (−1)σ α1σ(1) · · ·αnσ(n) with the term (−1)τσ α1τσ(1) · · ·αnσ(n). Then by (4.44.4)
the paired terms cancel each other out in the sum and hence det(A) = 0. �
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Lemma 4.2.11. Interchanging two rows of a matrix changes the sign of its determinant.

Proof. Since two (rth and sth) rows are equal, by (above) Lemma 4.2.104.2.10,

d(v1, . . . ,vr−1,vr + vs,vr+1, . . . ,vs−1,vr + vs,vs+1, . . . ,vn) = 0.

Also, by Lemma 4.2.74.2.7, we have

0 = d(v1, . . . ,vr−1,vr + vs,vr+1, . . . ,vs−1,vr + vs,vs+1, . . . ,vn)

= d(v1, . . . ,vr−1,vr,vr+1, . . . ,vs−1,vr,vs+1, . . . ,vn) (two rows are same)

+d(v1, . . . ,vr−1,vr,vr+1, . . . ,vs−1,vs,vs+1, . . . ,vn)

+d(v1, . . . ,vr−1,vs,vr+1, . . . ,vs−1,vr,vs+1, . . . ,vn)

+d(v1, . . . ,vr−1,vs,vr+1, . . . ,vs−1,vs,vs+1, . . . ,vn) (two rows are same)

= d(v1, . . . ,vr−1,vr,vr+1, . . . ,vs−1,vs,vs+1, . . . ,vn)

+d(v1, . . . ,vr−1,vs,vr+1, . . . ,vs−1,vr,vs+1, . . . ,vn).

Therefore,

d(v1, . . . ,vr−1,vr,vr+1, . . . ,vs−1,vs,vs+1, . . . ,vn)

= −d(v1, . . . ,vr−1,vs,vr+1, . . . ,vs−1,vr,vs+1, . . . ,vn).

�
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Corollary 4.2.12. If the matrix B is obtained from A by permuting rows of A then

det(B) =±det(A),

where the sign is
+1 if the permutation is even;
−1 if the permutation is even.

[i.e., for σ ∈ Sn, d(v1, . . . ,vn) = (−1)σ d(vσ(1), . . . ,vσ(n))].

Corollary 4.2.13. For λ ∈ F,

d(v1, . . . ,vr−1,vr +λvs,vr+1, . . . ,vs−1,vs,vs+1, . . . ,vn)

= d(v1, . . . ,vr−1,vr,vr+1, . . . ,vs−1,vs,vs+1, . . . ,vn)

Proof. By previous lemmas,

d(v1, . . . ,vr−1,vr +λvs,vr+1, . . . ,vs−1,vs,vs+1, . . . ,vn)

= d(v1, . . . ,vr−1,vr,vr+1, . . . ,vs−1,vs,vs+1, . . . ,vn)

+d(v1, . . . ,vr−1,λvs,vr+1, . . . ,vs−1,vs,vs+1, . . . ,vn)

= d(v1, . . . ,vr−1,vr,vr+1, . . . ,vs−1,vs,vs+1, . . . ,vn)

+λ d(v1, . . . ,vr−1,vs,vr+1, . . . ,vs−1,vs,vs+1, . . . ,vn) (two rows are same)

= d(v1, . . . ,vr−1,vr,vr+1, . . . ,vs−1,vs,vs+1, . . . ,vn).
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Remark 4.2.14. Let A ∈Mn(F) and let A′ or AT denote its transpose. By Lemma 4.2.44.2.4, we
know that,

det(A) = det(AT).

Then all the properties of determinants for rows discussed above also hold for columns.

Theorem 4.2.15. For A,B ∈Mn(F),

det(AB) = det(A)det(B) .

Proof. Let A = (αi j) and B = (βi j). For i = 1,2, . . . ,n, let

vi = (αi1,αi2, . . . ,αin) −be the ith row of A and
ui = (βi1,βi2, . . . ,βin) −be the ith row of B.

For i = 1,2, . . . ,n, let
wi = αi1u1 +αi2u2 + · · ·+αinun.

