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Lagrange’s Formulation

1.1 Mechanics of a particle

1.1.1 Basic terminology and concepts in Mechanics

There are three parts of Mechanics:

1. Statics - Theory of objects at rest.

2. Kinematics - Analysis of motions.

3. Dynamics - Analysis of the causes of motion.

The following are the components of Mechanics:

1. Observer: There exits an observer. By an observer, we mean any object or person
capable enough to take observations of any physical process, for example, motion, etc.

2. Space: There exits a space in which a physical process takes place including motion.
This space is the space around us called the physical space and is denoted by V .

V is a mathematical space when it is a set with a structure, for example vector space,
group, metric space, etc.

(V,+, ·) V − set +, ·− structure
(X ,d) X− set d− structure.

Physical space: Passing through any point three mutually perpendicular lines can be
drawn. This number three is maximum. For any point P ∈V , an ordered triple (x,y,z)
can be associated with P, called the Cartesian co-ordinates of P, where x,y,z are real
numbers.

P = P(x,y,z) ∈V ∼ R3.

Thus, it can be shown that V is a vector space over R and is isomorphic to R3. The
physical space V is therefore the Euclidean space R3.

11



12 §1.1. Mechanics of a particle

3. Time: Time is a real parameter denoted by t. Any physical process occurs in some
time interval. Time flows uniformly, i.e. it does not stop. We will assume time to be an
absolute parameter, i.e. it does not depend on any physical process or observer.

4. Space-time: The space and time together forms an entity called the space-time: R4 ∼
R3×R.

Event: (x,y,z︸︷︷︸
R3

, t︸︷︷︸
R

) ∈ R4.

Any event can be described by its place (location) of occurrence and the time of its
occurrence. The totality of all the events is called the universe.

Here the space is assumed to be continuum (i.e. no gap) and homogeneous, i.e. all
the points have equal status. Thus, any point can be chose as origin. The space is also
assumed to be isotropic, i.e. all directions have equal status. Then any direction can be
chose as the fundamental direction.

5. Motion: It can be described by the change in position. There are two types of motion:

(a) Translation (with respect to a point) Motion on a straight line.

(b) Rotation (with respect to a straight line) Motion with respect to an axis.

Important assumption about motion

Any motion is a combination of a single translation and a single rotation.

1.1.2 Dictionary of Mechanics

1. Particle: A particle is the smallest unit of matter having inertial property and a definite
position. For example, a point (or an object) in R3 has a definite position and it can be
considered as a particle. On the contrary, waves do not have definite position so they
cannot be considered as particles.

2. Mass: The mass of a particle, denote by m, is the quantitative measure of its inertial
property. Different particles may have different mass and hence different inertia. The
inertia of the particle is measured by its mass.

The mass of the particle is assumed to be constant during any physical process including
motion, i.e. it does not change due to motion.

3. Position: A particle has a definite position in the physical space and hence it can be
represented by a point in V = R3. The position vector of the point in R3 occupied by the
particle (at any given time) is the position of the particle. It is denoted by r̄.

Unlike mass, the position of the particle changes with motion or with time. Hence, we
write it as a function of time t:

r̄ = r̄(t)
r̄(t) = (x(t),y(t),z(t)) = x(t)ī+ y(t) j̄+ z(t)k̄,

PS01EMTH22 2018-19



§1.1. Mechanics of a particle 13

b
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where ī=(1,0,0), j̄ =(0,1,0), k̄=(0,0,1).
In other words, co-ordinated of a particle
are taken as a function of t. A particle is
described by its position and its mass.

Different coordinates and relations be-
tween them:

P(x,y,z) − Cartesian coordinates
P(r,θ ,φ) − Spherical coordinates
P(ρ,φ ,z) − Cylindrical coordinates

Spherical coordinates

x = r sinθ cosφ

y = r sinθ sinφ

z = r cosθ

Cylindrical coordinates

ρ =
√

x2 + y2

θ = tan−1 y
x

z = z

4. Velocity: The velocity of the particle is denoted by v̄(t) and is given by

v̄(t) =
dr̄
dt

= ˙̄r = (ẋ(t), ẏ(t), ż(t)).

Thus, velocity is the rate of change of position of the particle with respect to time t.

5. Linear momentum: Linear momentum is the measure of the linear (translation) motion.
It is denote by p̄ and is given by

p̄ = mv̄ = m ˙̄r.

6. Acceleration: Acceleration of a particle is denoted by ā(t) and is given by

ā(t) =
dv̄
dt

=
d
dt

(
dr̄
dt

)
=

d2r̄
dt2 = ¨̄r.

Thus, acceleration of a particle is the rate of change of its velocity with respect to time.

7. Force: Force on a particle, denoted by F̄ is defined as the cause of motion of the particle
(i.e. cause of change in its position). Since, a particle has inertial property this definition
of force follows from the Newton’s first law of motion which states that:
“A particle (or an object) at rest (or stationary) remains at rest and a particle in motion
remains in motion (with uniform velocity) unless and until an (external) force is applied
to it.”

Also, the Newton’s second law of motion states that: “force is the rate of change of linear
momentum.” Therefore, we have

F̄ =
d p̄
dt

=
d(mv̄)

dt
= m

dv̄
dt

= mā = m ¨̄r. (1.1)

Dr. Jay Mehta jay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edu
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14 §1.1. Mechanics of a particle

Force in equation (1.11.1) is a vector quantity and hence it has three components. Thus,
(1.11.1) gives a system of three equations as follows:

Fx = mẍ = m
d2x
dt2 , Fy = mÿ = m

d2y
dt2 , Fz = mz̈ = m

d2z
dt2 . (1.2)

These equations are called Newton’s equations of motion (NEOM).

Futhermore, equation (1.11.1) can be used to determine the acceleration of the particle of
given mass when the force on the particle is known and vice-versa (i.e. it can be used to
determine the force when acceleration of the particle is known).

8. State of the particle: The state of a particle at time t is denoted by s̄(t) and is given by

s̄(t) = (r̄(t), v̄(t)) = (x(t),y(t),z(t), ẋ(t), ẏ(t), ż(t)).

9. Newton’s law of indeterminacy: If the force on a particle is known then the state of the
particle at any time t can be determined provided that its initial state is given.

This is true vice-versa also, i.e. if the state of a particle at some time t is given then the
force on the particle can be determined provided that its initial state is given. Let us
consider couple of exercises based on this law:

Theorem 1.1.1: Law of conservation of linear momentum

In absence of force, the linear momentum of a particle is conserved.

Proof. We know, by Newton’s second law of motion, that force is the rate of change of
momentum, i.e.

