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Topological Spaces

1.1 Topological spaces

Definition 1.1.1: Topological space

Let X be a non-empty set and T be a collection of subsets of X satisfying the following
properties:

1. /0 and X are in T.
2. The union of elements of any subcollection of T is in T.
3. The intersection of any finite subcollection of elements of T is in T.
Then T is called a topology on X and the pair (X ,T) is called a topological space.

Thus, a topological space is a pair (X ,T). However, at times we just say that X is a
topological space without mentioning the topology T on it whenever there is no scope of
confusion or ambiguity.

Definition 1.1.2: Open sets

Let (X ,T) be a topological space. We say that a subset U of X is an open set, if belongs to
the collection T.

Thus, a topological space is a non-empty set X together with a collection of subsets of X
which are called open sets such that /0 and X are open, arbitrary union of open subsets of X is
open, and finite intersection of open subsets of X is open.

Example 1.1.3. Let X = {a,b,c} be a set of three elements. The following are some of the
topologies defined on X which are pictorially demonstrated below.

(a) T1 = { /0,X} (Figure 1.1a1.1a).
(b) T2 = { /0,{a},{a,b},X} (Figure 1.1b1.1b).

9



10 §1.1. Topological spaces

(c) T3 = { /0,{b},{a,b},{b,c},X} (Figure 1.1c1.1c).
(d) T4 = { /0,{b},X} (Figure 1.1d1.1d).
(e) T5 = { /0,{a},{b,c},X} (Figure 1.1e1.1e).
(f) T6 = { /0,{b},{c},{a,b},{b,c},X} (Figure 1.1f1.1f).
(g) T7 = { /0,{a,b},X} (Figure 1.1g1.1g).
(h) T8 = { /0,{a},{b},{a,b},X} (Figure 1.1h1.1h).
(i) T9 = { /0,{a},{b},{c},{a,b},{b,c},{a,c},X} (Figure 1.1i1.1i).

a

b

c

(a) T1

a

b

c

(b) T2

a

b

c

(c) T3

a

c

b

(d) T4

b

c

a

(e) T5

a b

c

(f) T6

a

b

c

(g) T7

c

a
b

(h) T8

a

b

c

(i) T9

Figure 1.1: Some topologies on the set X = {a,b,c}

�

Remark 1.1.4. From Example 1.1.31.1.3, it can be seen that even a set with just three elements has
many different topologies on it. Note that (X ,Ti), i = 1,2, . . . ,9 are all different topological
spaces though the underlying set X is the same. However, not every collection of subsets of X
is a topology on X . For instance, the collections demonstrated below fail to be topology on X .

The collection { /0,{a},{b},X} is not a topology on X as {a},{b} belong to the collection
but their union {a,b} is not in the collection.

Also, the collection { /0,{a,b},{b,c},X} is not a topology on X as {a,b} and {b,c} belong
to the collection but their intersection {b} is not in the collection.

PS01CMTH52 2022-23
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a

b

c

a

b

c

Figure 1.2: Not topologies on X = {a,b,c}

From the Definition 1.1.11.1.1, it is clear that if either /0 or X is not in the collection T, then it
cannot be a topology on X . However, taking just /0 and X in the collection trivially forms a
topology on X as given in the following example.

Example 1.1.5. Let X be any non-empty set. The collection containing only X and /0 is a
topology on X called the indiscrete topology or the trivial topology.

The collection of all subsets of X , i.e. P(X), the power set of X is a topology on X and it is
called the discrete topology. �

Exercise 1.1
Take a set X with four or five elements, say X = {a,b,c,d,e}. Construct at least five examples

of different topologies on X and two examples of collections which fail to be a topology on X .

Exercise 1.2
Let X = {a,b,c}.

1. List all the topologies on X containing {a}.
2. Find a topology on X in which every singleton set is open. Is it the discrete topology?

Example 1.1.6. Let X be a non-empty set. Let T f be the collection of all subsets U of X such
that either X rU is finite or whole of X , i.e.

T f = {U ⊂ X |U = /0 or X rU is finite}.

Then T f is a topology on X called the cofinite topology or the finite complement topology. �

Solution. • First we show that /0,X ∈ T f .

From the definition of T f it is clear that /0 ∈ T f . Also, X \X = /0, which is a finite set and
hence X ∈ T f .

• Next, we show that arbitrary union of elements of T f is in T f .

Let {Uα |α ∈Λ} be a collection of nonempty elements of T f . (Why did we take nonempty
elements in the collection?). We want to show that

⋃
α

Uα ∈ T f . Clearly
⋃
α

Uα ⊂ X . Now,

X r
⋃
α

Uα =
⋂
α

(X rUα).

Dr. Jay Mehta jay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edu
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12 §1.1. Topological spaces

Since Uα ∈ T f for all α , each (X rUα) is finite. Therefore X r
⋃
α

Uα is finite and hence⋃
α

Uα ∈ T f .

• Finally, we show that intersection of finite number of members of T f is in T f . Let

U1,U2, . . . ,Un be nonempty elements of T f . We want to show that
n⋂

i=1
Ui ∈ T f . Clearly

n⋂
i=1

Ui ⊂ X . Now,

X r
n⋂

i=1

Ui =
n⋃

i=1

(X rUi).

Since each Ui ∈ T f , each (X rUi) is finite and finite union of finite sets is finite. Therefore

X r
n⋂

i=1
Ui is finite and hence

n⋂
i=1

Ui ∈ T f .

Hence, T f is a topology on X . �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Similarly one can show (Verify!) that the following is a topological space.

Example 1.1.7. Let X be any non-empty set. Let Tc be the collection of all subsets U of X
such that either X rU is countable or all of X , i.e.

Tc = {U ⊂ X |U = /0 or X rU is countable}.

Then Tc is a topology on X called the cocountable topology. �

Exercise 1.3
Let X be a non-empty set. Check which the following collections of subsets of X forms a

topology on X .

1. Tc = {U ⊂ X |U = /0 or X rU is countable}.
2. T∞ = {U ⊂ X | X rU is infinite}∪{ /0,X}.
3. T = {U ⊂ X |U is finite}.
4. T = {U ⊂ X |U is infinite}.
5. Let p∈ X be a fixed element. Tp = {U ⊂ X |U = /0 or p∈U}. This is in fact a topology

on X called VIP (Very Important Point) topology .

6. Let p ∈ X be a fixed element. T = {U ⊂ X |U = X or p /∈U}.
7. Let A⊂ X be a fixed nonempty subset of X . TA = {U ⊂ X |U = /0 or A⊂U}. When is

this discrete?

8. Let A⊂ X be a fixed nonempty subset of X . T = {U ⊂ X |U = X or U ⊂ A}. Can we
take A to be empty set?

9. Let A⊂ X be a fixed nonempty subset of X . T = {U ⊂ X |U = X or A 6⊂U}.

Exercise 1.4
Show that the collection T = {U ⊂ R |U = R or U ∩Q= /0} is a topology on R. What if we

replace Q by RrQ?

PS01CMTH52 2022-23



§1.2. Basis for a Topology 13

Exercise 1.5
Let X be any set, (Y,T′) be a topological space and f : X → Y be a function. Show that

T = { f−1(U)⊂ X |U ∈ T′}

is a topology on X .

Exercise 1.6
Let T1 and T2 be two topologies on a set X . Are T1∩T2 and T1∪T2 topologies on X? Justify.

Exercise 1.7
Let {Tα | α ∈ Λ} be a family of topologies on a set X . Show that

⋂
α∈Λ

Tα is a topology on X .

Exercise 1.8
Let {Tα | α ∈ Λ} be a family of topologies on a set X . Show that there is a unique smallest

topology on X containing each Tα . Also show that there is a unique largest topology on X
contained in each Tα .

Exercise 1.9
Show that the cofinite topology on a set X is same as the discrete topology if and only if X is

finite. Similarly, show that the cocountable topology and the discrete topology on X coincide if
and only if X is countable.

Definition 1.1.8

Suppose T and T′ are two topologies on a set X . If T′ ⊃ T, then we say that T′ is finer or
stronger than T. We also say that T is coarser or weaker than T′.

If T′ properly contains T, we say that T′ is strictly finer than T or T is strictly coarser
(weaker) than T′.

We say that the topologies T′ and T are comparable if either T′ ⊂ T or T ⊂ T′.

Exercise 1.10
In Example 1.1.31.1.3, examine which topologies are comparable. For every pair of comparable

topologies investigate which is weaker and which is stronger? Which is the strongest and the
weakest of all topologies listed on the set X = {a,b,c} in that example?

1.2 Basis for a Topology

Unlike examples considered in the above section, at times, it is not convenient to specify the
topology explicitly in an efficient way. Sometimes there is a large number of open sets and
hence specifying topology becomes difficult. In such situations, we specify a smaller collection
of subsets of X and define topology in terms of this subcollection called basis of the topology.

Dr. Jay Mehta jay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edu

mailto:jay_mehta@spuvvn.edu
jay_mehta@spuvvn.edu
jay_mehta@spuvvn.edu


14 §1.2. Basis for a Topology

Definition 1.2.1: Basis

Let X be a nonempty set. A collection B of subsets of X is called a basis for a topology
on X if

(1) For each x ∈ X , there exits B ∈B such that x ∈ B.
(2) If x∈ B1∩B2, where B1,B2 ∈B, then there exists B3 ∈B such that x∈ B3⊂ B1∩B2.

As mentioned above, the topology on X can be specified in terms of basis and it is given as
follows.

Definition 1.2.2: Topology generated by a basis

Let X be a nonempty set and B be a collection of subsets of X satisfying the properties in
Definition 1.2.11.2.1. Then the topology T generated by B is defined as:

A subset U of X is said to be open in X (i.e. U ∈ T) if for each x ∈U , there exists some
B ∈B such that x ∈ B⊂U .

Note that every element of basis itself is a member of T i.e. B⊂ T. We now verify that the
collection T (generated by B) defined in Definition 1.2.21.2.2 is in fact a topology on X .

Proposition 1.2.3

Let X be a nonempty set and B be a collection of subsets of X satisfying the properties of
basis given in Definition 1.2.11.2.1. Then the collection

T = {U ⊂ X | for each x ∈U, there exits B ∈B such that x ∈ B⊂U}

forms a topology on X .

Proof. • First we show that /0,X ∈ T.

/0 satisfies the condition in the definition of T vacuously and hence /0 ∈ T. Let x ∈ X . By
property (1)(1) of basis, there exits B ∈B such that x ∈ B⊂ X . Thus, X ∈ T.

• Next we show that arbitrary union of members of T is in T.

Let {Uα}α∈Λ be a collection of members of T. Then we have to show that U =
⋃
α

Uα ∈ T.

Let x ∈U . Then x ∈Uα for some α . Since Uα is open in X (i.e. Uα ∈ T), there exists a
basis element B ∈B such that x ∈ B⊂Uα . But then x ∈ B⊂U and hence U ∈ T.

• Now we show that intersection of finitely many members of T is in T. Let U1,U2, . . . ,Un ∈
T. We want to show that

n⋂
i=1

Ui ∈ T. First we show this for two elements of T.

Let U1 and U2 be elements of T. Then we show that U1∩U2 ∈ T. Let x ∈U1∩U2. Since
U1 ∈ T, there exists B1 ∈B such that x ∈ B1 ⊂U1. Similarly, since U2 ∈ T, there exists
B2 ∈ B such that x ∈ B2 ⊂U2. By property (2)(2) of basis, there exists B3 ∈ B such that
x ∈ B3 ⊂ B1∩B2. Then x ∈ B3 ⊂U1∩U2 and hence U1∩U2 ∈ T.

PS01CMTH52 2022-23
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Figure 1.3: Topology generated by basis

Finally, by induction, we show that U1 ∩ ·· · ∩Un ∈ T. For n = 1 the result is trivial
Assume that the result is true for n−1. Now,

U1∩·· ·∩Un = (U1∩·· ·∩Un−1)∩Un.

By induction hypothesis, U1 ∩ ·· · ∩Un−1 ∈ T. Also since Un ∈ T and since we have
proved the result for n = 2 above, it follows that U1∩·· ·∩Un ∈ T.

Hence, T is a topology on X . �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Let us consider some examples of bases.

Example 1.2.4. Let B be the collection of all circular regions (interior of circles) in the plane
R2. Then B satisfies both the conditions of basis in Definition 1.2.11.2.1. Condition (2)(2) is shown
in the figure below, i.e. if x ∈ R2 is in the intersection of two circular regions B1 and B2, then
there is a small circular region B3 containing x which is contained in B1∩B2.

Similarly, let B′ be the collection of all rectangular regions (interior of rectangles) in the
plane R2, where the rectangles have sides parallel to the axes. Then B′ is a basis for a topology
on R2 as it satisfies both the conditions of basis. Note that in this case, condition (2)(2) is trivially
satisfied as intersection of two rectangular regions is also a rectangular region, i.e. we can take
B′3 = B′1∩B′2.

Both the above examples are illustrated in the figure given below.

x

B3 B2

B1

x

B′2

B′1

Figure 1.4: Examples of Bases in R2

�

Dr. Jay Mehta jay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edu
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16 §1.2. Basis for a Topology

Example 1.2.5. Let X be a nonempty set. Then the collection of all one-point (i.e. singleton)
subsets of X is a basis for the discrete topology on X . �

The following lemma yields another way of describing topology T generated by a basis B
which states that an open set (i.e. an element of T) is the union of basis elements.

Lemma 1.2.6

Let X be a set and B a basis for a topology T on X . Then T is the collection of all unions
of elements of B.

Proof. Let T′ be the collection of of all unions of members of B. We want to show that T = T′,
where T is the topology generated by the basis B.

Let U ∈ T and x ∈U . Since B is a basis for the topology T, there exists a Bx ∈B such that
x ∈ Bx ⊂U. Therefore,

U =
⋃

x∈U

{x} ⊆
⋃

x∈U

Bx ⊆U

Thus U =
⋃

x∈U
Bx and so U ∈ T′. Note that, if U = /0, then U can be written as the union of

empty family of members of B, i.e. /0 =
⋃

α∈ /0
Bα ∈ T′. Therefore, T ⊂ T′.

Conversely, let U ∈ T′. Then U =
⋃
α

Bα , where Bα ∈B. Since (by the definition of basis)

B⊂ T, we have Bα ∈ T for all α . Since T is a topology, U =
⋃
α

Bα ∈ T. Therefore T′ ⊂ T. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Remark 1.2.7. 1. What we proved in the above lemma is that every open set U in X can be
written as a union of elements of basis and vice versa.

Thus, in the case where the topology T on X cannot be specified efficiently, one can
describe the basis B for the topology T and then the open sets (i.e. members of T) in X
can be described as all possible unions of members of the basis B.

2. We have described two different ways of how a topology can be generated from a given
basis. What about the converse? Suppose we start with a topological space (X ,T). Can
we describe a basis which generates the given topology T on X?

Recall Definition 1.2.21.2.2 of how a topology T is generated by a basis B. We say that a
subset U of X is open if for each x ∈U , there exists some B ∈ B such that x ∈ B ⊂U .
Now, suppose we have a collection C of open subsets of X satisfying the same condition
as B stated above. Will C be a basis for the topology T on X? The answer is affirmative
and this is precisely proved in the following lemma.

Lemma 1.2.8

Let (X ,T) be a topological space. Suppose that C is a collection of open sets of X such that
for each open set U of X and each x ∈U , there is an element C ∈ C such that x ∈C ⊂U .
Then C is a basis for the topology T on X .
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§1.2. Basis for a Topology 17

Proof. First we show that C is a basis for some topology on X , i.e. C satisfies the conditions of
basis.

1. Let x ∈ X , since X is open, by hypothesis there exists an element C of C such that
x ∈C ⊂ X .

2. Let x ∈C1∩C2, where C1,C2 ∈ C. Then C1 and C2 are open sets of X and hence C1∩C2
is also open. Therefore, by hypothesis there exists C3 ∈ C such that x ∈C3 ⊂C1∩C2.

Thus, C is a basis for some topology on X . Let T′ be the topology on X generated by C. We
now show that T′ = T.

• Let U ∈ T and x ∈U . By the hypothesis, there exists C ∈ C such that x ∈C ⊂U . Then
(by Definition 1.2.21.2.2) it follows that U ∈ T′. Thus, T ⊂ T′.

• Let U ∈ T′. Since T′ is the topology generated by basis C, by previous lemma, U =
⋃
α

Cα ,

where Cα ∈ C. By definition of C, Cα are open subsets of X , i.e. Cα ∈ T for all α .
Therefore, U ∈ T and hence T′ ⊂ T.

Hence, C is a basis for topology T on X . �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Exercise 1.11
Let (X ,T) be a topological space. Let C be a collection of open sets of X such that every

U ∈ T can be written as a union of elements of C. Show that C is a basis for topology T on X .
The following result helps to determine which topology is finer or weaker on a set when the

topologies are generated by the bases and are comparable.

Lemma 1.2.9

Let B and B′ be bases for the topologies T and T′ respectively on a set X . Then the
following are equivalent.

(1) T′ is finer than T, i.e. T ⊂ T′.
(2) For each x ∈ X and each basis element B ∈B containing x, there is a basis element

B′ ∈B′ such that x ∈ B′ ⊂ B.

Proof. (1)(1)⇒ (2)(2). Suppose T′ is finer than T, i.e. T′ ⊃ T.
Let x ∈ X and x ∈ B for some B ∈B. By definition of the basis, B⊂ T and T ⊂ T′. Therefore,
we have B ∈ T′. Since T′ is generated by the basis B′, there exists some B′ ∈ B′ such that
x ∈ B′ ⊂ B.

(2)(2)⇒ (1)(1). Assume that (2)(2) holds. We want to show that T ⊂ T′.
Let U ∈ T and let x ∈U . Since B generates the topology T, there exists some B ∈B such that
x ∈ B⊂U . By Condition (2)(2), there exists B′ ∈B′ such that x ∈ B′ ⊂ B. Therefore, x ∈ B′ ⊂U
and hence by definition, U ∈ T′. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Example 1.2.10. Let B be the collection of all the circular regions (interior of circles) in the
plane R2 and let B′ be the collection of all rectangular regions (interior of rectangles) in the
plane. In Example 1.2.41.2.4, we have seen that both B and B′ are bases for some topology on R2.
In fact, they generate the same topology which follows from above lemma and is illustrated in
the following figure.
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18 §1.2. Basis for a Topology

x

B

B′

(a) T′ ⊂ T

x B′ B

(b) T ⊂ T′

Figure 1.5: The same topology generated by B and B′ on R2

�

Now we define some interesting topologies on the real line R.

Definition 1.2.11: Usual or Standard topology

Let B= {(a,b) | a,b ∈ R,a < b}. Then B is basis for a topology on R which is called the
usual or the standard topology on R.

Whenever we consider R as a topological space, we assume it with the usual topology unless
specified. We now verify that B is a basis.

Example 1.2.12. Let B be the collection of all open intervals in the real line,

(a,b) = {x | a < x < b}.

Then B is a basis for the standard topology on R. �

Solution. We verify that B satisfies both the properties given in Definition 1.2.11.2.1.
1. Let x ∈ R, then x ∈ (x−1,x+1) and (x−1,x+1) ∈B.
2. Let x ∈ B1∩B2, where B1 = (a,b),B2 = (c,d) ∈B. Then we have to find some B3 ∈B

such that x ∈ B3 ⊂ B1∩B2.

a c x b d
(a,b)∩ (c,d) = (c,b)(( ) )

a c x d b
(a,b)∩ (c,d) = (c,d)(( ) )

c a x b d
(a,b)∩ (c,d) = (a,b)(( ) )

c a x d b
(a,b)∩ (c,d) = (a,d)(( ) )

Figure 1.6: Intersection of two intervals.

Take e = max{a,c} and f = min{b,d}. Then a,c ≤ e < x < f ≤ b,d. Thus, taking
B3 = (e, f ), we have

x ∈ (e, f )⊂ (a,b)∩ (c,d) = B1∩B2.