Then

wi = αi1(β11,β12, . . . ,β1n)+αi2(β21,β22, . . . ,β2n)+ · · ·+αin(βn1,βn2, . . . ,βnn)
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= (αi1β11 +αi2β21 + · · ·+αinβn1,

αi1β12 +αi2β22 + · · ·+αinβn2, . . . ,αi1β1n +αi2β2n + · · ·+αinβnn).

Thus, wi is the ith row of the matrix AB.

∴ det(AB) = d(w1,w2, . . . ,wn)

= d(α11u1 +α12u2 + · · ·+α1nun,

α21u1 +α22u2 + · · ·+α2nun, . . . ,

αn1u1 +αn2u2 + · · ·+αnnun)

=
n

∑
i1,i2,...,in=1

α1i1α2i2 · · ·αnind(ui1,ui2, . . . ,uin), (4.5)

where i1, i2, . . . , in runs independently from 1 to n in the above multiple sum.
If ir = is, then ur = us and hence d(u1, . . . ,ur, . . . ,us, . . . ,un) = 0. Thus, in the above sum

only those terms will give non-zero contribution for which i1, i2, . . . , in are distinct. Take

σ =

(
1 2 · · · n
i1 i2 · · · in

)
∈ Sn (∵ i1, i2, . . . , in are distinct).

Then,

d(ui1,ui2 , . . . ,uin) = d(uσ(1),uσ(2), . . . ,uσ(n))

= (−1)σ d(u1,u2, . . . ,un).

Therefore, from equation (4.54.5), we get

det(AB) = ∑
σ∈Sn

(−1)σ
α1σ(1)α2σ(2) · · ·αnσ(n) d(u1,u2, . . . ,un)

= d(u1,u2, . . . ,un) ∑
σ∈Sn

(−1)σ
α1σ(1)α2σ(2) · · ·αnσ(n)

= det(B)det(A)
= det(A)det(B).
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Corollary 4.2.16. If A ∈Mn(F) is regular then det(A) 6= 0 and det(A−1) = 1
det(A) .

Proof. If A is regular then there exists A−1 ∈Mn(F) such that AA−1 = I. Then

det(AA−1) = det(I) = 1.

Therefore, by above theorem
det(A)det(A−1) = 1.

Hence, det(A) 6= 0 and det(A−1) = 1
det(A) . �
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Corollary 4.2.17. Determinants of similar matrices are same, i.e., if If A,B ∈Mn(F) are
similar, then det(A) = det(B).

Proof. Since A and B are similar, there is a regular C ∈Mn(F) such that A =C−1BC. Then,

det(A) = det(C−1BC)

= det(C−1)det(B)det(C) (by above theorem)

=
1

det(C)
det(B)det(C) (by above corollary)

= det(B).
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The above corollary allows us to define the determinant of a linear transformation.

Definition 4.2.18. Let V be a finite dimensional vector space and T ∈ A(V ). The determi-
nant of T , denoted by det(T ), is the determinant of the matrix of T , i.e., det(m(T )).

Remark 4.2.19. If m1(T ) and m2(T ) are matrices of T in two different basis of V , then
m2(T ) =C−1m1(T )C and hence, by Corollary 4.2.174.2.17, det(m1(T )) = det(m2(T )). Thus, the
definition of det(T ) is independent of the choice of basis of V .

4.2.1 Cramer’s Rule

Theorem 4.2.20 (Cramer’s Rule). Consider the system of n linear equations:

α11x1 +α12x2 + · · ·+α1nxn = β1,

α21x1 +α22x2 + · · ·+α2nxn = β2,

...
...

αn1x1 +αn2x2 + · · ·+αnnxn = βn,

where β1,β2, . . . ,βn ∈ F. Let A = (αi j) ∈ Mn(F) be the matrix of the system and let
∆ = det(A) be the determinant of the system. If ∆ 6= 0, then the above system has a unique
solution

xi =
∆i

∆
,

where ∆i is the determinant obtained by replacing ith column in ∆ by


β1
β2
...