F̄ =
d p̄
dt

.

Therefore, in absence of force, we have

d p̄
dt

= 0

and hence the linear momentum p̄ is constant with respect to time t. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

10. Angular velocity: Rate of change of angular displacement (or angular position) is called
angular velocity. It is denote by w̄.

11. Angular momentum: It is the measure of angular motion. It is denote by L̄ and given by

L̄ = r̄× p̄ = m(r̄× v̄),

where r̄ is the position vector of the particle and p̄ is its linear momentum.

12. Torque (Angular force): It is the cause of angular (rotational) motion. It is denote by N̄
and given by

N̄ = r̄× F̄ .

PS01EMTH22 2018-19



§1.1. Mechanics of a particle 15

Remark 1.1.2. For vectors ū = (u1,u2,u3), v̄ = (v1,v2,v3) ∈ R3, the cross product of ū and v̄
is denoted by ū× v̄ and is defined as

ū× v̄ =

∣∣∣∣∣∣
ī j̄ k̄

u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣= ī(u2v3−u3v2)+ j̄(u3v1−u1v3)+ k̄(u1v2−u2v1).

Note that, ī× ī = j̄× j̄ = k̄× k̄ = 0 and hence ū× ū = 0 for any vector ū.

13. Work: Work done is a property of the force. It is defined as follows: Suppose a
particle is at P(x1,y1,z1) (position 1) and it is brought to Q(x2,y2,z2) (position 2)
along a curve C under the force F̄ . Then the work done by the force F̄ is given by

b

b

P (x1, y1, z1)

Q(x2, y2, z2)

C W12 =

2∫
1

along C

F̄ .dr̄ (1.3)

The integral in equation (1.31.3) is a line inte-
gral. Hence, the work done depends on the
path also.

14. Energy: Energy is the capacity to do work.
There are two types of energy:

Energy

Kinetic energy Potential energy

(i) Kinetic Energy: Kinetic energy is
the energy of the particle due to mo-
tion and it is denoted by T . Ki-
netic energy of a particle of mass m
and moving with speed v is given by
T = 1

2mv2.

(ii) Potential Energy: Potential energy is
the energy of the particle due to its
position and it is denoted by V . It is
called internal energy.

1.1.3 Conservative force field

Definition 1.1.3

Any physical quantity (scalar or vector) is said to be a field quantity if it can be described
as a function of points of the space, i.e. as a function of (x,y,z).

Definition 1.1.4: Conservative force field

A force field F̄ = (x,y,z) is said to be conservative if work done by F̄ does not depend on
the path but it depends only on the initial and final positions.

Note: In nature almost all the forces are conservative. For example, gravity (gravitational force)
is a conservative force.
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16 §1.1. Mechanics of a particle

Theorem 1.1.5

For a conservative force field F̄ , the following statements are equivalent:

1. Force F̄ is conservative.

2.
∮

C
F̄ .dr̄ = 0, where C is a closed curve, i.e. work done along a closed path is zero.

3. The curl of F̄ is the zero vector, i.e. ∇× F̄ = 0, where ∇× F̄ =

∣∣∣∣∣∣
î ĵ k̂
∂

∂x
∂

∂y
∂

∂ z
Fx Fy Fz

∣∣∣∣∣∣ .
4. The force can be written as the negative gradient of a potential, i.e. F̄ =−∇V for

some scalar field V (x,y,z). Equivalently

(Fx,Fy,Fz) =−
(

∂V
∂x

,
∂V
∂y

,
∂V
∂ z

)
.

Example 1.1.6. Is the force F̄ = (2xy− 1,x2 + z,y) conservative? If yes then determine the
corresponding potential V such that F̄ =−∇V .

Solution. We have

∇× F̄ =

∣∣∣∣∣∣
î ĵ k̂
∂

∂x
∂

∂y
∂

∂ z
2xy−1 x2 + z y

∣∣∣∣∣∣
= î
(

∂

∂y
(y)− ∂

∂ z
(x2 + z)

)
− ĵ
(

∂

∂x
(y)− ∂

∂ z
(2xy−1)

)
+ k̂
(

∂

∂x
(x2 + z)− ∂

∂y
(2xy−1)

)
= î(1− (0+1))− ĵ(0−0)+ k̂(2x−2x)

= î(0)− ĵ(0)+ k̂(0) = 0.

Thus, the given force F̄ is conservative.

Now, we find the corresponding potential V . F̄ =−∇V implies

(2xy−1,x2 + z,y) =−
(

∂V
∂x

,
∂V
∂y

,
∂V
∂ z

)
.

Therefore,
∂V
∂x

=−2xy+1,
∂V
∂y

=−x2− z,
∂V
∂ z

=−y.

From the first equation above, we have

Vx =−
∫

y constant

(2xy−1)dx =−x2y+ x+ f1(y,z).

Differentiating above partially with respect to y, we get

∂V
∂y

= − x2 +
∂ f1

∂y
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§1.1. Mechanics of a particle 17

−x2− z = − x2 +
∂ f1

∂y

⇒ ∂ f1

∂y
= − z.

Integrating with respect to y and keeping z constant, we get f1(y,z) =−yz+ f2(z). Then it has
the form

V =−x2y+ x− yz+ f2(z).

Now, differentiating partially with respect to z, we get

∂V
∂ z

= − y+
∂ f2

∂ z

−y = − y+
∂ f2

∂ z

⇒ ∂ f2

∂ z
= 0⇒ f2 = c.

Therefore, V =−x2y+ x− yz+ c . �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Potential energy of a particle situated in a conservative force field F̄ is denoted by V and
is given by F̄ = −∇V . Potential energy of a particle at point P(x,y,z) corresponding to a
conservative force is given by

V (P) =V (x,y,z) =−
P(x,y,z)∫

∞

F̄ .dr̄, (1.4)

where ∞ is the point where potential energy is zero.

Remark 1.1.7. 1. Potential energy of a particle is not unique. In fact, if V (x,y,z) is potential
energy of the particle then V1 =V +λ , where λ is constant is also potential energy. In
other words, potential energy is unique up to addition of a constant.

2. If a particle of mass m placed at a height h in the gravitational force field of the earth then
its potential energy is given by V = mgh, where g is gravitational acceleration.

Theorem 1.1.8: Law of conservation of energy

In a conservative force field the sum of kinetic energy and potential energy of a particle
is conserved (i.e. it does not change with respect to time). This implies E = T +V is
constant (E is called the total energy).
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18 §1.2. Mechanics of a system of particles

1.2 Mechanics of a system of particles

System of particles

Finite system
Eg. N particles

Infinite system

Countable
Eg. natural numbers N

Uncountable
Eg. real numbers R

1.2.1 Finite system of particles

Here we consider a system of N number of particles.