Hence, B is a basis. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Definition 1.2.13: Lower limit and Upper limit topology

Let B` = {[a,b) | a,b ∈R, a < b}. Then B` is basis for a topology on R and the topology
generated by B` is called the lower limit topology .

When R is considered with the lower limit topology, we denote it by R`.
Let Bu be the collection of half-open intervals of the form

(a,b] = {x | a < x≤ b}.

That is, Bu = {(a,b] | a,b ∈R, a < b}. Then the topology on R generated by Bu is called
the upper limit topology.

When R is considered with the upper limit topology, we denote it by Ru.

Definition 1.2.14: K-topology

Let K =
{1

n | n ∈ N
}

. Let BK be the collection of all open intervals (a,b), along with the
sets of the form (a,b)rK. The topology generated by BK is called the K-topology on R.

When R is considered with the K-topology, we denote it by RK .

Exercise 1.12
Show that B`, Bu, and BK are bases for R`, Ru, and RK respectively.

Exercise 1.13
Show that the intersection of two basis elements is either empty or another basis element.

The following lemma gives some relations between the topologies we saw above.

Lemma 1.2.15

The topologies of R` and RK are both strictly finer than the standard topology on R, but
are not comparable with one another.

Proof. Let T, T`, and TK be the topologies of R, R`, and RK respectively, where T is standard
topology on R with basis B= {(a,b) | a,b ∈ R, a < b}.

Let (a,b) ∈B and x ∈ (a,b). Then [x,b) ∈B` and we have

x ∈ [x,b)⊂ (a,b).

Therefore, by Lemma 1.2.91.2.9, we have T ⊂ T`.On the other hand, let [x,d) be a basis element of
R` containing x. Then there does not exists (a,b) such that x ∈ (a,b)⊂ [x,d) (Verify!). Hence,
T` is strictly finer than T.

Similarly, let (a,b) be a basis element for T and x ∈ (a,b). Then the same element (a,b) is
in TK and we have

x ∈ (a,b)⊆ (a,b).
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20 §1.2. Basis for a Topology

Therefore, T ⊂ TK . On the other hand, let B = (−1,1)rK ∈ TK but not in T because there is
no open interval (a,b) such that 0 ∈ (a,b)⊂ B. Therefore, TK is strictly finer than T.

Now, we show that R` and RK are not comparable. For this, first let [x,b) be a basis
element for T` containing x. Then there does not exists any basis element B for TK such that
x ∈ B⊂ [x,b). Therefore, T` 6⊂ TK .

On the other hand, B = (−1,1)rK be the basis element containing 0 for TK . Then there
does not exists any interval of the form [a,b) in B` such that 0 ∈ [a,b)⊂ B. Therefore, T` 6⊂ TK .
Hence, R` and TK are not comparable topological spaces. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

1.2.1 Subbasis

We have seen that sometimes instead of specifying the topology T directly, we describe a
smaller collection B called basis and the topology generated by the basis is the the collection of
arbitrary unions of the members of B. It is possible to specify the topology by even a smaller
subcollection called subbasis for the topology. More precisely, it is defined as follows.

Definition 1.2.16: Subbasis

Let X be a nonempty set. A collection S of subsets of X is called a subbasis for a topology
on X if the union of elements of S is equal to X , i.e.

⋃
S∈S

S = X .

The topology T generated by the subbasis S is defined to be the collection T of all
unions of finite intersections of members of S.

We show that the collection T defined by subbasis by taking all unions of finite intersections
of elements of S is a topology on X . Let B be the collection of finite intersections of elements
of S. Then it suffices to show that B is a basis for for some topology.

Proposition 1.2.17

Let X be a set and S be a subbasis for a topology on X . Let

B= {B⊂ X | B is intersection of finitely many elements of S}.

Then B is a basis for a topology on X .

Proof. Observe that S⊂ B as every element S ∈ S can be seen as (a finite) intersection with
itself, S = S∩S. Hence, S⊂B.

Now we verify that B, defined above, is a basis.
1. Let x ∈ X . Then by definition of subbasis, x ∈

⋃
S∈S

S. Therefore there exists some S ∈ S

such that x ∈ S. But then S ∈ S ⊂ B and x ∈ S. Thus, the first condition of basis is
satisfied.

2. Let B1,B2 ∈B. Then

B1 = S1∩·· ·∩Sn and B2 = S′1∩·· ·∩S′m

for some m,n ∈ N and Si,S′j ∈ S, where i = 1,2, . . . ,n and j = 1,2, . . . ,m. Then

B1∩B2 = (S1∩·· ·∩Sn)∩ (S′1∩·· ·∩S′m)
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§1.2. Basis for a Topology 21

is also a finite intersection of members of S and hence B1 ∩B2 ∈ B. Therefore, for
x ∈ B1∩B2 taking B3 = B1∩B2 ∈B, we have

x ∈ B3 ⊆ B1∩B2.

Hence, B is a basis for a topology on X . �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Remark 1.2.18. Summarizing the ways of specifying a topology on a set we have seen so far,
we can say that a topology T on a set X can be described in three ways.

First is specifying the collection T itself explicitly. The second method is to specify a smaller
collection B, called basis for the topology T, from which T is generated by taking arbitrary
union of members of B. Finally, we saw that we can specify an even smaller subcollection S,
called the subbasis for the topology T on X , from which T can be generated by taking arbitrary
unions of finite intersections of members of S. Also, the basis B for T can be defined from S as
finite intersections of members of S.

Exercise 1.14
Give an example with proper justification to show that arbitrary intersection of open sets need

not be open in the following topologies on R.
1. Tc = cocountable topology
2. T` = lower (or upper) limit topology
3. T = usual topology

Exercise 1.15
Let T = T`∩Tu. Show that T is the usual topology on R.

Exercise 1.16
Let X be a set and B be a basis for a topology on X . Show that the topology generated by

the basis B is the smallest (weakest) topology containing B and it is the intersection of all
topologies on X containing B.

Prove the same for a subbasis S.

Exercise 1.17
Let B1 = {(a,∞) | a ∈ R}. Show that B1 is a topology on R. Will B1 be still a basis if we

replace “a ∈ R” by “a ∈ Z” or “a ∈Q” or “a 6∈ Z” or “a 6∈Q”. If so is the case, then will any
of them generate the same topology?

Exercise 1.18
Check which of the following collections of subsets of R forms a basis for a topology on R. If

yes, do they generate the usual topology on R?
1. B2 = {B⊂ R | B∩Q 6= /0}.
2. B3 = {(a,b) | a,b ∈Q, a < b}.
3. B4 = {(−n,n) | n ∈ N}.
4. B5 = {(0,n) | n ∈ N}∪{(−n,0) | n ∈ N}.

Exercise 1.19
Consider the following topologies on R and compare them with each other. In each of the

cases, determine which of it contains any of the others, if they are comparable.
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22 §1.3. Product Topology on X×Y

1. T = standard topology
2. TK = K-topology
3. T f = cofinite topology
4. Tu = upper limit topology
5. T` = lower limit topology
6. Tc = cocountable topology
7. T′ having basis B′ = {(−∞,a) | a ∈ R}.

Exercise 1.20
Show that the collection

C= {[a,b) | a < b, a,b ∈Q}
is a basis for a topology on R which is different from the lower limit topology on R.

Exercise 1.21
Let X be a set. Show that the following are subbases for the discrete topology on X .

1. The collection of all subsets of X having exactly three elements, where |X | ≥ 4.
2. The collection of all countable subsets of X .
3. The collection of all finite subsets of X .

Exercise 1.22
Let X be a set. Show that the collection

S= {S⊂ X | X rS is singleton}

is a subbasis for the cofinite topology T f on X .

Exercise 1.23
Show that every topology is a basis and every basis is a subbasis.

1.3 Product Topology on X×Y

Let X and Y be two nonempty sets. Then their Cartesian product X×Y is defined as

X×Y = {(x,y) | x ∈ X , y ∈ Y}.

Now, suppose X and Y are topological spaces. The natural question would be can we define a
topology on X ×Y , making it a topological space, in terms of the topology on X and Y . The
answer is yes. We sure can define a topology on X×Y in the following way.

Definition 1.3.1: Product topology on X×Y

Let X and Y be topological spaces. Let B be the collection of all sets of the form U×V ,
where U is an open subset of X and V is an open subset of Y . Then B is a basis for a
topology on X ×Y and the topology generated by B is called the product topology on
X×Y .

We now verify that B defined above is a basis.
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Proposition 1.3.2

Let X and Y be topological spaces. Let

B= {U×V ⊂ X×Y |U is open in X , V is open in Y}.

Then the collection B is a basis for a topology on X×Y called the product topology.

Proof. We show that B satisfies both the conditions in Definition 1.2.11.2.1.
1. Since X is open in X and Y is open in Y , X×Y ∈B. Thereforethe first condition of basis

holds trivially.
2. The second conditions is also satisfied as the intersection of any two members of B is

also a member of B. For this, let U1×V1 and U2×V2 be members of B, where U1,U2
are open in X and V1,V2 are open in Y . Then U1∩U2 is open in X and V1∩V2 is open in
Y . Therefore,

(U1×V1)∩ (U2×V2) = (U1∩U2)× (V1∩V2) ∈B.

Hence, B is a basis. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Remark 1.3.3. Note that the collection B is a basis but not a topology itself. This is because
(U1×V1)∪ (U2×V2) cannot be written as U3×V3. That is, union of two basis elements is open
but it need not be a basis element, i.e. it might not be written as a product of open sets of X
and Y . This is pictorially shown in the following figure, where we can see that union of two
rectangles is not a rectangle.

X

Y

( )( )

(
(

)
)

︸ ︷︷ ︸
U1

︸ ︷︷ ︸
U2

︸
︷︷

︸

V2

︸
︷︷

︸

V1

Figure 1.7: Union of basic open sets

As seen above, given topologies on X and Y , we can specify the product topology on X×Y
by describing its basis in terms of topologies on X and Y . What if topologies on X and Y were
itself specified using some basis, can we still specify the basis for product topology on X×Y ?
In other words, suppose topologies on X and Y are generated by bases B and C respectively.
How do we specify basis for the product topology on X×Y in terms of B and C? The following
theorem gives an answer to this.
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Theorem 1.3.4

If B is a basis for the topology on X and C is a basis for the topology on Y , then the
collection

D= {B×C | B ∈B and C ∈ C}

is a basis for the product topology on X×Y .

Proof. Let W be an open subset of X ×Y and (x,y) ∈W . Then by definition of the product
topology, there exists a basis element U×V such that

(x,y) ∈U×V ⊂W,

where U is open in X and V is open in Y . Since B and C are bases for topology on X and
Y respectively, there exists B ∈ B and C ∈ C such that x ∈ B ⊂U and y ∈ C ⊂ V . Then by
definition, B×C ∈D and

(x,y) ∈ B×C ⊂W.

Therefore, by the Lemma 1.2.81.2.8, D is a basis for the product topology on X×Y . �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Example 1.3.5. We have seen the standard (i.e. the usual) topology on R. The product of
this topology with itself gives the product topology on R2. By Proposition 1.3.21.3.2, it has a basis
consisting of all product U ×V , where U,V open in R. Due to Theorem 1.3.41.3.4, we can give
even a smaller subcollection as its basis, which is given by products (a,b)× (c,d) of all open
intervals in R.

Each basis element for the product topology of R2 can be pictured as a rectangular region,
i.e. interior of a rectangle as seen in Example 1.2.41.2.4. Also, as seen in Example 1.2.101.2.10, the
basis consisting of all circular regions (i.e. interior of circular region or open balls) in R2 also
generates the (same) product topology on R2. �

We have seen that a topology on a set can be specified in three different ways. We can
specify the topology itself or a smaller subcollection called basis which generates the topology
or an even smaller subcollection called subbasis whose finite intersection generates the basis
for the topology. So far we have described the product topology on X×Y in terms of its basis.
Next, we shall do the same in terms of subbasis. For this, first we define certain maps on X×Y
called projections.

Definition 1.3.6: Projections

Let X and Y be two sets. Let π1 : X×Y → X be defined by

π1(x,y) = x

and let π2 : X×Y → Y be defined by

π2(x,y) = y.

The maps π1 and π2 are called the projections of X ×Y onto its first and second factor
respectively.
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Observe that projections are onto maps.

Theorem 1.3.7

Let X and Y be two sets. The collection

S= {π−1
1 (U) |U open in X}∪{π−1

2 (V ) |V open in Y}

is a subbasis for the product topology on X×Y .

X

Y

( )

(
)

U

π
−1
1 (U)

V

π
−

1
2

(V
)

U×V

Figure 1.8: U×V = π
−1
1 (U)∩π

−1
2 (V )

Proof. Since X is open in X and π
−1
1 (X) =X×Y , we have X×Y ∈ S. So, the union of elements

of S is X×Y . Hence, S is a subbasis for a topology on X×Y .
Now, we show that S generates the product topology on X ×Y . Let T denote the product

topology on X×Y and T′ denote the topology generated by S. We have to show that T = T′.
If U ⊂ X is open, then π

−1
1 (U) =U×Y is open in X×Y with respect to T′. Similarly, if V

is an open subset of Y , then π
−1
1 (V ) = X×V is open in X×Y . Thus, every element of S is an

element of T. Since T is a topology, the arbitrary unions of finite intersections of elements of S
also belong to T and so T′ ⊂ T.

On the other hand, let U×V be a basis element for the product topology T on X×Y . Then

U×V = π
−1
1 (U)∩π

−1
2 (V ).

Thus, U×V is a finite intersection of elements of S and so U×V ∈ T′. Therefore, T ⊂ T′. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Exercise 1.24
Let X1 = {1,2,3}, T1 = { /0,X1,{1},{1,2}}, X2 = {a,b,c}, and T2 = { /0,X2,{a,b},{b,c},{b}}.
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Determine the product topology on X1×X2, by listing the basis elements and by listing all the
open sets.

Exercise 1.25
Show that

1. Product of two discrete topological spaces is a discrete topological space.
2. Product of two indiscrete topological spaces is an indiscrete topological space.
3. Product of two cofinite topological spaces need not be a cofinite topological space.

1.4 The Subspace Topology

Let (X ,T) be a topological space and Y be some subset of X . We can make Y a topological
space by defining topology on Y in terms of the topology T on X . Such an inherited topology is
called the subspace topology. More precisely,

Definition 1.4.1: Subspace topology

Let X be a topological space with a topology T and let Y be a subset of X . Let

TY = {U ∩Y |U ∈ T}.

The collection TY is a topology on Y , called the subspace topology and Y is called a
subspace of X . Thus, the open sets of Y are all intersections of open sets of X with Y .

We now show that the above collection TY is in fact a topology on Y .

Proposition 1.4.2

Let (X ,T) be a topological space and Y ⊂ X . Then the collection

TY = {U ∩Y |U ∈ T}

is a topology on Y .

Proof. • Clearly /0,Y ∈ TY since /0,X ∈ T and /0 = /0∩Y and Y = X ∩Y .
• Let {Gα | α ∈ Λ} be a family of elements of TY . Then by the definition of TY , for every

α , there exits Uα ∈ T such that Gα =Uα ∩Y . Now,

⋃
α∈Λ

Gα =
⋃

α∈Λ

(Uα ∩Y ) =

(⋃
α∈Λ

Uα

)
∩Y.

Since T is a topology on X ,
⋃

α∈Λ

Uα ∈ T. Therefore, it follows that
⋃

α∈Λ

Gα ∈ TY . Thus,

TY is closed under arbitrary union.
• Let G1,G2, . . . ,Gn ∈ TY . Then there exist U1,U2, . . . ,Un ∈ T such that Gi =Ui∩Y for all

i = 1,2, . . . ,n. Also,
n⋂

i=1

Gi =
n⋂

i=1

(Ui∩Y ) =

(
n⋂

i=1

Ui

)
∩Y.
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Since T is a topology on X ,
n⋂

i=1
Ui ∈ T. Therefore, it follows that

n⋂
i=1

Gi ∈ TY . Thus, TY is

closed under finite intersection.
Hence, TY is a topology on Y . �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Thus, the elements of topology on Y are obtained as intersection of elements in the topology
on X with Y . The same is true for the basis too, i.e. given a basis B for a topology T on X ,
the elements of the basis for the subspace topology TY on Y are obtained as intersection of
elements of B with Y . We have the following lemma.

Lemma 1.4.3

Let X be a topological space and Y be a subset of X . If B is a basis for the topology of X ,
then the collection

BY = {B∩Y | B ∈B}

is a basis for the subspace topology on Y .

Proof. Let G be a subset in Y which is open in the subspace topology on Y and y ∈ G. Then
there exists an open subset U of X such that G =U ∩Y . Now, y ∈U ∩Y and so there exists
B ∈B such that y ∈ B⊂U . Therefore,

y ∈ B∩Y ⊂U ∩Y = G,

where B∩Y ∈ BY . Hence, by the Lemma 1.2.81.2.8, BY is a basis for the subspace topology on
Y . �
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Given a topological space X and its subspace Y , when we use the term “an open set”, we
have to be more specific in the context that is in the topology of Y or in the topology of X . Thus,
if Y is a subspace of X , we shall use the term a set U is open in Y if it belongs to the topology
of Y and we say that U is open in X if U belongs to the topology on X .

It is not always true that a set which is open in (the subspace topology on) Y is also open in
X . Let us consider couple of examples of the subspace topology to understand this.

Example 1.4.4. Let X = R with standard topology and Y = [0,1] be subspace of R with the
subspace topology. The basis elements of the subspace topology on Y are of the form (a,b)∩Y ,
where (a,b) is an open interval (basis element) in R. Such a basis element is one of the
following type:

(a,b)∩Y =


(a,b) if a and b are in Y,
[0,b) if only b is in Y,
(a,1] if only a is in Y,
Y or /0 if neither a nor b is in Y.

By definition, each of the above sets is open in Y . Note that the sets of the type [0,b) and (a,1]
are not open in X = R as they cannot be written as union of basis elements (open intervals) of
R with usual topology. �

Example 1.4.5. Consider R with the standard topology and let Y = [0,1)∪{2} be the subset
of R with the subspace topology. Then the set {2} is open in Y as it is the intersection of the
open set

(3
2 ,

5
2

)
in R with Y . But {2} is not open in R. �
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28 §1.4. The Subspace Topology

Thus, from the above two examples, it is clear that a set which is open in Y need not be open
in X . However, in a special situation if a set is open in Y , then it is open in X too. Consider the
following lemma.

Lemma 1.4.6

Let X be a topological space and Y be a subspace of X . If U is open in Y and Y is open in
X , then U is open in X .

Proof. Since U is open in Y , there is a set V open in X such that U =V ∩Y . Since Y is open in
X and V is open in X , U =V ∩Y is open in X . �
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Suppose X and Y are topological spaces and A⊂ X , B⊂Y . Then A and B are also topological
spaces with the subspace topology. Therefore, A×B also becomes a topological space with
product topology which is given by product of subspace topology on A with the subspace
topology on B.

On the other hand, X×Y is a topological space with the product topology and A×B⊂ X×Y .
Therefore, A×B becomes a topological space with the subspace topology inherited from the
product topology of X×Y .

A natural question here is: are these two topologies on A×B the same? In fact, they are the
same and we have the following theorem.

Theorem 1.4.7

Let X and Y be topological spaces, A be a subspace of X , and B be a subspace of Y .
Then the product topology on A×B is the same as the topology which A×B inherits as a
subspace of X×Y .

Proof. We prove the result by showing that the basis for the subspace topology on A×B is the
same as the basis for the product topology on A×B.

Let U×V be the general basis element of product topology on X×Y , where U is open in X
and V is open in Y . Therefore, (U×V )∩ (A×B) is the general basis element for the subspace
topology on A×B. Now,

(U×V )∩ (A×B) = (U ∩A)× (V ∩B).

Since U ∩A and V ∩B are general open sets for the subspace topology on A and B respectively,
the set (U ∩A)× (V ∩B) is the general basis element for the product topology on A×B.