βn

.
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Proof. Let x1,x2, . . . ,xn be a solution of the above system. Then for 1≤ i≤ n,

xi∆ = xi

∣∣∣∣∣∣∣∣∣
α11 α12 . . . α1n
α21 α22 . . . α2n

...
...

...
αn1 αn2 . . . αnn

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
α11 . . . α1ixi . . . α1n
α21 . . . α2ixi . . . α2n

...
...

...
αn1 . . . αnixi . . . αnn

∣∣∣∣∣∣∣∣∣
We know that (by Lemma 4.2.64.2.6 and Lemma 4.2.74.2.7), we can add any multiple of a column (or a
row) to another without changing the value of the determinant. Therefore, we can write

xi∆ =

∣∣∣∣∣∣∣∣∣
α11 . . . α1,i−1 (α11x1 +α12x2 + · · ·+α1nxn) α1,i+1 . . . α1n
α21 . . . α1,i−1 (α21x1 +α22x2 + · · ·+α2nxn) α1,i+1 . . . α2n

...
...

...
...

...
αn1 . . . α1,i−1 (αn1x1 +αn2x2 + · · ·+αnnxn) α1,i+1 . . . αnn

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
α11 . . . α1,i−1 β1 α1,i+1 . . . α1n
α21 . . . α2,i−1 β2 α2,i+1 . . . α2n

...
...

...
αn1 . . . αn,i−1 βn αn,i+1 . . . αnn

∣∣∣∣∣∣∣∣∣
= ∆i.

Since ∆ 6= 0, we therefore have,

xi =
∆i

∆
, i = 1,2, . . . ,n.
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Corollary 4.2.21. If det(A) 6= 0 then A is regular.

Proof. Let A = (αi j) ∈Mn(F). Define T : F(n)→ F(n) by

T (x1,x2, . . . ,xn) = (α11x1 +α12x2 + · · ·+α1nxn,

α21x1 +α22x2 + · · ·+α2nxn, . . . ,αn1x1 +αn2x2 + · · ·+αnnxn). (4.6)

Then T is a homomorphism and clearly the matrix of T in the standard basis of F(n) is A, i.e.,
m(T ) = A.

Let (β1,β2, . . . ,βn) ∈ F(n) be arbitrary. Now, consider the system of linear equations

α11x1 +α12x2 + · · ·+α1nxn = β1,

...
...
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αn1x1 +αn2x2 + · · ·+αnnxn = βn

Since det(A) 6= 0, by Cramer’s rule, the above system has a unique solution. That is, there are
x1,x2, . . . ,xn satisfying above system of linear equations. But from the definition of T in (4.64.6),
this means

T (x1,x2, . . . ,xn) = (β1,β2, . . . ,βn).

Therefore, T is onto and so T is regular. Hence, the matrix of T , m(T ) = A is regular
(invertible). �
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Combining Corolllary 4.2.164.2.16 and Corollary 4.2.214.2.21, we can state the following result:

Theorem 4.2.22. A ∈Mn(F) is invertible if and only if det(A) 6= 0.

Proof. Proof of Corolllary 4.2.164.2.16 and Corollary 4.2.214.2.21. �
Dr. Jay Mehta,
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Sardar Patel
University.

Proposition 4.2.23. Let A ∈ Mn(F). Then the determinant of A is the product of the
characteristic roots of A counted according to their multiplicities.

Proof. Same as proof of Lemma 4.1.74.1.7. �
Dr. Jay Mehta,
Department of
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Sardar Patel
University.

4.3 Quadratic forms

We are grateful to Prof. P. A. Dabhi and Prof. A. B. Patel for providing us notes for this
section.

Definition 4.3.1. Let V be a vector space over R. A map f : V ×V →R is called a bilinear
map if for every u,v,w ∈V and α ∈ R the following hold.

1. f (u,v) = f (v,u).
2. f (αu,v) = α f (u,v).
3. f (u+ v,w) = f (u,w)+ f (v,w).