? Position of the system: Each particle in the system has a definite position. Let r̄1, r̄2, . . . , r̄N
be the positions of the particles.

For the system as a whole the position is given by the N position vectors of the particles
in the system. Since each position vector of the particle is in R3, the position of the
system is a vector in R3N given by a 3N-tuple (x1,y1,z1,x2,y2,z2, . . . ,xN ,yN ,zN), where
r̄i = (xi,yi,zi), 1≤ i≤ N.

? Masses: Each particle in the system has a definite mass. Let m1,m2, . . . ,mN be the
masses of the N particles in the system. Then the (total) mass of the system is given by

M =
N

∑
i=1

mi = m1 +m2 + · · ·+mN .

? Linear momentum of the system: Total linear momentum of the system is denoted by
P̄ and is given by the sum of the linear momenta of the particles in the system, i.e.

P̄ =
N

∑
i=1

p̄i =
N

∑
i=1

mi ˙̄ri.

? Center of Mass:

The center of mass of a system of N-
particles can be described as a point having
position vector R̄ given by

R̄ =

N

∑
i=1

mir̄i

N

∑
i=1

mi

=
m1r̄1 +m2r̄2 + · · ·+mN r̄N

m1 +m2 + · · ·+mN
.

bb

b

b

b

b

b

bb

b

b
b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b b
b

b

b

b

0

r̄1
r̄2

r̄N

R̄

center
of mass
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§1.2. Mechanics of a system of particles 19

Remark 1.2.1. Note that the (total) linear momentum of the system of particles is given as
the sum of the linear momenta of the particles in the system. Since, the center of mass of the
system has position vector R̄ one would also like to define the linear momentum of the system
as

P̄ = M ˙̄R =

(
N

∑
i=1

mi

)
˙̄R.

In what follows, we show that both these definitions coincide.

? Linear momentum and center of mass:

P̄ =
N

∑
i=1

p̄i =
N

∑
i=1

mi ˙̄ri

= m1 ˙̄r1 +m2 ˙̄r2 + · · ·+mN ˙̄rN

= m1
dr̄1

dt
+m2

dr̄2

dt
+ · · ·+mN

dr̄N

dt

=
M d

dt (m1r̄1 +m2r̄2 + · · ·+mN r̄N)

M

= M
d
dt

(
∑

N
i=1 mir̄i

)
M

= M ˙̄R

Thus, the linear momentum of a system of particles can be given as

P̄ = M ˙̄R . (1.5)

The expression in (1.51.5) can be interpreted as follows: the linear momentum of the system
is equal to the velocity of the center of mass multiplied by the total mass of the system.

We may thus regard center of mass as a particle having position vector R̄ and mass equal
to the total mass of the system. In other words, we say that the total mass of the system is
concentrated at the center of mass.

? Conservation of total linear momentum: We know that P̄ =
N

∑
i=1

p̄i. Therefore,

˙̄P =
N

∑
i=1

˙̄pi =
N

∑
i=1

F̄i , (1.6)

where F̄i is the force on the i-th particle. Now, force on the i-th particle comprises of two
parts: internal force and external force.

Internal force:

The internal force on a particle is the force
exerted by (i.e. force due to) the other par-
ticles of the system. The internal force on

the i-th particle is given by

F̄(int)
i =

N

∑
j=1
j 6=i

F̄i j. (1.7)
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20 §1.2. Mechanics of a system of particles

b

b

b

b

b

1

2

3

4

5 F̄12

F̄13

F̄14

F̄15

External force: External force on a particle is the force exerted from outside the system.

The total force on i-th particle is the sum of the external and internal forces, i.e.

F̄i = F̄(int)
i + F̄(ext)

i = F̄(ext)
i +

N

∑
j=1
j 6=i

F̄i j. (1.8)

Thus, the total force on the system is given by

F̄ =
N

∑
i=1

F̄i =
N

∑
i=1

F̄(ext)
i +

N

∑
i=1

N

∑
j=1
j 6=i

F̄i j.

Thus, from equations (1.61.6) and (1.81.8), we have

˙̄P =
N

∑
i=1

F̄(ext)
i +

N

∑
i=1

N

∑
j=1
j 6=i

F̄i j. (1.9)

The second sum in the RHS of the above equation is the sum of pairs F̄i j and F̄ji.

˙̄P =
N

∑
i=1

F̄(ext)
i +

N

∑
i, j=1
i6= j

(F̄i j + F̄ji).

By Newton’s third law of motion (principle of action and reaction), F̄i j =−F̄ji and hence
N

∑
i, j=1
i 6= j

(F̄i j + F̄ji) = 0 which implies ˙̄P =
N
∑

i=1
F̄(ext)

i = F̄(ext).

? Law of conservation of (total) linear momentum: Total linear momentum of the
system is conserved if the total external force is zero provided that the internal forces are
Newtonian.

? Angular momentum of a system: The angular momentum of a system of particles is
the sum of the angular momenta of the particles in the system, i.e.

L̄ =
N

∑
i=1

L̄i =
N

∑
i=1

r̄i× p̄i.

? Angular momentum and center of mass:
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§1.3. Constraints and their classification 21

As shown in figure, if r̄i and r̄i
′ denotes posi-

tion of the i-th particle with respect to origin
and center of mass respectively, then

r̄i = R̄+ r̄i
′ or r̄i

′ = r̄i− R̄.

Therefore, ˙̄ri = ˙̄R+ ˙̄′ri and so

b

b

b

b

b

b

b
b

b

b
b

b

b

b

b

b

b

0

r̄i

R̄

center
of mass

r̄i
′

L̄ =
N

∑
i=1

(R̄+ r̄i
′)×mi( ˙̄R+ ˙̄′ri)

=
N

∑
i=1

mi(R̄× ˙̄R+ r̄i
′× ˙̄R+ R̄× ˙̄′ri + r̄i

′× ˙̄′ri)

=
N

∑
i=1

mi(R̄× ˙̄R)+
N

∑
i=1

mi(r̄i
′× ˙̄R)+

N

∑
i=1

mi(R̄× ˙̄′ri)+
N

∑
i=1

mi(r̄i
′× ˙̄′ri)

Now, clearly the last two terms in the above expression vanishes and

N

∑
i=1

mi(R̄× ˙̄R) =

(
R̄×

N

∑
i=1

mi
˙̄R

)
= R̄×M ˙̄R = L̄cm.