Hence, the bases for the product topology and for the subspace topology on A×B are same.
Therefore, the topologies are the same. �
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Exercise 1.26
Let Y be a subspace of a topological space X and Z ⊂ Y . Show that the topology Z inherits as

a subspace of Y is the same as the topology it inherits as a subspace of X .
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Exercise 1.27
If T and T′ are two topologies on X such that T′ is strictly finer than T, and Y ⊂ X , then what

can be said about the corresponding subspace topologies on Y ?

Exercise 1.28
Consider the set Y = [−1,1] as a subspace of R. Which of the following sets are open in Y

and which of them are open in R?

A =
{

x | 1
2 < |x|< 1

}
,

B =
{

x | 1
2 < |x| ≤ 1

}
,

C =
{

x | 1
2 ≤ |x|< 1

}
,

D =
{

x | 1
2 ≤ |x| ≤ 1

}
,

E =
{

x | 0 < |x|< 1 and 1
x 6∈ N

}
.

Exercise 1.29
Let X and Y be topological spaces. A map f : X → Y is said to be an open map if for every

open set U of X , the set f (U) is open in Y . Show that the projections π1 : X ×Y → X and
π2 : X×Y → Y are open maps.

Exercise 1.30
Show that the countable collection

B= {(a,b)× (c,d) | a < b and c < d, and a,b,c,d ∈Q}

is a basis for R2. (On Rn, we assume the product of usual topology is nothing is mentioned).

1.5 Closed Sets and Limit Points

1.5.1 Closed Sets

Definition 1.5.1: Closed set

Let (X ,T) be a topological space. A subset A of X is said to be closed if the set X rA is
open i.e., if X rA ∈ T.

Example 1.5.2. The set [a,b] is a closed subset of R because its complement

Rr [a,b] = (−∞,a)∪ (b,∞)

is open. Similarly, [a,∞) is closed as its complement (−∞,a) is open.
Note that the set [a,b) is neither open nor closed. �

Example 1.5.3. The set {(x,y) ∈ R2 | x≥ 0 and y≥ 0} is closed as its complement

((−∞,0)×R)∪ (R× (−∞,0))

is open in R2. The above set is open because it is the union of two open sets. Each of these two
sets are open as they are the product of open sets in R, i.e. (−∞,0) and R. �
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Example 1.5.4. The closed subsets of X with cofinite topology are X itself and all the finite
subsets of X . �

Example 1.5.5. Let X be a set with the discrete topology. Then we know that every subset of X
is open. Hence, every subset of X is closed. �

Example 1.5.6. Consider the set Y = [0,1]∪ (2,3) with subspace topology of R. Since
(
−1

2 ,
3
2

)
is open in R and [0,1] =

(
−1

2 ,
3
2

)
∩Y , it follows that [0,1] is open in Y . Similarly, (2,3) is open

in Y .
Note that, [0,1] and (2,3) are complements of each other in Y . Thus, both [0,1] and (2,3)

are closed in Y (as well as open). �

Example 1.5.7. Any finite subset of R is closed.
Let A = {a1,a2, . . . ,an} be subset of R. Without loss of generality, we may assume that

a1 < a2 < · · ·< an. Then the set A is closed because its complement

RrA = (−∞,a1)∪ (a1,a2)∪·· ·∪ (an−1,an)∪ (an,∞)

is open. �

From the above examples, it is clear that a set can be open, or closed, or both open as well
closed, or neither open nor closed.

We called a set open if it belongs to the topology and hence we saw that open sets satisfy the
properties of a topology, i.e. /0, X are open; arbitrary union of open sets is open; and intersection
of finitely many open sets is an open set. Closed subsets of a topological space satisfy similar
properties.

Theorem 1.5.8

Let (X ,T) be a topological space. Then the following conditions hold:
(1) /0 and X are closed.
(2) Arbitrary intersection of closed set is closed.
(3) Finite union of closed set is closed.

Proof. (1) /0 and X are closed because they are complements of open sets X and /0 respec-
tively.

(2) Let {Aα | α ∈ Λ} be a family of closed subsets of X . We want to show that
⋂

α∈Λ

Aα is

closed. By De Morgan’s law,

X r
⋂

α∈Λ

Aα =
⋃

α∈Λ

(X rAα).

Since Aα are closed sets, X rAα are open. Arbitrary union of open sets being open, by
above, X r

⋂
α∈Λ

Aα is open and hence
⋂

α∈Λ

Aα is closed.

(3) Suppose A1,A2, . . . ,An are closed. We want to show that
n⋃

i=1
Ai is closed. We have

X r
n⋃

i=1

Ai =
n⋂

i=1

(X rAi).
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Since Ai are closed, X rAi are open sets. Finite intersection of open sets being open,

X r
n⋃

i=1
Ai is open and hence

n⋃
i=1

Ai is closed.

�
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Exercise 1.31
Show by giving an example that arbitrary union of closed sets need not be a closed.

We can also define topology on a set by means of closed sets.Then we can define open sets
to be the complement of the closed sets.

Let X be a topological space and Y be a subspace of X with the subspace topology. Clearly
a subset A of Y is said to be closed in Y if and only if its complement Y rA is open in the
subspace topology on Y . Recall that open sets in Y with the subspace topology were defined to
be the intersection of open sets of X with Y . The same is true for the closed sets and we have
the following lemma.

Theorem 1.5.9

Let X be a topological space, Y be a subspace of X and A⊂ Y . The set A is closed in Y if
and only if it is the intersection of a closed set of X with Y .

Proof. Assume that A is intersection of a closed subset of X with Y , i.e. suppose that C is
closed in X and A =C∩Y . Then X rC is open in X . Therefore, by the definition of subspace
topology, (X rC)∩Y is open in Y . But

Y rA = Y r (C∩Y ) = (X rC)∩Y.

Hence Y rA is open in Y and so A is closed in Y .
Conversely, suppose A is closed in Y . Then Y rA is open in Y and so by definition, there is

an open set U of X such that
Y rA =U ∩Y.

But then A = (X rU)∩Y and X rU is closed in X . Thus, A is intersection of a closed subset
of X with Y . �
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Let X be a topological space and Y be a subspace of X . From the examples we have seen
earlier, a set A that is closed in Y need not be closed in X . For instance, in Example 1.5.61.5.6 the set
A = (2,3) is closed in Y = [0,1]∪ (2,3) but it is not closed in X = R. As in the case of open
sets, there is a similar criterion for A to be closed in X .

Theorem 1.5.10

Let X be a topological space, Y be a subspace of X . If A is closed in Y and Y is closed in
X , then A is closed in X .

Proof. Since A is closed in Y , by above theorem, A =C∩Y for some closed set C of X . Since
C is closed in X and Y is closed in X , A =C∩Y is closed in X . �
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32 §1.5. Closed Sets and Limit Points

Alternative proof. Alternatively, since A is closed in Y , the set Y rA is open in Y . Therefore,
by the definition of subspace topology, Y rA =U ∩Y for some open set U of X . Then

A = Y r (U ∩Y ) = (X rU)∩Y.

Since U is open in X , X rU is closed in X . Also since Y is closed in X , from the above
expression, we say that A is closed in X . �
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Exercise 1.32
Determine which of the following sets are either open or closed in the respective topologies.

If yes, are they the only proper closed sets?

1. Finite subsets of a cofinite topological space.

2. Finite subsets of R`.

3. (
√

2,
√

3)∩Q in Q.

4. (2,3)∩Q in Q.

5. Any subset of Z with the subspace topology.

6. (a) Z (b) N (c) Q (d) [0,1)

in R with the standard topology and in R with lower limit topology.

Exercise 1.33
Give an example of a topological space in which not all one point sets are closed, i.e. some

singleton subsets are not closed.

Exercise 1.34
Give an example of an open subset A of [0,1] which is not open in R (with usual topology).

Give an example of a closed subset B of (0,1) which is not closed in R.

1.5.2 Closure and Interior of a Set

Definition 1.5.11: Interior and Closure

Let X be a topological space and A⊂ X . The interior of A is denoted by A◦ or Int(A) and
is defined as the union of all open sets contained in A.

The closure of A is denoted by A or cl(A) and is defined as the intersection of all closed
sets containing A.

Remark 1.5.12. From the definition of interior and closure, the following are clear and
immediate observations.

1. A◦ is an open set and A is a closed set.
2. A◦ ⊂ A⊂ A.
3. A◦ is the largest open set in X contained in A. Similarly, A is the smallest closed set in X

containing A.
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4. If A is open, then A◦ = A. Similarly, if A is closed, then A = A.

Exercise 1.35
(Prove Remark 1.5.121.5.12 (44)). Let X be a topological space and A⊂ X . Prove that A is open if

and only if A◦ = A. Also prove that A is closed if and only if A = A.
Note that whenever X is a topological space, Y is a subspace of X and A⊂ Y , we have to be

specific when we say closure of A. This is because the closure of A in X (i.e. as a subset of X)
need not be same as the closure of A in Y (i.e. as a subset of Y ). We use the notation A for the
closure of A in the larger space X . The following theorem shows that closure of A in Y can be
expressed in terms of A.

Theorem 1.5.13

Let X be a topological space and Y be a subspace of X . Let A be a subset of Y and A
denote the closure of A in X . Then the closure of A in Y is A∩Y .

Proof. Let B denote the closure of A in Y .
• Since A is closed in X , the set A∩Y is closed in Y . Since A⊂ Y , A∩Y contains A. But

by definition B is the intersection of all closed subsets of Y containing A. Therefore, we
must have

B⊂ A∩Y.

• On the other hand, B is closed in Y . Therefore, B = C∩Y for some set C closed in X .
Also A ⊂ B =C∩Y . Thus, C is a closed subset of X containing A. By definition, A is
the intersection of all closed subsets of X containing A. Therefore, A⊂C and hence, we
must have

A∩Y ⊂C∩Y = B.

Hence, B = A∩Y . in other words, closure of A in Y is closure of A in X intersection with Y . �
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The above theorem is not true in case of interior of a set. Attempt the following exercise.

Exercise 1.36
Let Y be a subspace of a topological space X and A ⊂ Y . Show by giving an example that

interior of A in Y need not be equal to interior of A in X intersection with Y , i.e. A◦∩Y .
The definition of closure of a set is not much useful in finding the closures of sets as it is the

intersection of all closed sets containing A, which may be a very big number. The following
theorem describes closure of a set in another way, which involves open sets and basis for the
topology.

Theorem 1.5.14

Let X be a topological space and A⊂ X .
(1) x ∈ A if and only if every open set U containing x intersects A.
(2) If the topology of X is given by a basis, then x ∈ A if and only if every basis element

B containing x intersects A.
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Proof. (1) We shall prove that

x /∈ A⇔ there exists an open set U containing x that does not intersect A.

Let x 6∈ A. Take U = X rA. Then x∈U and since A is closed, U is open. Also, U∩A = /0.

Conversely, suppose there exists an open set U such that x ∈U and U ∩A = /0. Then
X rU is a closed set containing A and x /∈ (X rU). But since A is the intersection of all
closed sets of X containing A, we must have A⊂ (X rU). Therefore, x 6∈ A.

(2) Let x ∈ A. Then as above, every open set containing x intersects A. Since every basis
element is an open set, every basis element containing x intersects A.

Conversely, assume that every basis element containing x intersects A. Let U be an open
set and x ∈U . Then there exists a basis element B such that x ∈ B⊂U . Then U ∩A 6= /0
since B∩A 6= /0. Thus every open set containing x intersects A. So, by (1), x ∈ A.

�
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As it is usually preferred, instead of saying “U is an open set containing x”, we would use
the phrase “U is a neighborhood of x”. A neighborhood of an element means and open set
containing that element. In this terminology, the above result can be restated as follows.

Let X be a topological space and A⊂ X . Then

x ∈ A if and only if every neighborhood of x intersects A.

Example 1.5.15. Let X = R and A = (0,1] be a subset of R. Since every neighborhood of
0 intersects A and every point of [0,1] has a neighborhood intersecting A, we conclude that
A = [0,1]. By a similar argument, we have

B =

{
1
n
| n ∈ N

}
B = {0}∪B

C = {0}∪ (1,2) C = {0}∪ [1,2]
D = Q D = R
E = N E = N
F = R+ F = R+∪{0}

�

Example 1.5.16. Let X = R and Y = (0,1] be a subspace of X . The set A =
(
0, 1

2

)
is a subset

of Y . Then A (in R) is the set
[
0, 1

2

]
and the closure of A in Y is the set

[
0, 1

2

]
∩Y =

(
0, 1

2

]
. �

Exercise 1.37
Let X = {1,2,3,4}, T = { /0,X ,{1},{2,3},{1,2,3}}. Find the interior and closure of A =
{1,4} and B = {1,2}.

Exercise 1.38
Find the closures and interiors of [0,1],(0,1), [0,1),(0,1],Z,Q, and {1

n : n ∈ N} in R with
respect to each of the topologies:

1. cofinite,
2. cocountable,

3. usual
4. upper limit.
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Exercise 1.39
Let X be a topological space and A,B⊂ X . Answer the following.

1. If A⊂ B, then show that A◦ ⊂ B◦. Does the converse hold?

2. If A⊂ B, then show that A⊂ B. Does the converse hold?

3. Show that (A∩B)◦ = A◦∩B◦ and A∪B = A∪B.

4. X rA = (X rA)◦ and X rA◦ = X rA.

5. Prove or disprove: (A∪B)◦ = A◦∪B◦.

6. Prove or disprove: A∩B = A∩B.

7. Prove or disprove: ArB = ArB.

Exercise 1.40
Let X and Y be topological spaces, and A⊂ X and B⊂ Y . In the space X×Y with the product

topology, show that
A×B = A×B and (A×B)◦ = A◦×B◦.

Exercise 1.41
Let X and Y be topological spaces, and A⊂ X and B⊂ Y . If A is closed in X and B is closed

in Y , then show that A×B is closed in the space X×Y with the product topology. The converse
holds for nonempty sets A and B.

1.5.3 Limit Points

There is one more way to define the closure of a set which involves the notion of a limit point.

Definition 1.5.17: Limit Point

Let X be a topological space, A⊂ X and x ∈ X . We say that x is a limit point (or cluster
point or point of accumulation) of A if every neighborhood of x intersects A in some point
other than x.

The set of all limit points of A is denote by A′.

In other words, x is a limit point of A if it is in the closure of Ar{x}, i.e. x ∈ Ar{x}. Note
that the point x may or may not belong to A.

Example 1.5.18. Let X = R and A = (0,1] be a subset of X . Since every neighborhood of 0
contains a point of A other than 0, we can say that 0 is a limit point of A. Similarly, 1

2 is a limit
point of A. In fact, every point of [0,1] is a limit point of A and no other point is a limit point of
A (Check!). Hence, A′ = [0,1].

Let B =
{1

n | n ∈ N
}

. Then 0 is a limit point of B because every neighborhood of 0 contains
points 1

n for sufficiently large n. Note that no other point of B is a limit point of B. This is
because

1
n
∈
(

1
n+1

,
1

n−1

)
and

(
1

n+1
,

1
n−1

)⋂(
Br

{
1
n

})
= /0.
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As above, no other point of R is a limit point of B (Check!). Thus, 0 is the only limit point of B
and so B′ = {0}. Similarly, we have

C = {0}∪ (1,2) C′ = [1,2]
D = Q D′ = R
E = N E ′ = /0
F = R+ F ′ = R+∪{0}

�

It can be observed from Examples 1.5.151.5.15 and 1.5.181.5.18 that there is a relation between the
closure of a set and the set of limit points of the set. The relation is given by the following
result.

Theorem 1.5.19

Let X be a topological space, and A⊂ X . Then

A = A∪A′.

Proof. If x ∈ A′, then every neighborhood of x intersects A in a point other than x. So, by
Theorem 1.5.141.5.14, x ∈ A. Thus, A′ ⊂ A. By definition, A⊂ A. Thus,

A∪A′ ⊂ A.

Conversely, let x ∈ A. Then we have to show that x ∈ A∪A′, i.e. either x ∈ A or x ∈ A′. If
x ∈ A, then we are done. Suppose x /∈ A. Since x ∈ A, every neighborhood U of x intersect A.
But x 6∈ A. Therefore, U intersects A in a point different from x. Thus, x ∈ A′ and so we have

A⊂ A∪A′.
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Corollary 1.5.20

A subspace of a topological space X is closed if and only if it contains all its limit points.

Proof. The set A is closed if and only if A = Ā, and this holds if and only if A′ ⊂ A. �
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Exercise 1.42
Find the limit points of (0,1), [0,1], [0,1), N, Q in R with the following topologies on R.

1. usual topology
2. lower limit topology
3. cocountable topology
4. cofinite topology
5. T = {G⊂ X : G = /0,G = R or G = (a,∞),a ∈ R}.
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Exercise 1.43
In each of the following find A′ in the given topology. A = {1,2} in X = {1,2,3,4} with the

topology T = { /0,X ,{1},{1,2},{1,2,3}}.

1. usual topology,
2. lower limit topology,
3. cocountable topology,

4. cofinite topology
5. TK .

Exercise 1.44
Give examples of the following subsets of R.

1. A countable set without any limit point.
2. A countable closed set having finitely many limit points.
3. A countable closed set having infinitely many limit points.
4. A countable set having countably many limit points which is not closed.
5. A countable set having uncountably many limit points.

Exercise 1.45
Give examples of the following subsets A of some topological space in which A′ 6= /0.

1. A′ ⊂ X rA 2. A′ ⊂ A 3. A′ 6⊂ A, A′ 6⊂ X rA.

1.5.4 Boundary of a Set

Definition 1.5.21: Boundary of a set

Let X be a topological space and A⊂ X . The boundary of A is denote by ∂ (A) or bd(A)
or Bd(A) and is defined to be the set A∩ (X rA), i.e.

Bd(A) = A∩ (X rA).

From the definition of boundary, it is clear that Bd(A) = Bd(X rA). Since A and X rA are
closed sets, it follows that Bd(A) is closed.

Proposition 1.5.22

Let X be a topological space and A⊂ X . Then A is closed if and only if Bd(A)⊂ A.

Proof. Suppose A is closed. Then A = A by definition of closure. Then

Bd(A) = A∩ (X rA) = A∩ (X rA)⊂ A.

Conversely, suppose Bd(A)⊂ A. We have to show that A = A. Clearly A⊂ A. Now, let x ∈ A
such that x 6∈ A. Then

x ∈ A∩ (X rA)⊂ A∩ (X rA) = Bd(A)⊂ A.

This is a contradiction since x /∈ A. Therefore, we must have A = A and hence A is closed. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Exercise 1.46
Let X be a topological space and A⊂ X . Show that

1. A◦ and Bd(A) are disjoint, and A = A◦∪Bd(A).
2. Bd(A) = /0⇐⇒ A is both open and closed.
3. U is open⇐⇒ Bd(U) =U rU .
4. If A is open, then is it true that A = (A)◦? Justify.

Exercise 1.47
Let X be a set with two topologies T1 ⊂ T2. For a subset A of X , let A◦i ,Ai,A′i,Bdi(A) denote

the interior, closure, derived set and boundary of A with respect to Ti, i = 1,2.

1. Show that

(i) A◦1 ⊂ A◦2.
(ii) A2 ⊂ A1.

(iii) A′2 ⊂ A′1.
(iv) Bd(A2)⊂ Bd(A1).

2. Give examples to show that the equality need not hold in the above cases.

Exercise 1.48
Find the boundary and interior of each of the following subsets of R2.

1. A = {x× y | y = 0}
2. B = {x× y | x > 0 and y 6= 0}
3. C = A∪B

4. D = {x× y | x ∈Q}
5. E = {x× y | 0 < x2− y2 ≤ 1}
6. F = {x× y | x 6= 0, y≤ 1

x}

where the notation x× y ∈ X ×Y means x ∈ X and y ∈ Y . One can also use the notion (x,y)
instead of x× y.
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Separation Axioms, Continuous Functions, and
the Metric Topology

2.1 The Separation Axioms

2.1.1 Hausdorff Space

Definition 2.1.1: Hausdorff space (T2-space)

A topological space X is called a Hausdorff space or a T2-space if for every x,y ∈ X , x 6= y,
there exist disjoint neighborhoods U and V of x and y respectively, i.e.