Remark 4.3.2. Observe the linearity in the second variable too:

f (u,αv+βw) = f (αv+βw,u) (by property 1 above)
= α f (v,u)+β f (w,u) (by property 2 and 3 above)
= α f (u,v)+β f (u,v) (by property 1 above).

Theorem 4.3.3. Let f : Rn×Rn→ R be a map. Then f is bilinear if and only if there exist
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αi j ∈ R, 1≤ i, j ≤ n with αi j = α ji such that

f (x,y) =
n

∑
i, j=1

αi jxiy j.

Proof. Suppose that there exist αi j ∈ R, 1≤ i, j ≤ n with αi j = α ji such that

f (x,y) =
n

∑
i, j=1

αi jxiy j.

Then clearly, f is bilinear (Verify!).
Conversely, assume that f is a bilinear map. Let {e1,e2, . . . ,en} be the standard basis of

Rn. Let αi j = f (ei,e j). Since f is symmetric, we have

αi j = f (ei,e j) = f (e j,ei) = α ji.

Now, let x = (x1,x2, . . . ,xn) and y = (y1,y2, . . . ,yn) be in Rn. Then

f (x,y) = f

(
n

∑
i=1

xiei,
n

∑
j=1

y je j

)

=
n

∑
i=1

xi f

(
ei,

n

∑
j=1

y je j

)

=
n

∑
i=1

xi

(
n

∑
j=1

y j f (ei,e j)

)

=
n

∑
i=1

n

∑
j=1

αi jxiy j =
n

∑
i, j=1

αi jxiy j.
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Definition 4.3.4. Let V be a vector space over R and f : V ×V → R be a bilinear map.
Then a map g : V → R defined by g(v) = f (v,v) for every v ∈V is called a quadratic form.

Corollary 4.3.5. Let g : Rn→ R be a map. Then g is a quadratic form if and only if there
are scalars αi j ∈ R, 1≤ i, j ≤ n with αi j = α ji such that

g(x1,x2, . . . ,xn) =
n

∑
i=1

n

∑
j=1

αi jxix j.

As a consequence of Corollary 4.3.54.3.5 we have the following result:

Corollary 4.3.6. A map g : Rn→R is a quadratic form if and only if there is a unique n×n
real symmetric matrix A = (αi j) such that g(x) = xT Ax for every x ∈ Rn. (We consider
elements of Rn as column matrices).
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Example 4.3.7. Find the symmetric matrices associated with the following quadratic forms:
1. 9x2

1− x2
2 +4x2

3 +6x1x2−8x1x3 +2x2x3.
2. xy+ xz+ yz.
3. x2

1 + x2
2− x2

3− x2
4 +2x1x2−10x1x4 +4x3x4.

4. −y2−2z2 +4xy+8xz−14yz.

Solution. The matrices associated with the above quadratic forms are:

1.

 9 3 −4
3 −1 1
−4 1 4

.

2.

0 1
2

1
2

1
2 0 1

2
1
2

1
2 0

.

3.


1 1 0 −5
1 1 0 0
0 0 −1 2
−5 0 2 −1

.

4.

0 2 4
2 −1 −7
4 −7 −2

.
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Definition 4.3.8. A quadratic equation in Rn is an equation in n variables x1,x2, . . . ,xn of
the form

f (x1,x2, . . . ,xn) =
n

∑
i, j=1

αi jxix j +
n

∑
i=1

bixi + c = 0,

where (αi j) is a real symmetric matrix and bi,c ∈ R.

Let f : Rn→ R be a quadratic equation. Let A = (αi j) and B = (b1,b2, . . . ,bn) ∈ Rn and
c ∈ R. Then the above quadratic equation can be written in the form

f (x) = xTAx+Bx+ c = 0.

Definition 4.3.9. A quadratic equation f (x) = 0 in Rn is said to be consistent if it has
a solution, i.e., there exists x0 ∈ Rn such that f (x0) = 0. If a quadratic equation is not
consistent (i.e., it does not have a solution), then it is called inconsistent.