Thus, the total angular momentum about a point O is the angular momentum of motion
concentrated at the center of mass, plus the angular momentum about the center of mass.

1.3 Constraints and their classification

1.3.1 Constraints

In many real life situations the moving objects are restricted or constrained to move such that its
coordinates and/or velocity components must satisfy some given relation at any instant of time.
It is possible to express such a restriction as an equation or inequality involving coordinates.
Mathematically this means that for a restricted motion the coordinates involved are not all
independent. We define below the constraint in this context.

Definition 1.3.1: Constraint

Constraint is defined as a restriction on motion.

A constraint is given as a part of the problem. The forces which are responsible for restricting
the motion of the object are called constraint forces. They are as such unknown forces. Also
they are very strong that they barely allow the body under consideration to deviate even slightly.
The effect of the constraint forces is to keep the constraint relations satisfied.

Dr. Jay Mehta jay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edu

mailto:jay_mehta@spuvvn.edu
jay_mehta@spuvvn.edu
jay_mehta@spuvvn.edu


22 §1.3. Constraints and their classification

Example 1.3.2. Motion of a particle on a sphere.
It is required for the particle to be on the sphere, that way a restriction on the motion is

imposed. This restriction can be expressed mathematically as an equation satisfied by the
coordinates of the particle.

Example 1.3.3. Motion of two particles con-
nected by an extensible weightless rod.

In this example two particles are connected
by the rod and hence they have to move in such
a way that they remain connected (with fixed
distance between them) throughout the motion.

Example 1.3.4. In the Example 1.3.31.3.3 we put
a further restriction on the motion by insisting
that the center of the rod moves on a circle.

Remark 1.3.5. From the above two examples we understand the constraints as restriction
on motion which is mentioned in the description of the mechanical system. We note that a
constraint is due to some unknown force. This force is not an external force or internal force
hence we call it constraint force.

Example 1.3.6. Motion of a particle on XY-plane. In general, motion of particle on any plane.

Example 1.3.7. Motion of a particle in a rectangular box.

1.3.2 Classification of constraints

The constraints are classified according to their nature. There are mainly four types of constraints
which we shall discuss in this chapter. They are as follows:

Constraints

Holonomic
expressed by an

algebraic equation

Non-holonomic
cannot be expressed by
an algebraic equation

Scleronomic
doesn’t depend

on time

Rheonomic
depends on time

Definition 1.3.8: Holonomic Constraint

A constraint is said to be holonomic if it can be mathematically described as an algebraic
equation between coordinates of particles in the system.

Example 1.3.9. In the Example 1.3.21.3.2 above if (x,y,z) are coordinates of the particle and if the
radius of the sphere is R then this constraint can be described as

x2 + y2 + z2 = R2.

This relation is an algebraic equation and hence the constraint is a holonomic constraint.
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§1.3. Constraints and their classification 23

Example 1.3.10. Motion of a particle on a circle. A circle is in a plane, say XY -plane. Let the
radius of the circle be R, then there are two constraints in the system and both are holonomic.
They are x2 + y2 = R2 and z = 0.

Example 1.3.11. Motion of a particle in a plane. Here the constraint is that the coordinates of
the particle, say (x,y,z) satisfy the equation of the plane ax+by+cz+d = 0 for some constants
a,b,c,d. This is the only constraint of motion.

In particular, if the particle moves in XY -plane, then the constraint is z = 0 which is
holonomic.

Example 1.3.12. Motion of a particle on a line or axis (linear motion). Suppose the particle
movies in X-axis. Then the system has two holonomic constraints which are y = 0 and z = 0.

Example 1.3.13. If we take x = 0, y = 0 and z = 0 or x,y then the system has 3 constraints and
the particle is at rest at origin, i.e. motion is not possible in this case. If x = a,y = b and z = c
are constants then the particle rests at point (a,b,c). In this case also all the three constraints
are holonomic.

Definition 1.3.14: Non-holonomic Constraint

If a constraint cannot be described as an algebraic equation then it is called a non-holonomic
constraint.

We note here that the relation describing a constraint may be an inequality, a transcendental
equation or a differential equation. In these situations the constraint is no more a holonomic
constraint.

Example 1.3.15. In Example 1.3.71.3.7, i.e. motion of a particle inside a rectangular box, the
constraints can be described with the help of inequalities and hence they are non-holonomic. If
the length of sides of the rectangular box are a, b and c, then the constraints can be expressed
as three inequalities of the form

|x| ≤ a, |y| ≤ b, |z| ≤ c.

Example 1.3.16. Motion on the carom-board
can be considered as another example of a
non-holonomic constraints. If the center of
the carom board is considered as origin then
the constraints can be given by

−a≤ x,y≤ a and z = 0. (1.10)

Thus, there are total three constraints here (i.e.
|x| ≤ a, |y| ≤ a,z = 0) among which the two
constraints on x and y are non-holonomic while
the constraint z = 0 is a holonomic constraint.

Example 1.3.17. Consider a system of two particles joined by a mass less rod of fixed length.
Suppose for simplicity, the system is confined to the horizontal plane. Suppose further that
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24 §1.3. Constraints and their classification

the system is so constrained that the centre of the rod cannot have a velocity component
perpendicular to the rod.

Let (x1,y1,z1) and (x2,y2,z2) be the coordinates of the particles in the system. In this
example there are following restrictions

(i) the motion is confined to the plane z = 0, i.e. for the particles z1 = 0 and z2 = 0,
(ii) the particles are connected by a rod of fixed length say l, this can be described by

(x2− x1)
2 +(y2− y1)

2 = l2 and
(iii) the center of the rod cannot have a velocity component perpendicular to the rod.

It is clear that the three constraints in the first two points above are holonomic constraints.
Now we analyze the last constraint. It is clear that this constraint can be described as

(ẋ1 + ẋ2)sinθ = (ẏ1 + ẏ2)cosθ (1.11)

This is a differential equation which can not be integrated and from this we can not get an
algebraic equation connecting the coordinates. Consequently, it is non-holonomic.

Remark 1.3.18. Observe that in Examples 1.3.131.3.13, 1.3.161.3.16 and 1.3.151.3.15, the number of constraints
is 3. Thus, all of them have same number of constraints. However, the difference is that in
Example 1.3.131.3.13 the particle is at rest, while in case of Example 1.3.161.3.16 motion in possible and
planner and in Example 1.3.151.3.15 the motion is possible in all the 3-dimensions.

Thus, the state or the motion of a particle cannot be determined merely from the number of
constraints.