U,V are open in X , x ∈U , y ∈V and U ∩V = /0.

Theorem 2.1.2

Every finite point set in a Hausdorff space X is closed.

Proof. Since finite union of closed sets is closed, it suffices to show that every one-point set
{x0} of X is closed.

We prove this by showing that no other point of X is in the closure of {x0}. If x ∈ X such
that x 6= x0, then since X is a Hausdorff space, there exist neighborhoods U and V such that
x ∈U , x0 ∈V , and U ∩V = /0. Thus, U is a neighborhood of x which does not intersect {x0}
and hence x cannot be in the closure of {x0}. Therefore {x0} is closed. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

The condition that finite point sets be closed is called T1 axiom which is weaker than the
Hausdorff condition (or T2 axiom). For this see Exercise 2.12.1 but first we give the definition of
the T1 axiom.
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40 §2.1. The Separation Axioms

Definition 2.1.3: (T1-space)

A topological space X is called a T1-space if for every x,y ∈ X , x 6= y, there exist neighbor-
hoods U and V of x and y respectively such that x 6∈V and y 6∈U .

x xy y

X X

U UV V

T1-space T2-space

Figure 2.1: Schematic T1 and T2-spaces

Proposition 2.1.4

A topological space X is T1 if and only if every singleton subset of X is closed in X .

Proof. Let X be a T1-space and A = {x}. Suppose y ∈ X and y 6= x. Since X is T1, we get
two open sets U,V such that x ∈U , y ∈ V , x /∈ V , y /∈U . Thus V is a neighbourhood y not
intersecting A. So, x /∈ A. Thus A⊂ A. Hence A is closed, that is {x} is closed in X .

Conversely, suppose every singleton subset of X is closed in X . Let x,y ∈ X be two distinct
points. Then {x},{y} are closed. Hence U = X r{y} and V = X r{x} are open sets. Also,
x ∈U , y ∈V , x /∈V , y /∈U . Thus X is T1. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Exercise 2.1
Show that a Hausdorff space is T1. Is the converse true? Justify.

Exercise 2.2
Show that a subspace of T1 space is T1 and a subspace of Hausdorff space is Hausdorff.

Exercise 2.3
Show that a topological space (X ,T) a T1-space if and only if the cofinite topology T f on X is

weaker than T.

Theorem 2.1.5

Let X be a T1 space and A⊂ X . Then the point x is a limit point of A if and only if every
neighborhood of x contains infinitely many points of A.
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Proof. Suppose every neighborhood of x contains infinitely many points of A. Then it contains
some point of A other than x itself. By definition, this means that, x is a limit point of A.

Conversely, suppose that x is a limit point of A. Suppose that some neighborhood U of x
intersects A in only finitely many points other than x, say x1,x2, . . . ,xm, i.e.

U ∩ (Ar{x}) = {x1,x2, . . . ,xm}.

Since X is a T1 space, every finite point set is closed and so the set {x1,x2, . . . ,xm} is closed.
Therefore, X r{x1,x2, . . . ,xm} is an open set of X . Then

U ∩ (X r{x1,x2, . . . ,xm})

is a neighborhood of x that does not intersect Ar{x}. This is contradiction to our assumption
that x is a limit point of A. So U must contain infinitely many points of A. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Exercise 2.4
Determine which of the following topologies makes R a T1-space or a Hausdorff space.

(i) usual topology,
(ii) lower limit topology,

(iii) cocountable topology,
(iv) cofinite topology

(v) TK .

Exercise 2.5
Let T1,T2 be two topologies on a set X such that T1 ⊆ T2.

(i) If T1 is T1, then show that T2 is also T1.
(ii) If T1 is T2, then show that T2 is also T2.

Definition 2.1.6: Convergent sequence

Let X be a topological space. We say that a sequence {xn} in X is convergent to some x in
X if for every neighborhood U of x, there exists N ∈N such that xn ∈U for all n≥ N. It is
denoted by xn→ x and the point x of X is called limit of the sequence {xn}.

x

X

U

· · ·· · ·. . .

x1
x2

x3

xN−1

xN

Figure 2.2: Convergent sequence
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Theorem 2.1.7

Let X be a topological space. If X is Hausdorff, then a sequence of points of X converges
to at most one point of X .

In other words, a convergent sequence in a T2 space has a unique limit.

Proof. Let {xn} be a sequence in X . If {xn} does not converge to any point of X , then we are
done.

Suppose if possible there exist x,y ∈ X , x 6= y such that xn → x and xn → y. Since X is
Hausdorff, there exist neighborhoods U and V such that x ∈U , y ∈ V and U ∩V = /0. Since
xn→ x, there exists N ∈ N such that xn ∈U for all n≥ N. Similarly since xn→ y, there exists
M ∈ N such that xn ∈U for all n ≥ M. Then for all n ≥ N +M, xn ∈U ∩V = /0 which is a
contradiction. Hence a sequence {xn} in X cannot converge to more than one point of X . �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Exercise 2.6
Determine the convergence of the following sequences in

(a) usual topology,
(b) lower limit topology,
(c) cocountable topology,

(d) cofinite topology,
(e) T = {G⊂ X : G = /0,R or (a,∞),a∈R}
(f) TK .

(i) {1
n},

(ii) {−1
n },

(iii) { (−1)n

n },
(iv) {(−1)n},

(v) {n}.

Exercise 2.7
Show that a topological space X is Hausdorff if and only if the diagonal4= {(x,x) : x ∈ X}

is closed in X×X .

2.2 Continuous Functions

Definition 2.2.1: Continuous functions

Let X and Y be topological spaces. A function f : X → Y is said to be continuous if for
each open subset V of Y , the set f−1(V ) is an open subset of X .

f−1(V ) is the set of all points x of X for which f (x) ∈V . It is the empty set if V does not
intersect f (X). Note that continuity of a function depends not only on the function but also
on the topologies of its domain and range. For example, f : R→ R defined by f (x) =−x is
continuous in usual topology but not continuous in lower limit topology.

If the topology of the space Y is given in terms of the basis B, then the continuity of a
function f : X → Y can be defined as in the following lemma.
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Lemma 2.2.2

Let X and Y be topological spaces and B be the basis for the topology on Y . A function
f : X → Y is continuous if and only if f−1(B) is open for every B ∈B.

Proof. Suppose f is continuous. Since B ∈B, B is open in Y . Therefore by the definition of
continuity of a function, f−1(B) is open in X .

Conversely, assume that inverse image of every basis element is open. Let V be an open
subset of Y . Since B is a basis for the topology on Y , we have

V =
⋃

α∈Λ

Bα .

Then

f−1(V ) = f−1

(⋃
α∈Λ

Bα

)
=
⋃

α∈Λ

f−1(Bα).

Since f−1(Bα) is open for all α , if follows that f−1(V ) is open in X . So, f is continuous. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

In case the topology on the space Y is given by a subbasis S, then the following lemma
characterizes continuity of f in terms of subbasis.

Lemma 2.2.3

Let X and Y be topological spaces and S be the subbasis for the topology on Y . A function
f : X → Y is continuous if and only if f−1(S) is open for every S ∈ S.

Proof. Let f be continuous and S ∈ S. Then S is open in Y and hence f−1(S) is open in X .
Conversely, assume that inverse image of every member of S is open. We know that any

basis element B for the topology of Y can be written as a finite intersection S1∩S2∩·· ·∩Sn of
members of S. Then

f−1(B) = f−1(S1∩S2∩·· ·∩Sn) = f−1(S1)∩ f−1(S2)∩·· ·∩ f−1(Sn).

Since f−1(S) is open for every S ∈ S, inverse image of every basis element is open. Therefore
by the above lemma, f is continuous. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Example 2.2.4. Let R denote the set of real numbers with usual topology and R` denote the set
with lower limit topology. Consider the identity function f : R→ R` defined by f (x) = x for
all x ∈ R. Then f is not continuous as the inverse image of open set [0,1) in R` under f is not
open in R (with usual topology).

On the other hand, its inverse, the identity function g : R`→ R defined by g(x) = x, (x ∈ R),
is continuous since inverse image of open set (a,b) of R is itself which is open in R`. �

Example 2.2.5. Every function on a discrete space is continuous. Every function to an indiscrete
space is continuous.

Let X be a discrete space, Y be any topological space and f : X → Y be a function. Then for
any open set V in Y , f−1(V )⊂ X . Hence f−1(V ) is open in X . So, f is continuous.

Let X be any topological space, Y be an indiscrete topological space and f : X → Y be a
function. Then the only open sets in Y are /0 and Y . Also, f−1( /0) = /0 and f−1(Y ) = X which
are open in X . So, f is continuous. �
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Theorem 2.2.6

Let X and Y be topological spaces and f : X → Y be a function. Then the following are
equivalent.

(1) f is continuous.
(2) For every subset A of X , f (A)⊂ f (A).
(3) For every closed set B of Y , the set f−1(B) is closed in X .

Proof. (1)(1)⇒ (2)(2). Assume that f is continuous.
Let w ∈ f (A). Then there is x ∈ A such that w = f (x). We have to show that w ∈ f (A), i.e.
every neighborhood of w intersects f (A).

Let V be a neighborhood of w(= f (x)). Then f−1(V ) is a neighborhood of x. Since x ∈ A,
f−1(V )∩A 6= /0. Let y ∈ f−1(V )∩A. Then f (y) ∈ V ∩ f (A), i.e. V ∩ f (A) 6= /0. Thus, every

neighborhood of w intersects f (A). Therefore, w ∈ f (A). So f (A)⊂ f (A) .

(2)(2)⇒ (3)(3). Let B be a closed subset of Y and A = f−1(B). We want to show that A is closed set
of X . We shall prove this by showing A = A. Now,

A = f−1(B)⇒ f (A) = f ( f−1(B))⊂ B.

Let x ∈ A. Then since B is closed, we have

f (x) ∈ f (A)⊂ f (A)⊂ B = B.

Therefore, x ∈ f−1(B) = A. Thus, A⊂ A and hence A = A.

(3)(3)⇒ (1)(1). Assume that inverse image of every closed set is closed. We want to show that f is
continuous, i.e. inverse image of every open set is open.

Let V be an open set in Y . Then B = Y rV is a closed subset of Y . Therefore f−1(B) is
closed in X . But

f−1(B) = f−1(Y rV ) = f−1(Y )r f−1(V ) = X r f−1(V ).

Thus, X r f−1(V ) is closed in X and so f−1(V ) is open in X . Hence, f is continuous. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 2.2.7

Let X and Y be topological spaces and f : X → Y be a function. Then the following are
equivalent.

(1) f is continuous.
(2) For each x ∈ X and each neighborhood V of f (x), there is a neighborhood U of x

such that f (U)⊂V .

Proof. (1)(1)⇒ (2)(2). Let x ∈ X and V be a neighborhood of f (x). Since f is continuous, the set
U = f−1(V ) is a neighborhood of x and

f (U) = f ( f−1(V ))⊂V.
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(2)(2)⇒ (1)(1). Let V be an open set in Y . Then we have to show that f−1(V ) is open in X . We
show this by proving that every point of f−1(V ) is its interior point.

Let x ∈ f−1(V ). Then f (x) ∈V . By the hypothesis, there is a neighborhood Ux of x such
that f (Ux)⊂V . Then

x ∈Ux ⊂ f−1( f (Ux))⊂ f−1(V ).

Thus, x is an interior point of f−1(V ). This complete the proof. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Exercise 2.8
Let (X ,T) be a topological space, T′ be another topology on X and T f be the cofinite topology

on X .
(a) Show that i : (X ,T)→ (X ,T′) defined by i(x) = x, (x ∈ X), is continuous if and only if

T′ ⊂ T.
(b) Show that (X ,T) is a T1-space if and only if i : (X ,T)→ (X ,T f ) defined by i(x) = x,

(x ∈ X), is continuous.

Exercise 2.9
Show that a one-one function from a T1-space to a cofinite topological space is continuous.

Exercise 2.10
Suppose f : X → Y is continuous. If x is a limit point of A⊂ X , then prove or disprove: f (x)

is a limit point of f (A).

Exercise 2.11
Find a function f : R→ R that is continuous at exactly one point.

Exercise 2.12
Determine the continuity of each f : (R,T1)→ (R,T2) defined by the following formula in

every pair of topologies T1 and T2.
Formula for f :

(a) x
(b) −x

(c) sinx
(d) cosx

(e) x2

(f) x3

Pairs of topologies:
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No. T1 T2

(1) Lower limit Lower limit
(2) Lower limit Upper limit
(3) Lower limit Usual
(4) Lower limit Cofinite
(5) Lower limit Cocountable
(6) Upper limit Lower limit
(7) Upper limit Upper limit
(8) Upper limit Usual
(9) Upper limit Cofinite

(10) Upper limit Cocountable
(11) Usual Lower limit
(12) Usual Upper limit
(13) Usual Usual
(14) Usual Cofinite
(15) Usual Cocountable
(16) Cofinite Lower limit
(17) Cofinite Upper limit
(18) Cofinite Usual
(19) Cofinite Cofinite
(20) Cofinite Cocountable
(21) Cocountable Lower limit
(22) Cocountable Upper limit
(23) Cocountable Usual
(24) Cocountable Cofinite
(25) Cocountable Cocountable

2.2.1 Homeomorphism

Definition 2.2.8: Homeomorphism

Let X and Y be topological spaces. A function f : X → Y is called a homeomorphism if it
is one-one, onto, and both f and its inverse f−1 : Y → X are continuous.

In other words, f : X → Y is called homeomorphism if it is bijective and bicontinuous. If f is
a homeomorphism, then we say that X is homeomorphic to Y or X and Y are homeomorphic
spaces.

The condition that f−1 : Y → X is continuous means that for every open set U of X , its
inverse image under the map f−1 is open in Y . The inverse image of U under f−1 is same
as f (U). Thus, the condition that f−1 is continuous is equivalent to saying that f : X → Y
maps open sets of X to open sets of Y . Alternatively defining, a function f : X → Y is called
homeomorphism if it is a bijective map such that f (U) is open if and only if U is open.

Thus, a homeomorphism f : X → Y gives one-one correspondence between the sets X and
Y as well as between the open set of X and the open sets of Y . Consequently, any property
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of X that can be expressed in terms of the topology of X (i.e. the open sets of X) gives a
similar property for Y via the correspondence f . Such a property of X is called a topological
property. In other words, any property that is preserved under a homeomorphism is called a
topological property. Just like in algebra any algebraic structure is preserved by an isomorphism,
a topological structure is preserved by a homeomorphism.

Exercise 2.13
Let X and Y be topological spaces and f : X → Y be a homeomorphism. Show that f induces

a one-one correspondence between the following.
(a) closed sets of X and closed sets of Y .
(b) limit points of A⊂ X and limit points of f (A)⊂ Y .
(c) boundary of A⊂ X and boundary of f (A)⊂ Y .
(d) interior of A⊂ X and interior of f (A)⊂ Y .
(e) closure of A⊂ X and closure of f (A)⊂ Y .
(f) convergent sequences of X and convergent sequences of Y .

Definition 2.2.9

Suppose X and Y are topolgical spaces and f : X → Y is an injective continuous map. Let
Z be the image of f considered as a subspace of Y . Then the function f ′ : X → Z obtained
by restricting the range of f is bijective. If f ′ is a homeomorphism of X with Z, we say
that the map f : X → Y is a topological imbedding, or simply imbedding of X into Y .

Example 2.2.10. The function f : R→ R (with usual topology) defined by f (x) = 3x+1 is a
homeomorphism.

It is easy to see (Verify!) that f is bijective. Define g : R→ R by g(y) = 1
3(y−1). Then

f (g(y)) = f
(

1
3
(y−1)

)
= 3

(
1
3
(y−1)

)
+1 = y

and

g( f (x)) = g(3x+1) =
1
3
((3x+1)−1) = x.

Thus, g = f−1.
Let (a,b) be a basis element of R. Then f−1(a,b) = g(a,b) =

(a−1
3 , b−1

3

)
is open in R. This

shows that f is continuous.
Conversely, for (a,b)⊂ R, g−1(a,b) = ( f−1)−1(a,b) = f (a,b) = (3a+1,3b+1) is open

in R. Thus, f−1 is also continuous and hence f is a homeomorphism. �

A bijective function f : X → Y can be continuous without being a homeomorphism, i.e. f−1

cannot be continuous. Recall Example 2.2.42.2.4, the identity function g : R`→ R is bijective and
continuous but it is not a homeomorphism as its inverse fails to be continuous. Consider another
such example below.

Example 2.2.11. Let S1 denote the unit circle,

S1 = {(x,y) ∈ R2 | x2 + y2 = 1}
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considered as a subspace of R2 and let

f : [0,1)→ S1

be the map defined by f (t) = (cos2πt,sin2πt). From the properties of trigonometric functions,
it follows that f is bijective and continuous. However, the function f−1 : S1→ [0,1) is not
continuous since the image of open set U =

[
0, 1

4

)
under f is not open in S1. This is because

there is no open set V of R2 such that the point p = f (0) ∈V ∩S1 ⊂ f (U).

)
1

[
0

)
1
4

U f

(

f (U)

] p

Figure 2.3: Non-open map

�

Example 2.2.12. Consider the function

g : [0,1)→ R2

obtained from the function f in the above example by extending the range from S1 to R2. Then
from the above example, it follows that the function g is a continuous injective map which is
not an imbedding. �

2.2.2 Constructing Continuous Functions

Theorem 2.2.13: Rules for constructing continuous functions

Let X ,Y , and Z be topological spaces.
(a) (Constant function) If f : X → Y maps all of X into the single point y0 of Y , then f

is continuous.
(b) (Inclusion) If A is a subspace of X , the inclusion function j : A→ X defined by

j(x) = x for all x ∈ A is continuous.
(c) (Composite) If f : X → Y and g : Y → Z are continuous, then the map g◦ f : X → Z

is continuous.
(d) (Restricting the domain) If f : X → Y is continuous, and if A is a subspace of X ,

then the restricted function f |A : A→ Y defined by f |A (x) = f (x) for all x ∈ A is
continuous.

(e) (Restricting or expanding the codomain) Let f : X → Y be continuous. If Z is a
subspace of Y containing the image set f (X), then the function g : X → Z obtained
by restricting the range of f is continuous. If Z is a space having Y as a subspace,
then the function h : X → Z obtained by expanding the range of f is continuous.

(f) (Local formulation of continuity) The map f : X → Y is continuous if X can be
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written as a union of open sets Uα such that f |Uα
is continuous for each α .

Proof. (a) Let f (x) = y0 for all x ∈ X . Let V be open in Y . Then the set

f−1(V ) =

{
X if y0 ∈V,
/0 otherwise.

In either case, f−1(V ) is open in X . Hence, f : X→Y defined by f (x) = y0 is continuous.
(b) If U is open in X , then j−1(U) =U∩A is open in A by the definition of subspace topology.

Hence, the inclusion map j : A→ X is continuous.
(c) Let U be open in Z. Since g is continuous, g−1(U) is open in Y . Since f is continuous,

f−1(g−1(U)) is open in X . But

f−1(g−1(U)) = (g◦ f )−1(U).

Thus, g◦ f : X → Z is continuous.
(d) The restriction of the function f on A is the composition of the inclusion map j : A→ X

and f : X → Y , i.e.
f |A = f ◦ j.

Hence, f |A : A→ Y is continuous.
(e) Let f : X → Y be continuous and f (X)⊂ Z ⊂ Y . We show that the function g : X → Z

is continuous. Let B be open in Z. Then B = U ∩Z for some open set U of Y . Since
f (X)⊂ Z, we have X ⊂ f−1( f (X))⊂ f−1(Z) = g−1(Z) and therefore

f−1(U) = g−1(B).

Since f−1(U) is open in X , g−1(B) is open in X and hence g is continuous.
Now, if Y is a subspace of Z, then the map h : X → Z is the composite of the map
f : X → Y and the inclusion map j : Y → Z, i.e. h = j ◦ f . Hence, h is continuous.

(f) Let, by hypothesis, X =
⋃
α

Uα and f |Uα
be continuous for each α . Let V be open in Y .