Definition 4.3.10. The solution set of a consistent quadratic equation f (x) = xTAx+Bx+
c = 0 over Rn is called a level surface.

In particular, if n = 2, then the level surfaces are called quadratic curves. When n = 3,
the level surfaces are called quadratic surfaces.

Now we state some definitions and results which are useful to us in identifying the level
surfaces in R2 and R3.

Definition 4.3.11. Let F be a field. A matrix A ∈ Mn(F) is said to be diagonalizable if
there exists a matrix C ∈Mn(F) such that C−1AC is a diagonal matrix.

Remark 4.3.12. When a matrix A∈Mn(F) is diagonalizable, the entries on the main diagonal
of the matrix C−1AC are precisely the characteristic roots of A.
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Theorem 4.3.13. Let F be a field and n ∈ N. A matrix A ∈Mn(F) is diagonalizable if and
only if A has n linearly independent characteristic vectors.

Definition 4.3.14. A matrix A ∈Mn(F) is said to be orthogonal if AAT = I.

Theorem 4.3.15. Let A ∈Mn(R) be a symmetric matrix. Then all the characteristic roots
of A are real and A is diagonalizable. In fact, there exists an orthogonal matrix P such that
P−1AP is a diagonal matrix.

Definition 4.3.16. Let F be a field and let A ∈Mn(F) (n ∈ N). Then the equation det(A−
λ I) = 0 is called the characteristic equation (or secular equation) of A.

Theorem 4.3.17. Let F be a field and let A ∈Mn(F). Then
1. (Caley - Hamilton Theorem): The matrix A satisfies its characteristic equation.
2. The roots of the characteristic equation of A are the characteristic roots of A.

Theorem 4.3.18 (Principal Axes Theorem). Let xTAx be the quadratic form in n variables.
Then there is a change of coordinates of x into y = PTx such that

xTAx = yTDy = λ1y2
1 +λ2y2

2 + · · ·+λny2
n,

where P is an orthogonal matrix such that PTAP = D is a diagonal matrix with diagonal
entries λ1,λ2, . . . ,λn.
[The axes are vi = PTei (1≤ i≤ n).]

Definition 4.3.19. Let A ∈Mn(R) be symmetric. Then A (or the quadratic form xTAx) is
called

1. positive definite if xTAx > 0 for every 0 6= x ∈ Rn.
2. positive semidefinite if xTAx≥ 0 for every x ∈ Rn.
3. negative definite if xTAx < 0 for every 0 6= x ∈ Rn.
4. negative semidefinite if xTAx≤ 0 for every x ∈ Rn.
5. indefinite is xTAx takes both negative and positive values.

Theorem 4.3.20. Let A ∈Mn(R) be a symmetric matrix. Then
1. A is positive definite if and only if all the characteristic roots of A are positive.
2. A is positive semidefinite if and only if all the characteristic roots of A are non-

negative.
3. A is negative definite if and only if all the characteristic roots of A are negative.
4. A is negative semidefinite if and only if all the characteristic roots of A are non-
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positive.
5. A is indefinite if and only if A has positive as well as negative characteristic roots.

Definition 4.3.21. The inertia of a real symmetric matrix A ∈Mn(R) is a triple of integers
denoted by In(A) = (p,q,k), where p,q and k are the number of positive, negative and zero
characteristic roots of A respectively.

The inertia In(A), for symmetric A∈Mn(R), determines the geometric type of the quadratic
surface xTAx = c in the following sense. Since In(−A) = (q, p,k) if In(A) = (p,q,k), it
suffices to consider the cases c≥ 0 and p > 0. Excluding those inconsistent cases, we have
the following characterization of the solution sets for n = 2 and n = 3.

Table 4.1: Level surfaces for n = 2
In(A) = (p,q,k) c > 0 c = 0

(2,0,0) Ellipse A point
(1,1,0) Hyperbola Pair of lines
(1,0,1) Two parallel lines A line

Table 4.2: Level surfaces for n = 3
In(A) = (p,q,k) c > 0 c = 0

(3,0,0) Ellipsoid A point
(2,1,0) Hyperboloid with one sheet A cone
(2,0,1) Elliptical cylinder A line
(1,1,1) Hyperbolic cylinder Pair of intersecting planes
(1,2,0) Hyperboloid with two sheets A cone
(1,0,2) Parabolic cylinder A plane

4.3.1 Some standard conics and quadratic surfaces

We recall below some standard quadratic curves and quadratic surfaces along with their
equations.