Definition 1.3.19: Rheonomic Constraint

A constraint is said to be rheonomic if the constraint relation depend explicitly on time.

Example 1.3.20. Motion of a particle on an
expanding sphere. Here the relation describing
the constraint is

x2 + y2 + z2 = R(t)2,

where R(t) is an increasing function of time.
This relation depends on time and hence the
constraint is rheonomic.

Similarly, motion of a particle on a contract-
ing or shrinking sphere is also a system with a
rheonomic constraint. In this case the radius
R(t) is a decreasing function of time t.

Definition 1.3.21: Scleronomic Constraint

A constraint is said to be scleronomic if the constraint relation does not depend explicitly
on time.
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§1.3. Constraints and their classification 25

Most of the constraints discussed above are scleronomic. All the examples (except Exam-
ple 1.3.201.3.20) considered above are examples of scleronomic constraints.

Example 1.3.22. Describe simple pendulum and state all its constraints. Also mention the
types of constraints.

Solution.
A particle (of mass m) is suspended at a point (say) P from a fixed
point (say) O by an in-extendable string (as shown in the figure).
The motion is fixed in a vertical plane under gravity. As shown
in the figure if the length of the string OP be l. Then the two
constraints are:

1. z = 0 (holonomic and scleronomic).

2. x2 + y2 = l2 (holonomic and scleronomic), and x,y can be
given by x = l cosθ , y = l sinθ , where θ is the angle made
with the y-axis as shown in the figure.

O x

l

P my

θ

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Note that motion of a particle moving on a circle (in a plane) also has the same constraints
as that of a simple pendulum. Hence the knowledge of constraints is insufficient to determine
the motion or nature of a mechanical system.

Remark 1.3.23. There are other types of constraints also. They are based on the conservation
of energy and also on on the possibility of forward and backward motion. They are beyond the
scope of our syllabus and hence we will not discuss them.

1.3.3 Difficulties Imposed by Constraints

Consider a system of N-particles. Let r̄1, r̄2, . . . , r̄N be the position vectors and m1,m2, . . . ,mN
be the masses of these particles respectively. Suppose there are some constraints on the motion
of this system. Due to constraints following difficulties arise:

1. Coordinates r̄1, r̄2, . . . , r̄N are not independent.

Constraints are relations between coordinates of the particles in the system. As a result,
we have different equations which are not all independent. Hence the system becomes
difficult to solve.

2. Constraints could be interpreted as effect of some forces. We know that constraints are
due to unknown forces (i.e. constraint forces are unknown). Thus, these forces are not
specified in the problem, they are unknowns in the problem.

Equations of motion for such a system have the form,

m
d2r̄
dt2 = F̄ = F̄(a)+ F̄(c), (1.12)

where F̄(a) and F̄(c) are applied forces and constraint forces respectively. Since constraint
forces are not known in above equation, left hand side as well as right hand side contain
unknowns. This makes the problem unsolvable. Also, r̄’s are not independent because of
this system of equations given in (1.121.12) is a coupled system.

In the next section remedy to above mentioned difficulties in some situations is discussed.
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26 §1.3. Constraints and their classification

1.3.4 Generalized coordinates and Degrees of Freedom

Suppose for a given system of N-particles the number of constraints is k. These constraints can
be expressed mathematically as k-equations,

f1(r̄1, r̄2, . . . , r̄N , t) = 0,
f2(r̄1, r̄2, . . . , r̄N , t) = 0,

...
... (1.13)

fk(r̄1, r̄2, . . . , r̄N , t) = 0.

The coordinates are 3N in number namely, x1,y1,z1,x2,y2,z2, . . . ,xN ,yN ,zN . They are un-
knowns in the equations of motion. These 3N-parameters satisfy k-equations given in (1.131.13),
hence number of independent parameters in the problem is 3N− k. This leads to the following
definition:

Definition 1.3.24: Degrees of Freedom

The minimum number of independent parameters required for the mathematical description
of the given system is called degrees of freedom of the given system.

It is clear that for a system of N-particles with k-constraints the degrees of freedom is 3N−k.
Degrees of freedom of a system is denoted by n, i.e.

n = 3N− k.

Definition 1.3.25: Generalized Coordinates

Consider a system of N particles and k constraints having n degrees of freedom. Then

n = 3N− k.

Thus, the number of independent variables or parameters required to describe the motion
or the position of the system is n. Let q1,q2, . . . ,qn be chosen to describe the motion of
the system. These parameters are called generalized coordinates for the given system.

Example 1.3.26. Determine degrees of freedom in case of motion of a particle on a sphere and
assign generalized coordinates.

Solution. The number of particles is 1, i.e. N = 1. As seen in Example 1.3.21.3.2, we have only
constraint in this case which is x2 + y2 + z2 = R2. Therefore, k = 1. Hence, degrees of freedom
is

n = 3N− k = 3−1 = 2.

Since the degrees of freedom is 2, we will have 2 generalized coordinates in this case.
Expressing it in usual spherical coordinates, we have

x = Rsinθ sinφ
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y = Rsinθ cosφ

z = Rcosθ

We assign the two generalized coordinates q1 = θ and q2 = φ . Clearly, R can be obtained from
θ and φ from the above three relations among them. Note that two generalized coordinates θ

and φ are independent. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Example 1.3.27. Determine degrees of freedom for motion of a simple pendulum (or motion
of particle on a circle) and assign generalized coordinates.

Solution. The number of particle(s) in this case is again 1, i.e. N = 1. As seen in Exer-
cise 1.3.221.3.22, we have two constraints in this case which are z = 0 and x2+y2 = l2, where l is the
length of the string at which the particle is tied. Therefore, k = 2. Hence, degrees of freedom is

n = 3N− k = 3−2 = 1.

Since the degrees of freedom is 1 in this case, we have only one generalized coordinate. Writing
in terms of plane polar coordinates, x = l cosθ and y = sinθ , we see that either θ or l can be
assigned as a generalized coordinate. The other coordinate can be obtained from the assigned
generalized coordinate by the relations l =

√
x2 + y2 and θ = tan−1 ( y

x

)
. So in this case there

is only one generalized coordinate. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Example 1.3.28. Determine the degrees of freedom and assign generalized coordinates for
motion of a particle in any plane.

Solution. Let ax+by+ cz+d = 0 be the equation of the plane. Here the number of particle is
N = 1 and the constraint is also 1 (given by the equation of plane). Therefore, k = 1 and hence
degrees of freedom is n = 3N− k = 2. Choosing q1 = x and q2 = y as generalized coordinates,
from above equations, we have x = q1, y = q2, z =−a

c q1− b
c q2− d

c . �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

1.3.5 Constraints and generalized coordinates in a rigid body

Definition 1.3.29: Rigid body

A rigid body can be defined as a system of particle in which distance between any two
particles remains constant (during the motion) and does not vary with time.