Then
f−1(V )∩Uα = ( f |Uα

)−1(V ).

Since f |Uα
is continuous, the set f−1(V )∩Uα is open in Uα and hence it is open in X .

But

f−1(V ) = f−1(V )∩X = f−1(V )∩

(⋃
α

Uα

)
=
⋃
α

( f−1(V )∩Uα).

So f−1(V ) is open and hence f is continuous.
�

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

2.2.3 Pasting Lemma

Theorem 2.2.14: Pasting Lemma

Let X and Y be topological spaces, A and B are closed subsets of X such that X = A∪B.
Let f : A→Y and g : B→Y be continuous. If f (x) = g(x) for every x ∈ A∩B, then f and
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g combine to give a continuous function h : X → Y , defined by

h(x) =
{

f (x) if x ∈ A,
g(x) if x ∈ B.

Proof. We want to show that h is continuous. Let C be a closed subset of Y . Now, by the
definition of h

h−1(C) = f−1(C)∪g−1(C).

Since f is continuous and C is closed, f−1(C) is closed in A and hence it is closed in X .
Similarly, g−1(C) is closed in B and therefore closed in X . Since f−1(C) and g−1(C) are closed
in X , their union h−1(C) is closed in X and hence h is continuous. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Observe that the definition of h implies f = h|A and g = h|B . Then Pasting lemma can be
restated as

Pasting lemma

Let X and Y be topological spaces, A and B be closed subsets of X such that X = A∪B,
and f : X → Y be a function. If f |A and f |B are continuous, then f is continuous.

Example 2.2.15. Define h : R→ R by

h(x) =
{

x x≤ 0,
x
2 x≥ 0.

Each of the pieces, i.e. x and x
2 of this definition are continuous functions, and they agree on the

overlapping domain {0}. Since domain of each of them is closed, the function h is continuous
by Pasting lemma. �

2.3 The Metric Topology

In this section, we shall see that every metric space is a topological space. Given a metric on a
set, we can define topology on it called the metric topology.

Definition 2.3.1

A metric on a set X is a function

d : X×X → R

satisfying the following properties.
(1) d(x,y)≥ 0 for all x,y ∈ X ; d(x,y) = 0 if and only if x = y.
(2) d(x,y) = d(y,x) for all x,y ∈ X .
(3) (Triangle inequality) d(x,z)≤ d(x,y)+d(y,z) for all x,y,z ∈ X .

Given a metric d on X , the number d(x,y) is called the distance between x and y in the
metric d. Given ε > 0, the set

Bd(x,ε) = {y ∈ X | d(x,y)< ε}
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of all points y whose distance from x is less than ε is called the ε-ball centered at x.
Sometimes we avoid writing the metric d in the notation and simply denote the ball as

B(x,ε), where there is no ambiguity.

Definition 2.3.2: Metric topology

If d is a metric on the set X , then the collection of all ε-balls Bd(x,ε), for x ∈ X and ε > 0,
is a basis for a topology on X , called the metric topology induced by d, i.e.,

Bd = {Bd(x,ε) | x ∈ X , ε > 0}

is a basis for the metric topology on X .

We verify below that indeed Bd is a basis for a topology on X .

Proposition 2.3.3

Let (X ,d) be a metric space. Then the collection

Bd = {Bd(x,ε) | x ∈ X , ε > 0}

is a basis for a topology on X .

Proof. (1) Let x ∈ X . Then x ∈ B(x,ε) for any ε > 0.
Before we check the second condition for a basis, we prove the following:

If y ∈ B(x,ε), then there is a δ > 0 such that B(y,δ )⊂ B(x,ε).

ε

x

y
δ = ε−d(x,y)

Figure 2.4: Openness of open ball

Since y ∈ B(x,ε), we have d(x,y) < ε . Take δ = ε −d(x,y) > 0. Now let z ∈ B(y,δ ). Then
d(y,z)< δ = ε−d(x,y). Therefore, by triangle inequality

d(x,z)≤ d(z,y)+d(y,z)< ε,

i.e. z ∈ B(x,ε). Therefore, B(y,δ )⊂ B(x,ε).
Now, we verify the second condition for a basis.
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(2) Let y ∈ B(x1,ε1)∩B(x2,ε2). Then, by the above, there exist δ1 > 0 and δ2 > 0 such that
B(y,δ1)⊂ B(x1,ε1) and B(y,δ2)⊂ B(x2,ε2). Taking δ = min{δ1,δ2}, we get B(y,δ ) ∈
Bd such that

y ∈ B(y,δ )⊂ B(x1,ε1)∩B(x2,ε2).

This shows that Bd is a basis. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

From what we proved above, the open sets in metric topology can be defined as:
Let (X ,d) be a metric space. A set U ⊂ X is open in the metric topology
induced by d if for each y ∈U there exists δ > 0 such that Bd(x,δ )⊂U .

Example 2.3.4. Let X be a nonempty set. Define d : X×X → R by

d(x,y) =
{

1 if x 6= y,
0 if x = y.

It is easy to check that d is a metric which is called the discrete metric. The topology induced
by d is the discrete topology because the basis element B(x,1) is {x}. �

Example 2.3.5. For x,y ∈ R, define metric d by

d(x,y) = |x− y|.

Then it is easy to check that d is a metric on R called the usual or standard. The topology
induced by d is the usual topology or the standard topology on R.

Any basis element for the metric topology is of the form

B(x,ε) = {y ∈ R | B(x,y)< ε}
= {y ∈ R | |x− y|< ε}
= {y ∈ R | x− ε < y < x+ ε}
= (x− ε,x+ ε).

Thus, every basis element of a metric is a basis element for the usual topology.
Conversely, let (a,b) be any basis element for the usual topology. Then taking x = a+b

2 ∈ R
and ε = b−a

2 > 0, we get
(a,b) = B(x,ε).

Thus, the standard metric on R induces the standard topology on R. �

Definition 2.3.6: Metrizable space

A topological space X is said to be metrizable if there exists a metric d on the set X that
induces the topology of X . A metric space is a metrizable space X together with a specific
metric d that induces the topology of X .

Exercise 2.14
Show that a metrizable topological space (or a metric space) is Hausdorff.
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Definition 2.3.7: Bounded set and Diameter

Let (X ,d) be a metric space. A subset A of X is said to be bounded if there is some number
M such that

d(a1,a2)≤M

for all a1,a2 ∈ A.
If A is nonempty and bounded, then the diameter of A is defined to be the number

diamA = sup{d(a1,a2) | a1,a2 ∈ A}.

Boundedness is not a topological property because it depends on a particular metric that is
considered on the set X . If X is a metric space with a metric d, then there exists a metric d̄ that
gives the same topology of X as induced by d, relative to which every subset of X is bounded.
One such metric d̄ can be defined as follows:

Theorem 2.3.8

Let X be a metric space with metric d. Define d̄ : X×X → R by

d̄(x,y) = min{d(x,y),1}.

Then d̄ is a metric that induces the same topology on X as d.

The metric d̄ is called standard bounded metric corresponding to d.

Proof. First we check that d̄ is a metric.
(1) Clearly d̄(x,y) = min{d(x,y),1} ≥ 0 for all x,y ∈ X . Also,

d̄(x,y) = 0⇔min{d(x,y),1}= 0⇔ d(x,y) = 0⇔ x = y.

(2) d̄(x,y) = min{d(x,y),1}= min{d(y,x),1}= d̄(y,x) for all x,y ∈ X .
(3) Now we check the triangle inequality

d̄(x,z)≤ d̄(x,y)+ d̄(y,z). (2.1)

If either d(x,y)≥ 1 or d(y,z)≥ 1, then the right hand side of (2.12.1) is at least 1. Since (by
definition of d̄) the left hand side of (2.12.1) is at most 1, the inequality holds.
Now if both d(x,y)< 1 and d(y,z)< 1, then we have

d(x,z)≤ d(x,y)+d(y,z) = d̄(x,y)+ d̄(y,z).

Since d̄(x,z)≤ d(x,z) by the definition of d̄, the triangle inequality holds for d̄.
In a metric space, every basis element containing x contains an ε-ball centered at x with

ε < 1. It can be verified that, the collection of all ε-balls with ε < 1 forms a basis for the metric
topology for any metric. Then d and d̄ induced the same topology on X , for any metric d, such
a collection will form the basis for the topology induced by d̄ also. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Definition 2.3.9

Given x = (x1, . . . ,xn) ∈ Rn, we define the norm of x by

‖x‖= (|x1|2 + · · ·+ |xn|2)
1
2 .

We define the Euclidean metric d on Rn by

d(x,y) = ‖x−y‖=
[
(x1− y1)

2 + · · ·+(xn− yn)
2] 1

2 .

We define the square metric or the sup metric ρ by the equation

ρ(x,y) = max{|x1− y1|, . . . , |xn− yn|}.

The verification that d and ρ are metrics on Rn is left as an exercise.
Note that for n = 1, i.e. on R, both the metrics coincide with the standard metric for R (as

seen in Example 2.3.52.3.5). In the plane R2, the basis elements under the metric d can be viewed
as circular regions while the basis elements under the metric ρ can be viewed as square regions
with sides parallel to the axes (similar to what we have seen in Example 1.2.41.2.4). Our next goal
is to show that both the metrics induce the usual topology on Rn for which we first prove the
following lemma which is similar to Lemma 1.2.91.2.9.

Lemma 2.3.10

Let d and d′ be two metrics on the set X , and let T and T′ be the topologies induced by
them respectively. Then T′ is finer than T if and only if for each x ∈ X and each ε > 0,
there exists a δ > 0 such that

Bd′(x,δ )⊂ Bd(x,ε).

Proof. Suppose that T′ is finer than T, i.e. T ⊂ T′. Then given a basis element Bd(x,ε) for T,
by Lemma 1.2.91.2.9, there is a basis element B′ for T′ such that

x ∈ B′ ⊂ Bd(x,ε).

So, we can find a δ > 0 such that x ∈ Bd′(x,δ )⊂ Bd(x,ε).
Conversely, suppose that the ε-δ condition holds. We show that T ⊂ T′. Let B be a basis

element for T containing. Then we can find an ε-ball Bd(x,ε) centered at x contained in B. By
given condition, there is δ such that

x ∈ Bd′(x,δ )⊂ Bd(x,ε)⊂ B.

It follows (by Lemma 1.2.91.2.9) that T′ is finer than T. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 2.3.11

The topologies on Rn induced by the Euclidean metric d and the square metric ρ are the
same as the product topology on Rn
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Proof. Let x = (x1, . . . ,xn),y = (y1, . . . ,yn) ∈ Rn. First we compare the metrics d and ρ to
show that

ρ(x,y)≤ d(x,y)≤
√

nρ(x,y). (2.2)

|xi− yi|2 ≤ (x1− y1)
2 + · · ·+(xn− yn)

2 ∀ i = 1,2, . . . ,n

⇒ |xi− yi| ≤
[
(x1− y1)

2 + · · ·+(xn− yn)
2] 1

2 ∀ i = 1,2, . . . ,n
⇒ max

1≤i≤n
{|xi− yi|} ≤ d(x,y)

⇒ ρ(x,y)≤ d(x,y).

On the other hand,

(xi− yi)
2 ≤

(
max

1≤i≤n
{|xi− yi|}

)2

∀ i = 1,2, . . . ,n

⇒ (x1− y1)
2 + · · ·+(xn− yn)

2 ≤ n
(

max
1≤i≤n

{|xi− yi|}
)2

⇒
[
(x1− y1)

2 + · · ·+(xn− yn)
2] 1

2 ≤
√

n max
1≤i≤n

{|xi− yi|}

⇒ d(x,y)≤
√

nρ(x,y).

Now, for all x and ε if y ∈ Bd(x,ε), then d(x,y) < ε . But by (2.22.2), ρ(x,y) < ε and so
y ∈ Bρ(x,ε). Therefore,

Bd(x,ε)⊂ Bρ(x,ε) .

Similarly, the second inequality in (2.22.2) gives

Bρ

(
x,

ε√
n

)
⊂ Bd(x,ε).

By previous lemma, it follows that the two metric topologies are the same.

Now, we show that the product topology is the same as that induced by the metric ρ . Let

B = (a1,b1)×·· ·× (an,bn)

be a basis element for the product topology on Rn containing x = (x1, . . . ,xn). Then for each i,
there is an εi such that

(xi− εi,xi + εi)⊂ (ai,bi).

Choosing ε = min{ε1, . . . ,εn}, we get Bρ(x,ε)⊂ B. Thus, the topology induced by ρ is finer
than the product topology.

Conversely, let Bρ(x,ε) be a basis element for the ρ-topology and y ∈ Bρ(x,ε). We have to
find a basis element B for the product topology such that

y ∈ B⊂ Bρ(x,ε).

This follows trivially by taking B = Bρ(x,ε), because

Bρ(x,ε) = (x1− ε,x1 + ε)×·· ·× (xn− ε,xn + ε)

is itself a basis element for the product topology. This completes the proof. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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2.3.1 Continuity and Sequences in Metrizable Spaces

We are familiar with the ε-δ definition of continuity of a function between metric spaces. In
topological space, we have seen that a function is continuous if inverse image of any open set
under that function is open. In metrizable spaces, both these definitions are equivalent which is
precisely proved in the theorem given below.

Theorem 2.3.12

Let X and Y be metrizable topological spaces with metrics dX and dY respectively and
f : X → Y be a function. Then the continuity of f is equivalent to the condition that given
ε > 0 and x ∈ X , there exists δ > 0 such that

dX(x,y)< δ ⇒ dY ( f (x), f (y))< ε.

Proof. Suppose f is continuous. Then inverse image of every basis element under f is open.
Therefore, given x ∈ X and ε > 0 the set

f−1 (B( f (x),ε))

is open in X and contains x. So it contains some δ -ball B(x,δ ) centered at x. Now, if y∈ B(x,δ ),
then

f (y) ∈ f (B(x,δ ))⊂ f ( f−1(B( f (x),ε))⊂ B( f (x),ε).

Hence, dX(x,y)< δ ⇒ dY ( f (x), f (y))< ε.

Conversely, assume that the ε-δ condition holds. Let V be open in Y . We want to show
that f−1(V ) is open in X . Let x ∈ f−1(V ). Since f (x) ∈ V and V is open, there is an ε-ball
B( f (x),ε) centered at f (x) such that

f (x) ∈ B( f (x),ε)⊂V.

By the hypothesis, there exists δ > 0 such that dX(x,y) < δ ⇒ dY ( f (x), f (y)) < ε. Let y ∈
B(x,δ ). Then f (y) ∈ B( f (x),ε)⊂V . So, y ∈ f−1(V ). Therefore,

x ∈ B(x,δ )⊂ f−1(V )

and hence f−1(V ) is open in X . �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

In analysis we know that if x lies in the closure of some set A, then there is a sequence of
points of A converging to x. This is not true in general in topological spaces. However, the
result holds for metrizable spaces.

Lemma 2.3.13: The sequence lemma

Let X be a topological space and A⊂ X . If there is a sequence of points of A converging
to x, then x ∈ A. The converse holds if X is metrizable.

Proof. Suppose {xn} is a sequence in A such that xn→ x. Then by the definition of a convergent
sequence, every neighborhood of x contains a point of A. Hence, x ∈ A.
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Conversely, assume that X is a metrizable space and x ∈ A. Let d be a metric for the
topology of X . Then by definition of closure, for each n ∈N, we have Bd(x, 1

n)∩A 6= /0. Choose
xn ∈ Bd(x, 1

n)∩A for each n. Then {xn} is a sequence in A.
Claim. xn→ x.
Let U be an open set containing x. Then there exits ε > 0 such that

x ∈ B(x,ε)⊂U.

Choosing N ∈ N such that 1
N < ε , we get

xn ∈ B(x,ε)⊂U, ∀ n≥ N.

Hence the claim. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 2.3.14

Let X and Y be topological spaces and f : X → Y be a function. If f is continuous, then
for every convergent sequence xn→ x in X , the sequence f (xn) converges to f (x). The
converse holds if X is metrizable.

Proof. Suppose that f is continuous and xn→ x. We want to prove that f (xn)→ f (x). Let V be
a neighborhood of f (x). Then f−1(V ) is neighborhood of x, and so there exits N ∈ N such that
xn ∈ f−1(V ) for all n≥ N. Then f (xn) ∈ f ( f−1(V ))⊂V for all n≥ N. Hence, f (xn)→ f (x).

Conversely, assume that X is a metrizable space and f (xn)→ f (x) whenever xn→ x. We want
to prove that f is continuous. We prove this by showing that f (A)⊂ f (A) (by Theorem 2.2.62.2.6).
Let x ∈ A. Then, by the sequence lemma, there is a sequence xn ∈ A such that xn → x. By
assumption f (xn)→ f (x). Since f (xn) ∈ f (A), again by the sequence lemma, f (x) ∈ A. Hence,
f (A)⊂ f (A) and so f is continuous. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Note that in both the results above, we did not completely use the fact that X is metrizable.
We used that there is a countable collection of balls Bd(x, 1

n) centered at x. This leads us to a
new definition below.

Definition 2.3.15: First Countability Axiom

A space X is said to have a countable basis at the point x if there is a countable collection
{Un}n∈N of neighborhoods of x such that any neighborhood U of x contains at least one of
the sets Un.

A space X that has a countable basis at each of its points is said to satisfy the first
countability axiom.

Note that every metrizable space satisfies the first countability axiom, but the converse is not
true.

Exercise 2.15
Show that

1. A discrete topological space is metrizable.
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2. An infinite set with cofinite topology is not metrizable.

Exercise 2.16
Let (X ,d) be a metric space, x ∈ X , and A⊂ X . Define distance of x from A as

d(x,A) = inf{d(x,y) | y ∈ A}.

Show that
x ∈ A⇔ d(x,A) = 0.
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Connectedness and Compactness

In this chapter, we shall discuss mainly two topological properties, called connectedness
and compactness on which important theorems in calculus like intermediate value theorem,
maximum value theorem, and uniform continuity theorem depend.

3.1 Connected Spaces

Definition 3.1.1: Separation and Connected space

Let X be a topological space. A separation of X is a pair U,V of disjoint nonempty open
subsets of X whose union is X . The space X is said to be connected if there does not exist
a separation of X .

In other words, a topological space X is said to be disconnected if there exist two subsets
U,V ⊂ X such that

• U,V are open
• U 6= /0,V 6= /0

• U ∪V = X
• U ∩V = /0

The pair (U,V ) is called a separation of X and X is said to be connected if it is not disconnected.
Connectedness is clearly a topological property since it is defined in terms of the open sets

of X . Therefore, if X is a connected space then any space which is homeomorphic to X is also
connected.

Observe that the sets U,V in the separation of X are complements of each other. Hence U
(and V ) is a non-empty proper subset of X which is both open and closed. In this regard, we
have the following result.

59
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Proposition 3.1.2

A topological space X is connected if and only if the only subsets of X that are both open
and closed in X are the empty set and X itself.

Proof. Assume first that X is connected. Suppose, if possible, A is a nonempty proper subset of
X that is both open and closed in X . Then taking U = A and V = X rA, we get a separation of
X which is contradiction to our assumption that X is connected. Thus, only subsets of X that
are both open and closed in X are /0 and X itself.

Conversely, assume that only subsets of X that are both open and closed in X are /0 and
X . Suppose U and V give a separation of X . Then U and V are nonempty open subsets of X
such that U ∪V = X and U ∩V = /0. But then U = X rV . Therefore U is also closed. Since
V is nonempty, U is a proper subset of X . Thus, U is a nonempty proper subset of X which
is both open and closed in X . This is contradiction to our assumption. Hence, X must be
connected. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Another criterion which can be considered equivalent to the definition of connected space is
given by the following exercise.

Exercise 3.1
Let X be a topological space. Then X is disconnected if and only if there is a continuous

function f from X onto {0,1}, where {0,1} carries the discrete topology.
Now suppose X is a topological space and Y is a subspace of X . When can we say that Y is

connected? The following is a useful way of defining connectedness of a subspace Y of a space
X .