• Circle:

x2 + y2 = 1.

{(x,y) ∈ R2 : x2 + y2 = 1}.

• Cylinder:

{(x,y,z) ∈ R3 : x2 + y2 = 1}.
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• Hyperbolic cylinder:

{(x,y,z) ∈ R3 : x2− y2 = 1}.

−4 −2 0 2 4
−2

0

2−2

0

2

x
y

z

Figure 4.1: Hyperbolic cylinder

• Elliptical cylinder:{
(x,y,z) ∈ R3 :

x2

a2 +
y2

b2 = 1
}
.

−4
−2

0
2

4
−2

0

2−2
0
2

x
y

z

Figure 4.2: Elliptic cylinder

• Hyperboloid with 1 sheet:

x2 + y2− z2 = 1.

x2

a2 +
y2

b2 −
z2

c2 = 1.

−2 0
2 −2

0
2

−2

0

2

x
y

z

Figure 4.3: Hyperboloid with 1 sheet
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• Hyperboloid with 2 sheets:

x2− y2− z2 = 1.

x2

a2 −
y2

b2 −
z2

c2 = 1. −2
0

2 −2
0

2

−2

0

2

x
y

z

Figure 4.4: Hyperboloid with 2 sheets

• Ellipsoid:

x2

a2 +
y2

b2 +
z2

c2 = 1.

Figure 4.5: Ellipsoid

• Cone:
x2 + y2 = z2.

ax2 +by2 = z2 (a and b are positive).

−2

2−2

2

−2

2

Figure 4.6: Cone
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• Paraboloid:

z = x2 + y2.

z = ax2 +by2 (a,b > 0).

−2 0
2 −2

0
2

0

5

10

Figure 4.7: Paraboloid

• Hyperbolic Paraboloid:

z = x2− y2.

−4 −2 0 2 4 −5

0

5−20

0

20

Figure 4.8: Hyperbolic Paraboloid

• Parabolic cylinder:

{(x,y,z) ∈ R3 : y = x2}.

−2
0

2 −2
0

2
0

2

4

x
y

z

Figure 4.9: Parabolic cylinder
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• Hyperbola:

x2− y2 = 1.

{(x,y) ∈ R2 : x2− y2 = 1}.
x2

a2 −
y2

b2 = 1.

• Ellipse:
x2

a2 +
y2

b2 = 1.

• Parabola:
y2 = 4ax.

• Pair of intersecting planes:

x2− y2 = 0 in R3.

• Pair of intersecting lines:

ax2−by2 = 0 (a,b > 0) in R2.

The intersecting lines are

√
ax−

√
by = 0 and

√
ax+

√
by = 0.

• Pair of parallel lines:

x2 = c (c > 0).

The parallel lines are

x =±
√

c.

Example 4.3.22. Identify the surface given by 11x2 +6xy+19y2 = 80. Also convert it to the
standard form by finding the orthogonal matrix P.

Solution. The symmetric matrix associated with above quadratic form is

A =

(
11 3
3 19

)
.

We find the characteristic roots of A. We know that characteristic roots of A are the solutions
of det(A−λ I) = 0. Now,

det(A−λ I) = 0

⇒ det
((

11 3
3 19

)
−
(

λ 0
0 λ

))
= 0

⇒
∣∣∣∣11−λ 3

3 19−λ

∣∣∣∣= 0

⇒ (11−λ )(19−λ )−9 = 0

⇒ λ
2−30λ +200 = 0

⇒ (λ −10)(λ −20) = 0

Therefore 10 and 20 are the characteristic roots of A. Let
(

x
y

)
be a characteristic vector of A

corresponding to the characteristic root 10. Then(
11 3
3 19

)(
x
y

)
= 10

(
x
y

)
.