Constraints in a rigid body

If ri and r j denote the coordinates of the ith and the jth particle in a rigid body respectively and
ri j denotes the distance between them, then the constraints in a rigid body are given by

ri j = ci j or (ri− r j)
2− c2

i j = 0,

where ci j’s are constants. All the constraints in a rigid body motion are expressed by an
algebraic equation and hence they all are holonomic.
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28 §1.3. Constraints and their classification

The question is how many such constraints are there? We determine the number of constraints
in a rigid body with N particles. Since the distance of first particle of other N− 1 particles
remains constant, we have the following N−1 constraints:

r12 = c12, r13 = c13, . . . ,r1N = c1N ,

where ci j’s are constants. Now, consider second particle. Since its distance from all other
particles is constant and r12 = r21 = c12 is already considered (counted) once, we have the
following N−2 new constraints:

r23 = c23, r24 = c24, . . . ,r2N = c2N .

Thus, in this manner, a rigid body with N particles has
1
2

N(N−1) constraints expressed as

equations of the form ri j = ci j.

Degrees of freedom in a rigid body

We now determine how many independent coordinates are required to specify the configuration
of a rigid body. We shall show that it should be done by just 6 independent coordinates, i.e.
degrees of freedom of a rigid body (with at least three particles) is 6, irrespective of the number
of particles (≥ 3) in the rigid body.

Suppose there are N particle in the rigid body. Then we have 3N coordinates. Since the dis-
tance between every pair of particles is fixed, as seen above, we have 1

2N(N−1) constraint equa-
tions.

Note that the degrees of freedom in this case can-
not be merely computed by subtracting 1

2N(N−1)
from 3N as

3N− 1
2

N(N−1)≤ 0, ∀ N ≥ 7.

To fix a point in a rigid body, it suffices to specify
its distances from any three non-collinear points.
Thus, once the position of the three of the (non-
collinear) particles of the rigid body are deter-
mined, the positions of all the remaining particles
are fixed by the constraints. The number of de-
grees of freedom therefore must be at most nine.
Furthermore, the three reference points are not
independent. They are related by the three con-
straints given by

r12 = c12, r23 = c23, r13 = c13.

This reduces the degrees of freedom of the system to six.

1.3.6 Transformation equations

During the course of motion the configuration of the system keeps on changing with time and
hence usual coordinates as well as generalized coordinates are functions of time t, i.e.

qi ≡ qi(t), i = 1,2, . . . ,n
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or
r̄i ≡ r̄i(t), i = 1,2, . . . ,n.

Let r̄1,r̄2,...,r̄N be the position vectors (i.e. usual coordinates) of the particles in the system.
Then they can be expressed in terms of generalized coordinates q1,q2, . . . ,qn as follows:

r̄1 ≡ r̄1(q1,q2, . . . ,qn, t),
r̄2 ≡ r̄2(q1,q2, . . . ,qn, t),
...

... (1.15)
r̄N ≡ r̄N(q1,q2, . . . ,qn, t).

In principle, these relations are invertible and hence we can write

q1 ≡ q1(r̄1, r̄2, . . . , r̄N , t),
q2 ≡ q2(r̄1, r̄2, . . . , r̄N , t),
...

... (1.16)
qn ≡ qn(r̄1, r̄2, . . . , r̄N , t).

The system of equations given in (1.151.15) and (1.161.16) are called transformations equations as
they transform usual coordinates into generalized coordinates and vice-versa. If the equations
of motions are expressed in terms of generalized coordinates then they will be independent.
Thus, the introduction of generalized coordinates resolves the difficulty of equations of motion
(i.e. the first difficulty due to constraints is resolved).

In the case of holonomic constraints the constraint equations are algebraic equations and
hence they are used to determine generalized coordinates. In other cases it is difficult to
determine generalized coordinates. We will discuss only holonomic systems.

Now, we demonstrate how the transformation equations are obtained by means of the
following example:

Example 1.3.30. Consider motion of a particle on a sphere.

x2 + y2 + z2 = R2.

As seen in Example 1.3.261.3.26, we know that, the usual coordinates are r̄ = (x,y,z) and the assigned
generalized coordinates q1 = θ and q2 = φ . Then the transformation relation r̄ ≡ r̄(q1,q2) is
given as:

x = Rsinθ sinφ

y = Rsinθ cosφ

z = Rcosθ

and the transformation relations qi ≡ qi(r̄)≡ qi(x,y,z) for i = 1,2 are given as follows:

q1 = tan−1
(y

x

)
q2 = cos−1

(
z√

x2 + y2 + z2

)
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1.3.7 Generalized Velocities

In analogy with velocity defined as time derivative of position vector, we define time derivative
of a generalized coordinate q j as generalized velocity it is denoted by q̇ j. It is easy to see from
equation (1.161.16) that

˙̄ri =
N

∑
j=1

∂ r̄i

∂q j
q̇ j +

∂ r̄i

∂ t
i = 1,2, . . . ,N. (1.17)

Above equations provide relation between usual velocities and generalized velocities. If the
constraints are scleronomic then above equations reduce to

˙̄ri =
N

∑
j=1

∂ r̄i

∂q j
q̇ j i = 1,2, . . . ,N. (1.18)

Theorem 1.3.31: Cancellation of dots

If constraints are scleronomic then

∂ ˙̄ri

∂ q̇k
=

∂ r̄i

∂qk
, i = 1,2, . . . ,N, k = 1,2, . . . ,n.

Proof. Equation (1.181.18) is differentiated partially with respect to q̇k to get

∂ ˙̄ri

∂ q̇k
=

N

∑
j=1

∂ r̄i

∂q j

∂ q̇ j

∂ q̇k
,

The second term inside the summation on the right hand side of above equation vanishes except
for j = k and hence the proof. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

This theorem is referred as the law of cancellation of dots.

1.4 Principle of Virtual Work

1.4.1 Virtual Displacement and Virtual Work

Definition 1.4.1: Virtual Displacement

Consider a system of N-particles. Let r̄1, r̄2, . . . , r̄N be the position vectors of the particles
of the system. The virtual displacement of the ith particle in the system is the displacement
occurring without the change in time (instantaneous), i.e. virtual displacement is the
change δ r̄i which is infinitesimal and instantaneous. It is consistent with the forces and
constraints of the system.
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Definition 1.4.2: Virtual Work

The work done (by the forces in system) due to virtual displacement is called virtual work.
It is denoted by δW and is given by

δW =
N

∑
i=1

F̄i ·δ r̄i.