Lemma 3.1.3

Let X be a topological space and Y be a subspace of X . A separation of Y is a pair of
disjoint nonempty sets A and B whose union is Y , neither of which contains a limit point
of the other.

The space Y is connected if there exists no separation of Y .

Proof. Suppose that A and B form a separation of Y . Then A is both open and closed in Y . The
closure of A in Y is the set A∩Y , where A is the closure of A in X . Since A is closed in Y ,
A∩Y = A. But A∩B = /0. Therefore, A∩B = /0. Since A is the union of A and its limit points,
B contains no limit points of A. Similarly, A does not contain any limit points of B.

Conversely, suppose that A and B are disjoint nonempty sets whose union is Y , neither
of which contains a limit point of the other. Since A∩B = /0 and A′∩B = /0, it follows that
A∩B = /0. Similarly A∩B = /0. Since A∪B = Y , we conclude that A∩Y = A and B∩Y = B.
Thus, both A and B are closed in Y . Since A = Y rB and B = Y rA, they both are also open in
Y . Hence, they give a separation of Y . �

Dr. Jay Mehta,
Department of
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University.

Example 3.1.4. Any singleton set is connected as there is no separation possible.
Any set X with indiscrete topology is connected as the only open sets are X and /0 and hence

there is no separation of X .
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Any discrete space X with more than one point is not connected. If x is an element of X ,
then the sets U = {x} and V = X r{x} are both nonempty open disjoint sets whose union is X .
Hence, U,V give a separation of X . �

Example 3.1.5. Let Y = [−1,0)∪ (0,1] be the subspace of R. Each of the sets [−1,0) and
(0,1] is nonempty and open in Y . Therefore they form a separation of Y . Observe that none of
them contains a limit point of the other. �

Example 3.1.6. Consider the subspace Y = [−1,1] of R. The sets [−1,0] and (0,1] are both
nonempty and disjoint, but they do not form a separation of Y as the set [−1,0] is not open in
Y . Alternatively, 0 is the limit point of the second set (0,1] which is contained in the first set
[−1,0]. Hence, they do not form a separation of Y . �

We cannot simply say that a set is connected if one or few pairs fail to give a separation.
There may be a separation possible or otherwise we have to prove that the given set is connected.
The question here is whether the set X = [−1,1] is connected or not. Is it possible to give some
separation of X? The answer will be disclosed at the end of this section.

Example 3.1.7. The set of rationals Q as a subspace of R is not connected.
In fact the only connected subsets of Q are one-point sets (i.e. singletons). Let Y be a subset

of Q containing more than one point. Let p,q ∈ Y . Then we can choose an irrational number a
such that p < a < q. Then the separation of Y is given by the sets

(−∞,a)∩Q and (a,∞)∩Q.

Such a space is called totally disconnected. Hence, Q is called totally disconnected. �

From the above example, we have the following definition and a partial answer to the
succeeding exercise.

Definition 3.1.8: Totally disconnected

A topological space is said to be totally disconnected if its only connected subspaces are
one-point sets.

Exercise 3.2
Show that if X (with more than one point) has the discrete topology, then X is totally discon-

nected. Does the converse hold?

Exercise 3.3
Show that R` is totally disconnected.

Exercise 3.4

1. Is R or Q with cofinite topology T f connected? Justify?

2. When is a set X with cofinite topology T f connected, disconnected or totally discon-
nected?
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Example 3.1.9. Consider the subset X = {(x,y) ∈ R2 | xy = 1} of the plane R2. Then X is not
connected as the two sets

{(x,y) ∈ R2 | x > 0, y = 1
x} and {(x,y) ∈ R2 | x < 0, y = 1

x}

give a separation of X as shown in the figure.

0 x

y

Figure 3.1: A disconnected subset of R2

�

Exercise 3.5
Let T and T′ be two topologies on X such that T′ ⊃ T. Which of the following holds?

1. (X ,T) is connected implies (X ,T′) is connected.

2. (X ,T′) is connected implies (X ,T) is connected.

Lemma 3.1.10

If the sets C and D form a separation of X , and if Y is a connected subspace of X , then Y
lies entirely within either C or D.

Proof. Since C and D are both open in X , the sets C∩Y and D∩Y are open in Y . They are
disjoint and their union is Y . If C∩Y 6= /0 and D∩Y 6= /0, then they form a separation of Y .
Since Y is connected, one of C∩Y and D∩Y is empty. Hence, Y must lie entirely either in C or
in D. �
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Theorem 3.1.11

The union of a collection of connected subspaces of X that have a point in common is
connected.

Proof. {Aα} be a collection of connected subspaces of a topological space X and p ∈
⋂
α

Aα .

We prove that Y =
⋃

Aα is connected.
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Suppose that Y =C∪D is a separation of Y . The point p is one of the sets C or D. Suppose
p ∈C. Since Aα is connected, it must lie entirely in C or D. But p ∈ Aα and p ∈C so it cannot
lie in D. Hence, Aα ⊂C for every α , and so

⋃
Aα ⊂C. This is contradiction to the assumption

that D 6= /0. Hence, Y =
⋃

Aα must be connected. �
Dr. Jay Mehta,
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In particular, if A and B are connected sets and A∩B 6= /0, then A∪B is connected.
The above lemma says that if {Aα} is an arbitrary collection of connected subspaces of X

with nonempty intersection, then their union is connected. If we consider a countable collection,
then we get the same result with a weaker hypothesis as given in the exercise below.

Exercise 3.6
Let {An}n∈N be a collection of connected subsets of X such that Ak∩Ak+1 6= /0 for all k ∈ N.

Show that
∞⋃

n=1
An is connected.

Another variation of the above result where all Aα ’s do not have nonempty intersection but
they intersect a connected space A. This means ∪Aα is connected. See the exercise below.

Exercise 3.7
Let {Aα} be a sequence of connected subsets of a topological space X and A⊂ X be connected

such that A∩Aα 6= /0 for all α . Show that A∪ (∪αAα) is connected.

Theorem 3.1.12

Let A be a connected subspace of X . If A⊂ B⊂ A, then B is also connected.

In other words, If B is formed by adding some or all the limit points of a connected subspace A,
then B is connected.

Proof. Let A be connected and A ⊂ B ⊂ A. Suppose B = C∪D is a separation of B. Since
A⊂ B is connected, by above lemma, the set A must lie entirely in C or in D. Without the loss
of generality, suppose A⊂C. Then A⊂C. Since B⊂ A and C∩D = /0, we have B∩D = /0, i.e.
B⊂C. This is contradiction to the fact that D is a nonempty subset of B.

Hence, B must be connected. �
Dr. Jay Mehta,
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University.

Exercise 3.8
Let A and B be two connected subsets of a topological space X such that A∩ B̄ 6= /0. Then

show that A∪B is connected.
The above theorem says that closure of a connected set is connected. However, the converse

is not true. We have seen that Q is (totally) disconnected. We shall see at the end of this section
that its closure is connected, i.e. Q= R is connected.

The following theorem says that continuous image of a connected set is connected.

Theorem 3.1.13

The image of a connected space under a continuous map is connected.
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Proof. Let X and Y be topological spaces. Let f : X → Y be a continuous map, and X be
connected. We want to prove that the image space Z = f (X) is connected. Since the map
obtained from f by restricting its codomain to the space Z is also continuous, it suffices to
prove the result for a continuous surjective map

g : X → Z.

Suppose Z = A∪B is a separation of Z, where A and B are two nonempty disjoint sets open
in Z. Since g is continuous, g−1(A) and g−1(B) are open in X . Since g is surjective, they are
nonempty subsets of X . Since A∩B = /0 and A∪B = Z, we have

g−1(A)∩g−1(B) = g−1(A∩B) = g−1( /0) = /0

g−1(A)∪g−1(B) = g−1(A∪B) = g−1(Z) = X .

Thus, g−1(A) and g−1(B) give a separation of X which is a contradiction to our assumption that
X is connected. This completes the proof. �
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As an immediate consequence of the above theorem, we can say that if Y is homeomorphic
to a connected space X , then Y must be connected too. This shows that connectedness is a
topological property.

If X and Y are connected topological spaces, then what can be said about the connectedness
of the product space X×Y ? The following theorem addresses this question.

Theorem 3.1.14

A finite Cartesian product of connected spaces is connected.

Proof. First we prove the result for the product of two connected spaces X and Y .
Choose a base point (a,b) in the product space X ×Y . Observe that the “horizontal slice”

X×{b} is homeomorphic to X , under the correspondence (x,b) 7→ x, and hence it is connected.
Similarly for x ∈ X , the “vertical slice” {x}×Y , being homeomorphic to Y , is connected.
Consequently, the “T-shaped” space

Tx = (X×{b})∪ ({x}×Y )

is connected for each x because it is the union of the two connected spaces having the point (x,b)
in common (as shown in the figure below). Therefore, the union

⋃
x∈X

Tx of all these T-shaped

spaces is connected because they have the point (a,b) (in fact, whole X ×{b}) in common.
Observe that this union is equal to X×Y and hence X×Y is connected.

X

Y

x a

b
(a,b)

{x}×Y

X×{b}

Figure 3.2: The “T-shaped” space
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The proof for finite product of connected spaces follows by induction (Verify!) and using
the fact that

X1×·· ·×Xn is homeomorphic to (X1×·· ·×Xn−1)×Xn.

�
Dr. Jay Mehta,
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The following are some natural exercises to practice about the connectedness and the product
of two spaces which would benefit for better understanding of the concept.

Exercise 3.9
Prove or disprove: For topological spaces X and Y

1. If X×Y is connected, then X and Y both must be connected.
2. If X×Y is connected, then either X or Y must be connected.
3. If X×Y is disconnected, then X and Y both must be disconnected.
4. If X×Y is disconnected, then either X or Y must be disconnected.
The immediate and natural question one would like to ask here is what about the connected-

ness of arbitrary (i.e. infinite) product of connected spaces. Is it connected? It depends on the
topology of the product space. As far as our syllabus is concerned, we are not going into depth
but here is where the box and product topology on arbitrary product of R with itself differ. We
end this discussion by stating the following relevant example.

Example 3.1.15. Consider the Cartesian product Rω . Assuming that R is connected, the space
Rω is not connected in the box topology but it is connected in the product topology. �

Exercise 3.10
Let X and Y be topological spaces. Let A be a proper subset of X and B be a proper subset of

Y . If X and Y are connected, show that

(X×Y )r (A×B)

is connected. Hence, (we deduce that) R2 rQ2, i.e. (R×R)r (Q×Q) is connected.

3.1.1 Connected Subspaces of the Real Line

Our goal in this subsection is to prove that connected subsets of R (with usual topology) are
intervals and R itself. For any a ∈ R, we consider {a} as an interval, by convention. The proof
does not depend on any algebraic property of R but it depends only on the ordered structure of
R. The proof given in the book by Munkres is for more general set called a linear continuum,
having the same order properties as that of R.

Here we present two proofs of the fact that an interval in R is connected. The first proof
presented below is given in the book by Simmons and the second proof is exclusively from the
lecture notes of my teacher Dr. D. J. Karia. Students may learn/refer to any proof (even other
than these two proofs) they prefer.

Theorem 3.1.16

A subspace of the real line R is connected if and only if it is an interval. In particular, R is
connected.
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Proof. Let X be a subspace of R. First we prove that if X is connected, then it is an interval.
Suppose, if possible, X is not an interval. Then there exist real numbers x, y, and z such that

x < y < z, where x,z ∈ X but y 6∈ X . It is easy to see that the sets

(−∞,y)∩X and (y,∞)∩X

give a separation of X and hence X is not connected. Thus, if X is connected, then it is an
interval.

Conversely, we want to show that if X is an interval, then it is connected. Suppose, if
possible, X is not connected. Let X = A∪B be a separation of X . Since A and B are nonemtpy,
we can choose points x,z ∈ X such that x ∈ A and z ∈ B. Since A and B are disjoint, we have
x 6= z. Without the loss of generality, assume that x < z. Since X is an interval, the interval
[x,z]⊂ X , and each point in [x,z] is either in A or in B. Define

y = sup([x,z]∩A).

Clearly, x≤ y≤ z and so y ∈ X . We know that if A⊂ R is bounded and closed, then supA ∈ A.
Since A is closed, y ∈ A. Therefore, we can conclude that y < z. Again by the definition of
supremum, y+ ε ∈ B for every ε > 0 such that y+ ε ≤ z. Since B is closed, this implies that
y ∈ B. Thus, y ∈ A∩B = /0, which is a contradiction. Hence, X must be connected. �
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Another proof for the converse of the above result, i.e. any interval of R is connected, is
presented below.

Theorem 3.1.17

The interval (a,b) is a connected subset of R.

Proof. We set I = (a,b). Suppose I is disconnected. So, there exists a continuous function f
from I onto {0,1}. Fix c,d ∈ I such that f (c) = 0, f (d) = 1. Without loss of generality, we
assume that c < d, so that [c,d]⊂ I. Let

E = {x ∈ I : x > c, f (x) = 1}.
Clearly, d ∈ E. So, E 6= /0. Also, c is a lower bound of E. Hence E has the infimum in [c,d];
and hence in I. Let

r = infE.

Claim: f (r) = 1.
If r = d, then f (r) = 1. So, assume that r < d. Consider an integer n0 >

1
d−r . Then 1

n0
< d−r.

So r+ 1
n ∈ (r,d) for all n≥ n0. Now for each such n, r+ 1

n is not a lower bound of E. Hence
there exists an ∈ E such that an < r+ 1

n . Hence f (an) = 1. But r = infE. Hence an ≥ r. So,
an ∈ [r,r+ 1

n) for every n≥ n0. But then an→ r. Hence f (an)→ f (r). Hence

f (r) = 1. (3.1)

Now f (c) = 0 and f (r) = 1. So, c 6= r. Let x ∈ (c,r). If f (x) = 1, then x > c⇒ x ∈ E,
contradicting to r = infE. Thus f (x) = 0. Let n1 > 1

r−c . Then for every n > n1, r− 1
n >

r− 1
n1

> c. Hence f (r− 1
n) = 0. But r− 1

n → r gives

f (r) = 0. (3.2)

This is a contradiction. Thus I must be connected. �
Dr. Jay Mehta,
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University.
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Corollary 3.1.18

The intervals of the form

[a,b), −∞ < a < b≤ ∞

(a,b], −∞≤ a < b < ∞

[a,b], −∞≤ a < b≤ ∞

are connected.

Proof. Let J be interval of any form mentioned above. Then (a,b)⊂ J ⊂ (a,b). Since (a,b) is
connected, J is connected. �
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The above corollary implies that R is connected.

Exercise 3.11
Show that

1. The unit circle in R2 given by S1 = {(x,y) | x2 + y2 = 1} is connected.

2. The open unit disc in R2 given by D= {(x,y) | x2 + y2 < 1} is connected.

Exercise 3.12
Prove or disprove:

1. There exists connected sets A and B such that A∩B and A∪B are both disconnected.

2. There exists disconnected sets A and B such that A∩B and A∪B are both connected.

Exercise 3.13
Prove or disprove:

There exists connected sets A and B such that A∩B is disconnected.

Exercise 3.14
Which of the following sets is/are connected? Justify.

X = {z ∈ C : |z|< 1}∪{z ∈ C : |z−2|< 1},
Y = {z ∈ C : |z| ≤ 1}∪{z ∈ C : |z−2|< 1},
Z = {z ∈ C : |z| ≤ 1}∪{z ∈ C : |z−2| ≤ 1}.

Exercise 3.15
Let f : S1 → R be a continuous map. Show that there exists a point x of S1 such that

f (x) = f (−x).

Exercise 3.16
Let f : X → X be continuous. Show that if X = [0,1], then there is a point x such that f (x) = x.

Such a point x is called a fixed point of f . What happens of X is [0,1) or (0,1)?
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Exercise 3.17
If A is a connected subspace of X , does it follow that A◦ and Bd(A) are connected? Does the

converse hold? Justify.

Exercise 3.18
Let X be a topological space with VIP topology and |X | ≥ 2. Let A,B be two connected

non-singleton subsets of X . Show that A∩B is connected.

3.1.2 Components

Definition 3.1.19: Components

Let X be a topological space. For x,y ∈ X define x∼ y if there is a connected subspace of
X containing both x and y. Then ∼ is an equivalence relation on X and the equivalence
classes are called the components of the connected components of X .

Exercise 3.19
Show that the relation ∼ defined above (for x,y ∈ X , x∼ y if there is a connected subspace of

X containing both x and y) is an equivalence relation on X

The components ofa topological space have the following property.

Theorem 3.1.20

The components of X are connected disjoint subspaces of X whose union is XS, such that
each nonempty connected subspace of X intersects only one of them.

Proof. The components of X , being equivalence classes, are disjoint and their union is X .
Let A be a connected subspace of X . If A intersects the components C1 and C2 of X in points

x1 and x2 (say) respectively, then x1 ∼ x2. By definition of equivalence relation, this is possible
only if C1 =C2. Thus, a connected subspace of X intersects only one of the component of X .

Now we show that a component C of X is connected. Choose a point x0 of C. For each point
x of C, we know that x0 ∼ x. So there is a connected subspace Ax of X containing x0 and x. By
above argument, Ax ⊂C (since each connected subspace of X is contained in exactly one of the
components of X).

Since x0 ∈
⋂

x Ax∈C, the intersection
⋂

x Ax∈C is nonempty. Since each Ax is connected, by
Theorem 3.1.113.1.11, their union is connected. Hence,

C =
⋃
x∈C

Ax

is connected. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

3.2 Compact Spaces
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Definition 3.2.1: Covering and Open Cover

Let X be a topological space. A collection A of subsets of X is said to cover or a covering
of X if the union of elements of A is equal to X .

A cover A is said to be an open cover or open covering if the elements of A are open
subsets of X .

Definition 3.2.2: Compact Space

A topological space X is said to be compact if every open covering A of X contains a
finite subcollection that also covers X . Such a collection is called a finite subcover of A .

In other words, X is said to be compact if every open cover of X has a finite subcover.

Compactness is also a topological property since it is defined in terms of the open sets. Thus,
if X is a compact space then any topological space which homeomorphic to X is also compact.

Example 3.2.3. Any indiscrete space X is compact, for the only open sets are X and /0. So every
open cover of X or any subset of X comprises of X itself or { /0,X} both of which are finite.

In general any space (X ,T), where T itself comprises of finitely many elements, is compact.
In particular, any finite set X is compact because T is finite. �

Example 3.2.4. The real line R is not compact because the covering of R by open intervals

A = {(n,n+2) | n ∈ Z}

does not have a finite subcollection that covers R (Verify!). �

One can find many other open covers of R which do not have a finite subcover. To show that
a set is not compact, only one example of such an open cover is sufficient.

Thus, the real R with usual topology is not compact. However, it may be compact with other
topologies, for example, as seen in the first example, R with the indiscrete topology is compact.
Another such example is the following exercise.

Exercise 3.20
Show that R with cofinite topology is compact.

Example 3.2.5. The subspace
X = {0}∪

{1
n | n ∈ N

}
of R is compact.

Given an open cover A of X , there is an element U of A containing 0. Then the set contains
all but finitely many points 1

n . For each point of X not in U , choose an element of A containing
it. The collection of these finitely many elements of A together with the set U forms a finite
subcover of A .

Since A was arbitrary open cover, we say that every open cover of X has a finite subcover
and hence X is compact. �
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If X is a compact set and Y ⊂ X , what can be said about the compactness of Y ? It is not
necessarily true that a subset of a compact set is compact. Consider the following exercise in
which we consider a subset of the compact set X seen in the above example.

Exercise 3.21
Note that X = {0}∪

{1
n | n ∈ N

}
is a compact subspace of R. Let Y =

{1
n | n ∈ N

}
.Show that

Y is not compact.

Example 3.2.6. The interval (0,1] of R is not compact. The open covering

A =
{(1

n ,1
]
| n ∈ N

}
contains no finite subcollection which covers (0,1]. Similarly, the interval (0,1) is not compact.

However, the interval [0,1] is compact, we shall see the proof of which later in the next
section. �

Exercise 3.22
Let T and T′ be two topologies on X such that T′ ⊃ T. Which of the following holds?