∴ 11x+3y = 10x and 3x+19y = 10y.

i.e., x+ 3y = 0. Taking y = 1, we have x = −3. Therefore, 1√
10

(
−3
1

)
=

(
− 3√

10
1√
10

)
is an

characteristic vector of A corresponding to the characteristic root 10.
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Similarly for λ = 20, (
11 3
3 19

)(
x
y

)
= 20

(
x
y

)
.

∴ 11x+3y = 20x and 3x+19y = 20y.

i.e., 3x− y = 0. Taking x = 1, we have y = 3. Hence,

(
1√
10
3√
10

)
is an characteristic vector of A

corresponding to the characteristic root 20. Therefore, the orthogonal matrix P (i.e., PPT = I)
is

P =

(
− 3√

10
1√
10

1√
10

3√
10

)
.

Now, let (
x
y

)
= P

(
x′

y′

)
=

(
− 3√

10
1√
10

1√
10

3√
10

)(
x′

y′

)
, i.e.,

x =− 3√
10

x′+
1√
10

y′ and y =
1√
10

x′− 3√
10

y′.

Substituting these values in the given equation 11x2 + 6xy + 19y2 = 80, we get 10x′2 +
20y′2 = 80 or x′2 +2y′2 = 8. Therefore, the standard form of the given quadratic equation is
x′2 +2y′2 = 8 and it is an ellipse.

• Ellipse: x2

a2 +
y2

b2 = 1.
Here, in this example, we have

x′2

(2
√

2)2
+

y′2

22 = 1.

Figure 4.10: An ellipse

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Example 4.3.23. Reduce the quadratic form x2
1− x2

3−4x1x2 +4x2x3 into standard form by
finding an orthogonal matrix P. Hence determine the surface given by x2

1− x2
3− 4x1x2 +

4x2x3 = 1.

Solution. The matrix associated with the above quadratic form is A =

 1 −2 0
−2 0 2
0 2 −1

.

Check that the roots of det(A−λ I) = 0 are 3, −3 and 0 and characteristic vectors correspond-

ing to these characteristic roots are

−2
3
2
3
1
3

,

−1
3
−2
3
2
3

 and

2
3
1
3
2
3

 respectively.

Hence, the required orthogonal matrix is

P =

−2
3

−1
3

2
3

2
3

−2
3

1
3

1
3

2
3

2
3

 .
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Let

x1
x2
x3

= P

y1
y2
y3

, i.e., x1 =
−2
3 y1− 1

3y2+
2
3y3, x2 =

2
3y1− 2

3y2+
1
3y3 and x3 =

1
3y1+

2
3y2+

2
3y3. Substituting these values in the quadratic form we get 3y2

1−3y2
2. Therefore, the standard

form for the quadratic equation is 3y2
1−3y2

2 = 1 and it is a hyperbolic cylinder. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Example 4.3.24. Describe the conic C whose equation is 5x2−4xy+8y2 +4
√

5x−16
√

5y+
4 = 0.

Solution. The matrix associated with the above quadratic equation is A =

(
5 −2
−2 8

)
. Check

that 4 and 9 are the characteristic roots of A and the corresponding characteristic vectors are(
2√
5

1√
5

)
and

(−1√
5

2√
5

)
. Hence, the orthogonal matrix

P =

(
2√
5
−1√

5
1√
5

2√
5

)
.

Let
(

x′

y′

)
= P

(
x
y

)
, i.e., x′ = 2√

5
x− 1√

5
y and y′ = 1√

5
x+ 2√

5
y. Substituting it in the given

quadratic form we get 4x′2 + 9y′2 + 4
√

5( 2√
5
x′− 1√

5
y′)− 16

√
5( 1√

5
x′+ 2√

5
y′)+ 4 = 0, i.e.,

4x′2 +9y′2−8x′−36y′+4 = 0. Therefore, 4(x′−1)2 +9(y′−2)2 = 36 , which is again an
ellipse. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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