1.4.2 Principle of Virtual Work

A system of N-particles is said to be in equilibrium if the net force (i.e. total force) on each
particle is zero. In other words, if F̄i denotes the total force on the ith particle of the system
then the system is said to be in equilibrium if F̄i = 0 for all i = 1,2, . . . ,N.

We know that the virtual work is the word done due to virtual displacement. The principle
of virtual work states that:

Theorem 1.4.3

Total virtual work done on a system of particles in equilibrium vanishes.

Proof. Consider a system of N-particles in equilibrium, i.e. the total force on each particles
is zero. Let F̄i denote the total force on the ith particle for i = 1,2, . . . ,N. Let δ r̄i denote the
virtual displacement of the ith particle.

Since the system is in equilibrium, F̄i = 0 for all i = 1,2, . . . ,N. Therefore, F̄i ·δ r̄i = 0 for
all i = 1,2, . . . ,N and hence

N

∑
i=1

F̄i ·δ r̄i = 0⇒ δW = 0.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

1.4.3 Refined version of Principle of Virtual Work

As before, consider a system of N-particles in equilibrium and let F̄i be the total force on the ith

particle. Then F̄i is the sum of applied forces denoted by F̄(a)
i and constraint forces denoted by

F̄(c)
i , i.e. for i = 1,2, . . . ,N,

F̄i = F̄(a)
i + F̄(c)

i .

Since the system is in equilibrium, by principle of virtual work, the virtual work δW = 0, i.e.

δW =
N

∑
i=1

F̄i ·δ r̄i =
N

∑
i=1

F̄(a)
i ·δ r̄i +

N

∑
i=1

F̄(c)
i ·δ r̄i = 0. (1.19)

It is observed that if the motion is on a surface then the constraint force F̄(c)
i is the deviation

normal to the surface and displacement δ r̄i is along the tangential direction. Since the tangent
and normal are perpendicular to each other, their dot product is zero, i.e. F̄(c)

i · δ r̄i vanishes
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32 §1.5. D’Alemberts Principle and Lagrange’s Equations

for all i = 1,2, . . . ,N. Hence, the work done by constraint forces is zero or in other words,
constraint forces are workless. In most of the cases, constraint forces are workless, i.e.

N

∑
i=1

F̄(c)
i ·δ r̄i = 0.

Using this in equation (1.191.19), we get

N

∑
i=1

F̄(a)
i ·δ r̄i = 0. (1.20)

Thus, the principle of virtual work can be rewritten as
“If a system is in equilibrium and the constraint forces are workless then the total virtual

work done by applied forces is zero.”

1.5 D’Alemberts Principle and Lagrange’s Equations

1.5.1 D’Alemberts Principle

Jean le Rond d’Alembert (1717-1783)

As stated earlier constraints are due to unknown
forces and hence in the equations of motion these
forces appear as unknowns. This difficulty can be
resolved by an alternate statement of principle of
virtual work. Principle of virtual work states that,
”the virtual work done by forces in equilibrium is
zero”. D’Alembert’s principle is derived as below.

Consider a system of N-particles. Let F̄i be force
on ith particle and δ r̄i denote virtual displacement
of that particle. Let F̄(a)

i and F̄(c)
i be applied forces

and constraint forces on ith particle respectively. By
Newton’s equations of motion, we write

F̄i = ˙̄pi ∀ i = 1,2, . . . ,N.

or
F̄i− p̄i = 0, ∀ i = 1,2, . . . ,N.

Therefore,
N

∑
i=1

(F̄i− ˙̄pi) = 0.

Thus the system is in equilibrium under effective force ∑
N
i=1 (F̄i− ˙̄pi) and hence by principle of

virtual work, we get
N

∑
i=1

(F̄i− ˙̄pi) ·δ r̄i = 0. (1.21)

Further the forces F̄i are sum of applied forces F̄(a)
i and constraint forces F̄(c)

i and hence (1.211.21)
can be rewritten as

N

∑
i=1

(
F̄(a)

i − ˙̄pi

)
·δ r̄i +

N

∑
i=1

F̄(c)
i ·δ r̄i = 0. (1.22)
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If the constraints are workless then the second term on the left hand side of (1.221.22) vanishes and
hence it reduces to

N

∑
i=1

(
F̄(a)

i − ˙̄pi

)
·δ r̄i = 0 (1.23)

This is called D’Alembert’s principle. From (1.231.23) it can be seen that the constraint forces are
removed from the equation. It is known that equations of motion can be derived from principle
of virtual work. We will derive them from D’Alembert’s principle which is an alternate form of
the principle of virtual work.

1.5.2 Lagrange’s Equations of Motion

Joseph-Louis Lagrange (1736-1813)

In this section, we shall derive equations of motion
from D’Alembert’s principle called the Lagrange’s
equation of motion (LEOM).

Consider a system of N-particles having masses
m1,m2, ..,mN and position vectors r̄1, r̄2, . . . , r̄N re-
spectively. Let the degrees of freedom for this
system be n and q1,q2, . . . ,qn be chosen as gener-
alized coordinates. We shall also assume that the
constraints are workless and scleronomic, so that
D’Alembert’s principle holds.

The transformation relations between the usual
coordinates and the generalized coordinates are
given as follows:

r̄i ≡ r̄i(q1,q2, . . . ,qn), i = 1,2, . . . ,N. (1.24)

Also, we know that these relations are invertible and so

q j ≡ q j(r̄1, r̄2, . . . , r̄N), j = 1,2, . . . ,n. (1.25)

D’Alembert’s principle can be written as

N

∑
i=1

F̄(a)
i ·δ r̄i =

N

∑
i=1

˙̄pi ·δ r̄i, (1.26)

where F̄(a)
i are the applied forces. Our aim is to derive equations of motion by transforming

above equation in terms of generalized coordinates. From (1.241.24), the change δ r̄i in r̄i is given
by,

δ r̄i =
n

∑
j=1

∂ r̄i

∂q j
δq j i = 1,2, . . . ,N. (1.27)

Using this, the LHS of (1.261.26) can be written as

N

∑
i=1

F̄(a)
i ·δ r̄i =

N

∑
i=1

n

∑
j=1

(
F̄(a)

i · ∂ r̄i

∂q j
δq j

)

=
n

∑
j=1

(
N

∑
i=1

F̄(a)
i · ∂ r̄i

∂q j

)
δq j
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=
n

∑
j=1

Q j δq j, (1.28)

where we define

Q j =
N

∑
i=1

F̄(a)
i · ∂ r̄i

∂q j
j = 1,2, . . . ,n. (1.29)

These quantities Q j are called generalized forces or components of generalized force. Now, we
simplify the RHS of (1.261.26). For this, consider

d
dt

(
˙̄ri ·

∂ r̄i

∂q j

)
= ¨̄ri ·

∂ r̄i

∂q j
+ ˙̄ri ·

d
dt

(
∂ r̄i

∂q j

)
. (1.30)

Also from (1.241.24), for i = 1,2, . . . ,N, we have

˙̄ri =
n

∑
k=1

∂ r̄i

∂qk
q̇k +

∂ r̄i

∂ t
.