1. (X ,T) is compact implies (X ,T′) is compact.

2. (X ,T′) is compact implies (X ,T) is compact.

Exercise 3.23
Let X be a non-empty set and T and T′ be two topologies on X . If X is compact and T2 in both

the topologies, then show that either both are equal or uncomparable.

Lemma 3.2.7

Let Y be a subspace of X . Then Y is compact if and only if every covering of Y by sets
open in X contains a finite subcollection which covers Y .

Proof. Suppose Y is compact and A = {Aα}α∈Λ is an open cover of Y by sets open in X , i.e.
here Y ⊂ ∪Aα . Then the collection

{Aα ∩Y | α ∈ Λ}

is a cover of Y by sets open in Y . Since Y is compact, a finite subcollection

{Aα1 ∩Y, . . . ,Aαn ∩Y}

covers Y . Then {Aα1, . . . ,Aαn} is a subcollection of A that covers Y .
Conversely, suppose the given condition holds. We want to show that Y is compact. Let

A ′ = {A′α} be a cover of Y by sets open in Y . Since A′α is open in Y , for each α , there exists
set Aα open in X such that

A′α = Aα ∩Y.

Then the collection A = {Aα} is a covering of Y by sets open in X . By the hypothesis, some
finite subcollection of A , say {Aα1, . . . ,Aαn} covers Y . Then {A′α1

, . . . ,A′αn
} is a subcollection

of A ′ that covers Y . �
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If a set X has the discrete topology, then only compact subsets of X are finite subsets. What
about the converse? This question is addressed by the following exercise.

Exercise 3.24
Prove or disprove: Let (X ,T) be a topological space. If the only compact subsets of X are

finite sets, then (X ,T) is a discrete topological space.

Theorem 3.2.8

Every closed subspace of a compact space is compact.

Proof. Let X be a compact topological space and let Y be a closed subspace of X . We want to
show that Y is compact.

Let A be a cover of Y by sets open in X . Since Y is closed in X , X rY is open in X . Let

B = A ∪{X rY}.

Then B is an open cover of X . Since X is compact, some finite subcollection of B covers X . If
this subcollection contains the set X rY , then we discard X rY , otherwise we consider it as it
is. Clearly, the resulting subcollection is a finite subcollection of A that covers Y .

Figure 3.3: Closed subset of a compact set is compact

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 3.2.9

Every compact subspace of a Hausdorff space is closed.

Proof. Let X be a Hausdorff topological space and let Y be a compact subspace of X . We show
that Y is closed by proving that X rY is open.
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Let x0 ∈ X rY . We show that there is a neighborhood of x0 that is disjoint from Y . Since X
is Hausdorff, for each point y of Y (⊂ X), we get neighborhoods Uy and Vy such that

x0 ∈Uy, y ∈Vy, Uy∩Vy = /0.

Observe that the collection {Vy | y ∈Y} is a cover of Y by sets open in X . Since Y is compact, a
finite subcollection {Vy1, . . . ,Vyn} covers Y . Let

V =Vy1 ∪·· ·∪Vyn

and
U =Uy1 ∩·· ·∩Uyn.

Then U and V are both open and Y ⊂V .

Figure 3.4: Compact subset of a T2 space is closed

Claim: U ∩V = /0.
If z ∈U ∩V , then z ∈Uyi for all i and z ∈Vyi for some i. Therefore, z ∈Uyi ∩Vyi = /0 which

is contradiction. Hence, U ∩V = /0. Since, Y ⊂V , U is disjoint from Y . Thus,

x0 ∈U ⊂ X rY.

So, X rY is open and hence Y is closed. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Since every metric space is Hausdorff (see Exercise 2.142.14), the above result is true for every
metric space also.

The result we obtained from the proof of the previous theorem which will be useful later.
We state it below separately as a lemma.

Lemma 3.2.10

Let X be a Hausdorff space, Y be a compact subspace of X , and x0 /∈ Y . Then there exists
disjoint open sets U and V of X containing x0 and Y respectively.
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Remark 3.2.11. If we show that interval [a,b] is compact, then by Theorem 3.2.83.2.8, every closed
subspace of [a,b] is compact. On the other hand, from Theorem 3.2.93.2.9, the intervals (a,b) and
(a,b] cannot be compact as they are not closed subsets of Hausdorff space R.

Note that the Hausdorff condition of Theorem 3.2.93.2.9 is necessary. For example, every subset
of R is compact with the cofinite topology as seen Exercise 3.203.20.

Theorem 3.2.12

The image of a compact space under a continuous map is compact.

Proof. Let X be a compact space and f : X → Y be a continuous map. We want to show that
f (X) is compact. Let A be a cover of f (X) by sets open in Y . Then the collection

{ f−1(A) | A ∈A }

is a collection of sets covering X . Since f is continuous, these sets are open in X . Since X is
compact, finitely many of them, say

f−1(A1), . . . , f−1(An)

cover X , i.e.
X = f−1(A1)∪·· ·∪ f−1(An).

Therefore
f (X) = f ( f−1(A1))∪·· ·∪ f ( f−1(An))⊂ A1∪·· ·∪An.

Thus, the sets A1, . . . ,An cover f (X) and hence f (X) is compact. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

The above theorem says that continuous image of compact set is compact. As a consequence,
we can conclude that if a space Y is homeomorphic to a compact space X , then Y must be
compact. Thus, compactness is also a topological property.

One of the important result to verify whether a given map is a homeomorphism or not is
given by the following theorem.

Theorem 3.2.13

Let f : X →Y be a bijective continuous function. If X is compact and Y is Hausdorff, then
f is a homeomorphism.

Proof. We have to show that f−1 : Y → X is continuous. For this we show that inverse image
of a set, closed in X , under f−1 is closed in Y . If C is a closed subset of X . Then we have to
show that ( f−1)−1(C) = f (C) is closed in Y . In other words, we have to show that f : X → Y
maps closed sets to closed sets. So, the proof goes as follows:

• Let A be closed in X .
• We know that closed subset of compact space is compact. Therefore A is compact.
• Since f is continuous and onto, and since continuous image of compact set is compact,

the set f (A) is compact in Y .
• We know that compact subset of a Hausdorff space is closed. Therefore, f (A) is closed.

Dr. Jay Mehta jay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edu

mailto:jay_mehta@spuvvn.edu
jay_mehta@spuvvn.edu
jay_mehta@spuvvn.edu


74 §3.2. Compact Spaces

This completes the proof. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Exercise 3.25
Does there exist spaces X and Y such that f : X → Y is a continuous bijection but not a home-

omorphism and g : Y → X is a continuous bijection but not a homeomorphism?
As seen in the previous section, a finite product of connected space is connected, while

the connectedness of an arbitrary product of connected spaces depends on the topology of the
product space. The similar question one would like to ask here is what can be said about the
compactness of the product space (finite and arbitrary product) of compact spaces? The answer
is true. That is, finite product of compact spaces is compact. In fact, the result is, product of
infinitely many compact spaces is compact, which is known as Tychonoff theorem. We skip this
topic as it is beyond the scope of our syllabus.

Exercise 3.26
Which of the following statements are true?

1. There exists compact sets A,B such that A∪B and A∩B are not compact.

2. There exists non-compact sets A,B such that A∪B and A∩B are compact.

Exercise 3.27
If a set A is compact, is it true that ∂A, i.e. boundary of A is compact?

Next we study another criterion for a space to be compact in terms of closed sets rather than
the open sets.

Definition 3.2.14: FIP

A collection C of subsets of X is said to have the finite intersection property if for every
finite subcollection

{C1, . . . ,Cn}

of C, the intersection C1∩·· ·∩Cn is nonempty.

Theorem 3.2.15

Let X be a topological space. Then X is compact if and only if for every collection C of
closed sets of X having the finite intersection property, the intersection

⋂
C∈C

C of all the

elements of C is nonempty.

Proof. Suppose X is compact. Let C be any collection of closed sets of X having finite
intersection property. We want to show that

⋂
C∈C

C 6= /0.

Suppose, if possible,
⋂

C∈C
C = /0. Let A = {X rC |C ∈ C}. Then A is a collection of open

subsets of X . Now, ⋂
C∈C

C = /0⇒ X r
⋂

C∈C
C = X
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⇒
⋃

C∈C
(X rC) = X

⇒
⋃

A∈A
A = X .

Therefore, A is an open cover of X and since X is compact, X = A1∪·· ·∪An. Let Ci = X rAi.
Then C1∩·· ·∩Cn = /0 which is a contradiction to our assumption that C has finite intersection
property. Therefore

⋂
C∈C

C must be nonempty.

Conversely, assume that for every collection C of closed sets of X having the finite intersec-
tion property,

⋂
C∈C

C 6= /0. We want to show that X is compact.

Let A be an open covering of X . Let C= {X rA | A ∈A }. Then C is a collection of closed
subsets of X . Now, ⋃

A∈A
A = X ⇒ X r

⋃
A∈A

A = /0

⇒
⋂

A∈A
(X rA) = /0

⇒
⋂

C∈C
C = /0.

By our assumption C cannot have finite intersection property. Therefore, there is a finite
subcollection C1, . . . ,Cn of C such that C1∩·· ·∩Cn = /0. Let Ai =XrCi. Then A1∪·· ·∪An =X .
Thus, A has a finite subcover and hence X is compact. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

3.2.1 Compact Subspaces of the Real Line

In the remaining part of this section, like in case of connectedness, we study the compact
subsets of the real line R and a very famous theorem called Heine-Borel Theorem which states
that a closed and bounded subset of R (with usual topology) is compact. The core idea of the
proof is in proving that a closed interval [a,b] of R is compact. There are many proofs for this.
The one given in the book by Simmons uses Finite Intersection Property and later it is remarked
by the author that the same can be proved independently. Here we present an independent proof
of [a,b] being compact but the students are free to write/learn any proof which they prefer.

Theorem 3.2.16: Heine-Borel Theorem

A closed and bounded subset of R is compact.

Proof. A closed and bounded subset of R is a closed subset of the closed interval [a,b] for
some a,b ∈R. Since closed subset of a compact space is compact, it suffices to prove that [a,b]
is compact. If a = b, then [a,b] = {a} which is clearly compact. Hence, we prove that [a,b],
where a,b ∈ R, and a < b is compact.

The proof is given below. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

The interval [a,b] being homeomorphic to [0,1] and compactness being a topological prop-
erty, we prove that [0,1] is compact to complete the proof of Heine-Borel theorem. The
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following proof of [0,1] being compact is not yet found in the literature. This interesting and
simple proof is taken from the lecture notes of my teacher Dr. D. J. Karia, for which we are
extremely grateful to him. The proof is not yet found in the literature.

Proposition 3.2.17

[0,1] is a compact subset of R.

Proof. Let A be an open cover of [0,1] in R. Let

A = {s ∈ (0,1] : [0,s] can be covered by finitely many elements of A }.

We show that 1 ∈ A. We shall show this in the following three steps.
• First observe that A 6= /0. For that, let G ∈A such that 0 ∈ G. But G is open. So, there

exists an open interval (a,b) such that 0 ∈ (a,b)⊂ G. If 1 < b, then [0,1]⊂ (a,b)⊂ G, and so,
1 ∈ A. If b≤ 1, then [0, b

2 ]⊂ (a,b)⊂ G. Thus b
2 ∈ A. Hence, A 6= /0.

• Now let r = supA. Clearly, 0 < r ≤ 1. We claim that r ∈ A. Suppose r 6∈ A. Since A
covers [0,1], there exists G ∈A such that r ∈ G. So there exists an open interval (a,b) such
that r ∈ (a,b) ⊂ G. If a < 0, we replace a by 0 and if b > 1, then we replace b by 1 and in
that way we assume that r ∈ (a,b) ⊂ [0,1]. Choose t ∈ (a,r). Since t < r, t is not an upper
bound of A. Hence we get s ∈ A such that t < s. Since s ∈ A, [0,s] can be covered by finitely
many elements of A . But then one more element G is required to cover [s,r]. Thus [0,r] can be
covered by finitely many elements of A . Thus r ∈ A.
• Suppose, if possible, that r < 1. Then we choose t ∈ (r,b) and see that [r, t] is covered by

G. Thus [0, t] is covered by finitely many elements of A . Thus t ∈ A. Since t > r, r is not the
supremum of A. Thus r = 1. Hence 1 ∈ A. This completes the proof. �

Dr. Jay Mehta,
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Corollary 3.2.18

For a,b ∈ R, a < b, the closed interval [a,b] is compact.

Proof. Define f : [0,1]→ [a,b] by f (t) = a+(b− a)t, (t ∈ [0,1]). Then f is one-one, onto,
continuous function. Since [a,b] is a continuous image of a compact space, it is compact. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

This completes the proof of Heine-Borel Theorem. What about its converse? Is every
compact subset of R necessarily closed as well as bounded. The converse is true.

Since a compact subset of a Hausdorff space is closed, and R is a T2-space, we conclude that
a compact subset of R is closed. Also, a compact subset of a metric space (see Exercise below)
is bounded. The real line R being a metric space, compact subset of R is also bounded.

Exercise 3.28
Let (X ,d) be a metric space. If Y ⊂ X is compact, then Y is bounded. That is, in other words,

a compact subset of a metric space is bounded.
Further, find a metric space in which not every closed and bounded subspace is compact.
Combining this with the Heine-Borel theorem, we have
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A subset of R (with usual topology) is compact if and only if it is closed and bounded.

Exercise 3.29
Check whether [0,1] is compact with respect to the following topologies on R.

Usual topology, lower limit T` (or upper limit Tu), cofinite topology T f , cocountable topology
Tc, and Rk, i.e. (R,TK).

Exercise 3.30
Show that the unit circle in R2 given by S1 = {(x,y) | x2 + y2 = 1} is compact.

Exercise 3.31
Check whether the following spaces are homeomorphic or not. Assume usual or subspace

topology whenever not specified.

1. (0,1) and (a,b), a,b ∈ R.

2. (a,b) and (c,d), a,b,c,d ∈ R.

3. [a,b) and (c,d], a,b,c,d ∈ R.

4. (a,b) and R, a,b ∈ R.

5. (a,b) and [c,d), a,b,c,d ∈ R.

6. S1 and (a,b).

7. S1 and [a,b].

8. S1 and [a,b).

9. S1 and {(x,y) ∈ R2 |max{|x|, |y|}= 1}.
10. S1 and D= {(x,y) ∈ R2 | x2 + y2 < 1}.
11. D and D= {(x,y) ∈ R2 | x2 + y2 ≤ 1}.
12. D and {(x,y) ∈ R2 | |x|< 1, |y|< 1}.
13. R and R2 (in general Rn for n≥ 2).

14. The figures represented by the letters X and Y as subspaces of R2.

15. Rn and Rm for n,m≥ 2, n 6= m.

Exercise 3.32
Let f : X → Y be a map, where Y is compact Hausdorff space. Show that f is continuous if

and only if the graph of f ,

G f = {(x, f (x)) | x ∈ X}

is closed in X×Y .
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3.3 The Countability Axioms

Let us recall the notion of first countability axiom before we define what is called second
countability axiom.

Definition 3.3.1: First-countable

A space X is said to have a countable basis at x if there is a countable collection B of
neighborhoods of x such that each neighborhood of x contains at least one of the elements
of B. A space that has a countable basis at each of its points is said to satisfy the first
countability axiom, or to be first-countable.

3.3.1 Second-Countable

Definition 3.3.2: Second-countable

If a space X has a countable basis for its topology, then X is said to satisfy the second
countability axiom, or to be second-countable.

Clearly, the second axiom implies the first. If B is a countable basis for the topology of X ,
then the subcollection of B consisting of those elements of B which contain the point x forms a
countable basis at x.

Example 3.3.3. The real line R (with the usual topology) has a countable basis

B= {(a,b) | a < b, a,b ∈Q}.

Similarly, Rn has a countable basis of the collection of all products of intervals having rational
end points. �

We prove the following result for second countability axiom. The proof for the first count-
ability axiom is similar.

Theorem 3.3.4

A subspace of a second-countable space is second-countable, and a countable product of
second-countable spaces is second-countable.

Proof. Let X be a second-countable space and A ⊂ X . If B is a countable basis for X , then
{B∩A | B ∈B} is a countable basis for the subspace A of X . Hence, a subspace of a second-
countable space is second-countable.

Let Xi be second-countable topological spaces. If Bi is a countable basis for the space Xi,
then the collection ∏Ui, where Ui ∈Bi for finitely many values of i and Ui = Xi for all other
values of i, is a countable basis for ∏Xi. �
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Definition 3.3.5: Separable space

A subset A of a space X is said to be dense in X if A = X .
A space having a countable dense set is said to be separable.

Example 3.3.6. 1. A finite set is separable with any topology on it.
2. R is separable because Q is dense in R
3. R with the cocountable topology is not separable as every countable subset of R is closed

and hence it is not dense in R.
�

The next theorem states that every second-countable space is separable.

Theorem 3.3.7

Suppose that X has a countable basis. Then
(1) Every open covering of X contains a countable subcollection covering X .
(2) There exists a countable subset of X that is dense in X .

Proof. Let {Bn} be a countable basis for X .
(1) Let A be an open covering of X . For each n ∈ N, for which it is possible, choose an

element An ∈A such that Bn ⊂ An. Then clearly the collection A ′ of these sets An is a
countable subcollection of A , since it is indexed by a subset J of N.
Claim: A ′ covers X .
Let x ∈ X . Since A is an open cover, there exists A ∈A such that x ∈ A. Since A is open,
there is a basis element Bn such that x ∈ Bn ⊂ A. Since Bn ⊂ A, the element An of A ′

containing Bn is defined. Since x ∈ Bn and Bn ⊂ An, we have x ∈ An. Hence, A ′ covers
X .

(2) From each n ∈ N, choose xn ∈ Bn. Let D = {xn | n ∈ N}.
Claim: D is dense in X , i.e. D = X .
Let x ∈ X . By the definition of basis, x ∈ Bn for some n. Then xn ∈ Bn∩D. Thus, every
basis element containing x intersects D. So x ∈ D. Hence, D is dense in X .

�
Dr. Jay Mehta,
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Regular Spaces, Normal Spaces, and Com-
plete Metric Spaces

4.1 The Separation Axioms (revisited)

In this section, we recall a separation axiom we have already seen called the Hausdorff axiom
or the T2-axiom, and we see another stronger separation axiom and its relationship with the
other axioms.

These axioms are called separation axioms because they define separation of two points, two
closed sets, a point and a set in terms of (disjoint) open sets. This separation is different from
the separation (disconnectedness) we saw in the section on connected spaces.

4.1.1 Regular Spaces

Definition 4.1.1: Regular space

Let X be a topological space. Suppose that the one point sets are closed in X . Then X is
said to be regular if for each pair of a closed set B and a point x /∈ B, there exist disjoint
open sets containing x and B respectively.

The condition that if x is a point and B is a closed set not containing x, then there exist open
sets U and V such that x ∈U , B ⊂ V , and U ∩V = /0 is called the T3-axiom. Thus, a regular
space is a space which is T1 and T3.

It is evident that a regular space is Hausdorff. This can also be seen in the schematic
representation of T3-axiom given below. However, the converse is not true which we shall see
later in this section by means of an example.
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Bx

X

U V

Figure 4.1: Schematic T3-spaces

Lemma 4.1.2

Let X be a topological space and let one-point sets be closed in X . Then X is regular if
and only if given a point x of X and a neighborhood U of x, there is a neighborhood V of x
such that V ⊂U .

Proof. Suppose that X is regular. Let x be a given point and U be a neighborhood of x. Let
B = X rU . Then B is a closed set and x /∈ B. Since X is regular, there exist open sets V and W
such that x ∈V , B⊂W , and V ∩W = /0.
Claim: V ∩B = /0.
Let y ∈V ∩B. Since y ∈V , every neighborhood of y must intersect V . Also, y ∈ B⊂W . But
V ∩W = /0. Thus, W is a neighborhood of y which does not intersect V . This is contradiction to
y ∈V . Hence, V ∩B = /0.

Therefore V ⊂ X rB, i.e. V ⊂U .

Conversely, suppose x is a point of X and B is a closed set not containing x. Let U = X rB.
Then U is a neighborhood of x. By hypothesis, there is a neighborhood V of x such that V ⊂U .
Then V and X rV are disjoint neighborhoods of x and B respectively. Since every singletons
are closed in X , the space X is regular. �

Dr. Jay Mehta,
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Theorem 4.1.3

(1) A subspace of a Hausdorff space is Hausdorff.
(2) A subspace of a regular space is regular.

Proof. (1) Let X be a Hausdorff topological space and Y be a subspace of X . Let x and y be
two points of Y . Since X is Hausdorff, there exist disjoint neighborhoods U and V of
x and y respectively in X . Then U ∩Y and V ∩Y are disjoint neighborhoods of x and y
respectively in Y .

(2) Let X be a regular space and Y be a subspace of X . Then one-point sets are closed in Y .
Let x be a point of Y and B be a closed subset of Y such that x /∈ B. Since B is closed in
Y , we have B∩Y = B, where B is the closure of B in X .
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Therefore x /∈ B. Thus, x ∈ X and B is a closed set in X not containing x. By regularity of
X , we get disjoint open sets U and V containing x and B respectively. Then U ∩Y and
V ∩Y are disjoint open sets in Y containing x and B respectively.

�
Dr. Jay Mehta,
Department of
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University.

A similar result is true for arbitrary product of spaces, i.e. a product of Hausdorff spaces is
Hausdorff and a product of regular spaces is regular. The results concerning arbitrary products
are not in our syllabus and so we skip the proof here but we state the following exercise for a
finite product. It is sufficient to prove for the product of two spaces and then it can be extended
by induction to a finite product.

Exercise 4.1
Let X and Y be two topological spaces. Show that

1. If X and Y are Hausdorff, then X×Y is Hausdorff.

2. If X and Y are regular, then X×Y is regular.

As remarked earlier that a regular space is Hausdorff but the converse is not true. The
following is the example of a Hausdorff space which is not regular.

Example 4.1.4. The space RK is Hausdorff but not regular.
Recall that RK denotes R with the topology generated by basis consisting of all open intervals

(a,b) and sets of the form (a,b)rK, where K =
{1

n | n ∈ N
}

. It is Hausdorff since any two
distinct points have disjoint open intervals containing them. We show that it is not regular.

Note that the set K is closed (since its complement is open) in RK and 0 /∈ K. Suppose that
there exist disjoint open sets U and V containing 0 and K respectively. Since U is open and
0 ∈U it contains a basis element containing 0. It must be of the form (a,b)rK, since each
basis element of the form (a,b) containing 0 intersects K.

Choose n sufficiently large such that 1
n ∈ (a,b). Now choose a basis element about 1

n
contained in V . Clearly, it must be of the form (c,d). Finally choose z such that

max
{

c, 1
n+1

}
< z < 1

n .

Then, as shown in the figure below, z ∈U ∩V = /0 which is a contradiction. Hence, RK is not
regular.

1
n

0a
(

b
))

d
(
c z

�

Exercise 4.2
Show that a metric space is regular.

Exercise 4.3
Show that a compact Hausdorff space is regular.
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Exercise 4.4
Show that if X is a regular space, then every pair of points of X have neighborhoods whose

closures are disjoint.

Exercise 4.5
Let f ,g : X → Y be continuous functions and Y be a Hausdorff space. Show that

{x ∈ X | f (x) = g(x)}

is closed in X .

4.1.2 Normal Spaces

Definition 4.1.5: Normal space

Let X be a topological spaces such that one-point sets are closed in X . Then X is said to
be normal if for each pair of disjoints closed sets A and B, there exist disjoint open sets
containing A and B respectively.

BA

X

U V

Figure 4.2: Schematic T4-spaces

The condition that for every pair of disjoint closed sets A and B, there exists open sets U
and V such that A⊂U , B⊂V , and U ∩V = /0 is called the T4-axiom. Thus, a T4 space which is
also T1 is called a normal space.

Clearly a normal space is regular, since singleton sets are closed. Thus, normality is stronger
than regularity. However, the converse is not true. The above figure shows a schematic
representation of the T4-axiom.

Lemma 4.1.6

Let X be a topological space and let one-point sets be closed in X . Then X is normal if
and only if given a closed set A and an open set U containing A, there is an open set V
containing A such that V ⊂U .

Proof. Similar to the proof of Lemma 4.1.24.1.2 (replace the point x by the set A in that proof). �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Example 4.1.7. The space R` is normal.
Since R` is finer than R (with usual topology), it follows that every singleton sets are closed

in R`.
Now let A and B be two disjoint closed sets in R`. For each point of A choose a basis

element [a,xa) not intersecting B, and for each point b of B choose a basis element [b,xb) not
intersecting A. Then the sets

U =
⋃
a∈A

[a,xa) and V =
⋃
b∈B

[b,xb)

are disjoint Verify! open sets containing A and B respectively.
Hence, R` is normal. �

Example 4.1.8. The Sorgenfrey plane R2
` is regular but not normal.

By the above example, we know that R` is normal and hence regular. Also by the Exer-
cise 4.14.1 (22), we know that product of regular spaces is regular. Therefore, we conclude that R2

`
is a regular space. We do not give the proof that it is not normal as it is beyond the scope of our
syllabus. �

Now we see three results which ensure normality of a space under certain hypotheses.

Theorem 4.1.9

Every regular space with a countable basis is normal.

Proof. Let X be a regular space with a countable basis B. Let A and B be two disjoint closed
subsets of X . Since X is regular, each point x of A has a neighborhood U which does not
intersect B. Again by regularity (Lemma 4.1.24.1.2), we get a neighborhood V of x such that V ⊂U .
Choose an element of basis B containing x and contained in V .

Figure 4.3

By choosing such a basis element for each x ∈ A, we get a covering and hence a countable
covering of A by open sets whose closures do not intersect B. We denote this countable covering
of A by {Un}. Similarly, choose a countable open covering {Vn} of B such that V n is disjoint
from A. Then the sets U =

⋃
Un and V =

⋃
Vn are open sets containing A and B respectively.

But they may not be disjoint.
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Figure 4.4

Now, we construct two disjoint open sets U ′ and V ′ containing A and B respectively. For
each n ∈ N, define

U ′n =Un r
n⋃

i=1

V i and V ′n =Vn r
n⋃

i=1

U i.

Note that each set U ′n is the difference of an open set Un and a closed set
n⋃

i=1
V i. Hence, U ′n is

open for all n. Similarly, V ′n is open for all n. Also, the collection {U ′n} covers A since each
x ∈ A belongs to Un for some n but does not belong to V i for all i. Similarly, the collection {V ′n}
covers B.

Figure 4.5

Define the open sets
U ′ =

⋃
n∈N

U ′n and V ′ =
⋃

n∈N
V ′n.

Claim: U ′∩V ′ = /0.
Let x ∈U ′∩V ′. Then x ∈U ′j∩V ′k for some j and k. Suppose j ≤ k. Then from the definition

of U ′j, we get x ∈U j. Since j ≤ k, it follows from the definition of V ′k that x 6∈U j which is a
contradiction. Similarly, we get contradiction if j ≥ k.
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Hence, X is normal. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 4.1.10

Every metrizable space is normal.

Proof. Let X be a metrizable topological space with metric d which induces the topology on
X . Let A and B be disjoint closed subsets of X . For each a ∈ A, choose εa such that the ball
B(a,εa) does not intersect B. Similarly, for each b ∈ B, choose εb such that the ball B(b,εb)
does not intersect A. Take

U =
⋃
a∈A

B
(
a, εa

2

)
and V =

⋃
b∈B

B
(
b, εb

2

)
.

Then U and V are open sets containing A and B respectively.
Claim: U ∩V = /0.

Let z ∈U ∩V . Then
z ∈ B

(
a, εa

2

)
∩B
(
b, εb

2

)
for some a ∈ A and b ∈ B. By triangle inequality,

d(a,b)≤ d(a,z)+d(z,b)< εa+εb
2 .

If εa ≤ εb, then d(a,b)< εb which means that the ball B(b,εb) contains a. This is not possible.
On the other hand, if εb ≤ εa, then d(a,b)< εa which means that B(a,εa) contains b. This is
also not possible and hence U ∩V = /0. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 4.1.11

Every compact Hausdorff space is normal.

Proof. Let X be a compact Hausdorff space. First we show that X is regular. Let x ∈ X and B
be a closed subset of X such that x /∈ B. Then by Lemma 3.2.103.2.10, there exists disjoint open sets
containing x and B respectively. Hence, X is regular.

Now, we show that X is normal. Let A and B be disjoint closed sets of X . For each a ∈ A,
by regularity of X , choose disjoint open sets Ua and Va containing a and B respectively. Then
the collection {Ua}a∈A is a cover of A. Since A is compact, A is covered by finitely many sets
Ua1, . . . ,Uan . Then

U =Ua1 ∪·· ·∪Uan and V =Va1 ∩·· ·∩Van

are disjoint open sets containing A and B respectively. Hence, X is normal. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

The following diagram gives a pictorial presentation of the separation axioms we studied so
far.
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Figure 4.6: The separation properties

Exercise 4.6
Show that a closed subspace of a normal space is normal.

Exercise 4.7
Let T and T′ be two topologies on a set X . If one of the spaces (X ,T) and (X ,T′) is Hausdorff

(or regular, or normal), then what can be said about the other?

4.2 Urysohn Lemma and Tietze Extension Theorem

Theorem 4.2.1: Urysohn lemma

Let X be a normal space. Let A and B be disjoint closed subsets of X . Let [a,b] be a closed
interval in the real line. Then there exists a continuous map

f : X → [a,b]

such that

f (x) =
{

a ∀ x ∈ A,
b ∀ x ∈ B.
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Theorem 4.2.2: Tietze extension theorem

Let X be a normal space and A be a closed subspace of X .
(a) Any continuous map of A into the closed interval [a,b] of R may be extended to a

continuous map of all X into [a,b].
(b) Any continuous map of A into R may be extended to a continuous map of all X into

R.

4.3 Complete Metric Spaces

Let (X ,d) be a metric space and {xn} be a sequence in X . We say that {xn} is convergent if
there exits a point x in X such that for each ε > 0, there exists a positive integer n0 such that
d(xn,x)< ε for all n≥ n0. Equivalently, for each open ball B(x,ε) centered at x, there exists
a positive integer n0 such that xn ∈ B(x,ε) for all n ≥ n0. Note that sometimes the open ball
B(x,ε) is denoted as Sε(x) and called as “open sphere” centered at x.

The point x is called limit of the sequence xn. We denote it by xn→ x or limxn = x and
verbally say that “xn approaches x”, or “xn converges to x”. Since every metric space is
Hausdorff and a sequence in a Hausdorff space has at most one limit, it follows that if xn→ x,
then x is unique.

Definition 4.3.1: Cauchy sequence

Let (X ,d) be a metric space. A sequence {xn} in X is said to be Cauchy if for every ε > 0,
there exists a positive integer n0 such that d(xn,xm)< ε for all n,m≥ n0.

Every convergent sequence is Cauchy. To see this, let xn→ x. Then for each ε > 0, there
exists an integer n0 such that d(xn,x)< ε

2 for all n≥ n0. Therefore, by the triangle inequality

d(xn,xn)≤ d(xn,x)+d(x,xm)<
ε

2 +
ε

2 = ε.

Thus, every convergent sequence is Cauchy. However, the converse is not true. For example,
consider the subspace X = (0,1] of R. Clearly the sequence xn = 1

n is Cauchy but it is not
convergent in X because the point 0 to which it tends to is not in the space X .

Thus, not every Cauchy sequence is convergent. The notion of convergence does not merely
depend on the sequence itself but it also depends on the space because convergent sequence
must converge to a point in that space.

Definition 4.3.2: Complete metric space

A metric space in which every Cauchy sequence is convergent is called a complete metric
space.

The real line R and the complex plane C are complete metric spaces. The completeness of C
depends on the completeness of the real line. The space (0,1] mentioned above is not complete,
but it can be made complete by adjoining the point 0 to it to form a larger space [0,1]. In fact,
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any metric space which is not complete can be made so by suitably adjoining additional points
to it.

Observe that the terms limit and limit point are different. A sequence may have a limit but
cannot have a limit point; whereas a set of points of a sequence may have a limit point but
cannot have a limit. For instance, the constant real sequence {1,1, . . . ,1, . . .} is convergent to
limit 1, but the set of points of the sequence is the singleton set {1} and it does not have any
limit point. The following result relates these two concepts to each other.

Theorem 4.3.3

If a convergent sequence in a metric space has infinitely many distinct points, then its limit
is a limit point of the set of points of the sequence.

Proof. Let X be a metric space and {xn} be a convergent sequence in X with limit x. Suppose,
if possible, x is not a limit point of the set of points (i.e. the range) of the sequence {xn}. Then
there exists an open ball B(x,ε) centered at x which does not contain any point of the sequence
different from x. However, since xn→ x, there is an integer n0 such that xn ∈ B(x,ε) for all
n ≥ n0. Then xn = x for all n ≥ n0. From this we conclude that the sequence {xn} has only
finitely many distinct points which is a contradiction. �

Dr. Jay Mehta,
Department of
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University.

Suppose X is a complete metric space and Y is a subspace of X . What condition ensures
the completeness of the subspace Y ? The following theorem guarantees the completeness of
subspaces of a complete metric spaces.

Theorem 4.3.4

Let X be a complete metric space and Y be a subspace of X . Then Y is complete if and
only if it is closed.

Proof. Assume that Y is complete as a subspace of X . We show that it is closed. Let y be a
limit point of Y . Then for each positive integer n, the open ball B

(
y, 1

n

)
contains a point yn in Y .

Clearly, the sequence {yn} converges to y in X and hence it is a Cauchy sequence. Since Y is
complete, y ∈ Y . Therefore, Y is closed.

Conversely, assume that Y is a closed subspace of X . We show that it is complete. Let {yn}
be a Cauchy sequence in Y . Then it is also a Cauchy sequence in X , and since X is complete, yn
converges to a point x in X . We want to show that x ∈ Y .

• If {yn} has only finitely many distinct points and yn→ x, then x is a point of the sequence
which is repeated infinitely many times. Since x is a point of the sequence {yn} in Y , it
must be in Y .

• On the other hand, if {yn} has infinitely many distinct points and yn→ x, then (by previous
theorem) x must be the limit point of set of points of the sequence {yn}. Therefore, x is
also a limit point of Y and since Y is closed, x ∈ Y .

�
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4.3.1 Cantor’s Intersection Theorem

Let (X ,d) be a metric space and A⊂ X . Recall that the diameter of the set A is denoted by d(A)
or diam(A) and is defined as

diam(A) = sup{d(x,y) | x,y ∈ A}.

A sequence {An} of subsets of a metric space is called a decreasing sequence if

A1 ⊇ A2 ⊇ A3 ⊇ ·· · .

The following result gives conditions under which the intersection of such a sequence is
nonempty.

Theorem 4.3.5: Cantor’s Intersection Theorem

Let X be a complete metric space, and let {Fn} be a decreasing sequence of nonempty

closed subsets of X such that diam(Fn)→ 0. Then F =
∞⋂

n=1
Fn contains exactly one point.

Proof. Suppose x,y ∈ F . Since

d(x,y)≤ diam(F)≤ diam(Fn)→ 0,

it follows that d(x,y) = 0, i.e. x = y. Thus, F cannot have more than one point. Hence, it
suffices to show that F is nonempty.

For each n ∈ N, let xn be a point in Fn. Let ε > 0 be given. Since diam(Fn)→ 0, there
exists N ∈ N such that diam(Fn)< ε for all n≥ N. Let n,m > N and without loss of generality,
assume n < m. Then xm ∈ Fm ⊂ Fn. Hence,

d(xn,xm)≤ diam(Fn)< ε for all n,m≥ N,

i.e. {xn} is a Cauchy sequence in X . Since X is complete, {xn} has a limit, say x ∈ X .
We now show that x ∈ F . For this it suffices to show that x ∈ Fn0 for a fixed but arbitrary n0.
• If {xn} has finitely many distinct points, then since xn → x, the point x is repeated

infinitely many times in the sequence, and therefore x ∈ Fn0 .
• If {xn} has infinitely many distinct points, then x is the limit point of the set of points of

the sequence. Therefore, it is a limit point of the subset {xn | n≥ n0} of the set of points
of the sequence, and hence it is a limit point of Fn0 . Since Fn0 is closed, x ∈ Fn0 .

�
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Department of
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University.

4.3.2 Baire’s Theorem

Definition 4.3.6: Nowhere dense set

A subset A of a metric space is said to be nowhere dense if its closure has empty interior.
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It is easy to see that
A is nowhere dense⇔ A does not contain any nonempty open set

⇔ each nonempty open set has a nonempty open subset disjoint from A
⇔ each nonempty open set has a nonempty open subset disjoint from A
⇔ each nonempty open set contains an open ball disjoint from A.

Definition 4.3.7

Let (X ,d) be a metric space a ∈ X and r > 0, then by the closed sphere with radius r
centered at a we mean the set

B[a,r] = Sr[a] = {x ∈ X : d(x,a)≤ r}.

The next result states that a complete metric space cannot be covered by a sequence of
nowhere dense sets.

Theorem 4.3.8: Baire’s Theorem

If {An} is a sequence of nowhere dense sets in a complete metric space X , then there exists
a point in X which is not in any of the An’s.

In other words, a complete metric space is of second category. That is, if {An} is a sequence of

nowhere dense sets in a complete metric space (X ,d), then
∞⋃

n=1
An 6= X . That is, there exists a

point x outside the set
∞⋃

n=1
An.

Proof. Let (X ,d) be a complete metric space and {An} be a sequence of nowhere dense sets
in X . Since (A1)

◦ = /0, there is an open set U0 ⊂ X such that A1
⋂

U0 = /0.11 Let B1 = B(x1,r1)
be an open ball of radius r1 < 1 such that B1 ⊂U0.22 That is B1

⋂
A1 = /0. Let F1 = B[x1,

r1
2 ].

Now (A2)
◦ = /0. So, choose an open ball B2 = B(x2,r2) ⊂ F◦1 of radius r2 < 1

2 such that
B2
⋂

A2 = /0. Define F2 = B[x2,
r2
2 ]. Continuing in this way, for every n ∈ N, we get the open

balls Bn = B(xn,rn)⊂ F◦n−1 with rn <
1
n and Bn

⋂
An = /0. Define Fn = B[xn,

rn
2 ]. Thus for every

n ∈ N, Fn is a closed set, Fn ⊂ Fn−1 and diam(Fn) ≤ 2 rn
2 = rn < 1

n . Hence by the Cantor’s

Intersection Theorem,
∞⋂

n=1
Fn = {x}, some singleton. Clearly, for any i ∈ N, x ∈

∞⋂
n=1

Fn ⊂ Fi and

Fi
⋂

Ai = /0. So, x 6∈ Ai. Thus x 6∈
∞⋃

n=1
An. Thus

∞⋃
n=1

An 6= X . Hence X is of second category. �
Dr. Jay Mehta,
Department of
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The following is an equivalent form of the Baire’s theorem stated above.

Theorem 4.3.9: Baire’s theorem

1For example U0 = X rA1
2Take any point in a ∈U0, then there is r > 0 such that B(a,r)⊂U0. If r < 1, take B1 = B(a,r). Otherwise

take B1 = B(a,0.8). B(a,0.8)⊂ B(a,r)⊂U0.
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If a complete metric space is the union of a sequence of its subsets, then the closure of at
least one set in the sequence must have nonempty interior.

Exercise 4.8
Let X be a metric space. If {xn} and {yn} are sequences in X such that xn→ x and yn→ y,

then show that d(xn,yn)→ d(x,y).

Exercise 4.9
Show that a Cauchy sequence is convergent if and only if it has a convergent subsequence.

Exercise 4.10
Show that a closed set is nowhere dense if and only if its complement is everywhere dense.
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