Differentiating this further partially with respect to q j, we get

∂ ˙̄ri

∂q j
=

∂

∂q j

(
n

∑
n=1

∂ r̄i

∂qk
q̇k +

∂ r̄i

∂ t

)

=
n

∑
n=1

∂

∂q j

(
∂ r̄i

∂qk
q̇k

)
+

∂

∂q j

(
∂ r̄i

∂ t

)
=

n

∑
k=1

∂ 2r̄i

∂qk∂q j
q̇k +

∂ 2r̄i

∂ t∂q j
(1.31)

On the other hand from (1.241.24), we also have

d
dt

(
∂ r̄i

∂q j

)
=

n

∑
k=1

∂ 2r̄i

∂q j∂qk
q̇k +

∂ 2r̄i

∂ t∂q j
(1.32)

Comparing the RHS of the above two equations (1.311.31) and (1.321.32), we get

d
dt

(
∂ r̄i

∂q j

)
=

∂ ˙̄ri

∂q j
(1.33)

Using this in (1.301.30)
d
dt

(
˙̄ri ·

∂ r̄i

∂q j

)
= ¨̄ri ·

∂ r̄i

∂qi
+ ˙̄ri ·

(
∂ ˙̄ri

∂q j

)
(1.34)

Now, since the constraints are scleronomic, by Theorem 1.3.71.3.7, we have
∂ ˙̄ri

∂ q̇ j
=

∂ r̄i

∂q j
.

Using this in LHS of above equation (1.341.34), we get

d
dt

(
˙̄ri ·

∂ ˙̄ri

∂ q̇ j

)
= ¨̄ri ·

∂ r̄i

∂q j
+ ˙̄ri ·

(
∂ ˙̄ri

∂q j

)
or

¨̄ri ·
∂ r̄i

∂q j
=

d
dt

(
˙̄ri ·

∂ ˙̄ri

∂ q̇ j

)
− ˙̄ri ·

(
∂ ˙̄ri

∂q j

)
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=
d
dt

(
∂

∂ q̇ j

(
1
2

˙̄ri · ˙̄ri

))
− ∂

∂q j

(
1
2

˙̄ri · ˙̄ri

)
=

d
dt

(
∂

∂ q̇ j

(
1
2

v̄i · v̄i

))
− ∂

∂q j

(
1
2

v̄i · v̄i

)
=

d
dt

(
∂

∂ q̇ j

(
1
2

v2
i

))
− ∂

∂q j

(
1
2

v2
i

)
(1.35)

Then the RHS of (1.261.26) becomes

N

∑
i=1

˙̄pi ·δ ˙̄ri =
N

∑
i=1

n

∑
j=1

mi ¨̄ri ·
∂ r̄i

∂q j
δq j

Using equation (1.351.35) in above expression, we get

N

∑
i=1

˙̄pi ·δ ˙̄ri =
N

∑
i=1

n

∑
j=1

mi

[
d
dt

(
∂

∂ q̇ j

(
1
2

v2
i

))
− ∂

∂q j

(
1
2

v2
i

)]
δq j

=
N

∑
i=1

n

∑
j=1

[
d
dt

(
∂

∂ q̇ j

(
1
2

miv2
i

))
− ∂

∂q j

(
1
2

miv2
i

)]
δq j

=
n

∑
j=1

[
d
dt

(
∂

∂ q̇ j

N

∑
i=1

(
1
2

miv2
i

))
− ∂

∂q j

N

∑
i=1

(
1
2

miv2
i

)]
δq j

=
n

∑
j=1

[
d
dt

(
∂T
∂ q̇ j

)
− ∂T

∂q j

]
δq j, (1.36)

where T
(
= ∑

N
i=1

1
2miv2

i
)

is the total kinetic energy of the system. Finally substituting equa-
tions (1.281.28) and (1.361.36) in (1.261.26), we get

n

∑
j=1

Q j δq j =
n

∑
j=1

[
d
dt

(
∂T
∂ q̇ j

)
− ∂T

∂q j

]
δq j

or
n

∑
j=1

[
Q j−

(
d
dt

(
∂T
∂ q̇ j

)
− ∂T

∂q j

)]
δq j = 0 (1.37)

Further, if constraints are holonomic then the generalized coordinates q j are independent and
hence (1.371.37) holds if individual term in the summation vanishes, i.e.,

Q j−
(

d
dt

(
∂T
∂ q̇ j

)
− ∂T

∂q j

)
= 0, j = 1,2, . . . ,n

or

Lagrange’s equations of motion (General Form)

d
dt

(
∂T
∂ q̇ j

)
− ∂T

∂q j
= Q j, j = 1,2, . . . ,n. (1.38)
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Equations (1.381.38) are called Lagrange’s equations of motion in general form. These equations
form a simultaneous system of second order ordinary differential equations. Solution of this
system will determine generalized coordinates q1,q2, . . . ,qn as functions of time.

In the discussion of constraints it was seen that due to constraints there were two types of
difficulties arise namely, (i) coordinates are not independent and (ii) constraint forces occur in
the equations of motion as unknowns. It can be noted from Lagrange’s equations of motion
that, these equations of motion are written only for the applied forces, the constraint forces no
more appear in the equations and also they are written for independent coordinates q j’s, thus
both the difficulties imposed by constraints are overcome.

Lagrange’s equations of motion in general form can be used for various forms of forces in
the nature. In the next section we derive special cases of Lagrange’s equations of motion.

Exercise 1.5.1: LEOM for particle moving in space

Obtain Lagrange’s equations of motion for a particle moving in space under a force F̄
using Cartesian coordinates.

Solution. We know that Lagrange’s equations of motion are

d
dt

(
∂T
∂ q̇ j

)
− ∂T

∂q j
= Q j, j = 1,2, . . . ,n. (1.39)

In this case, we have only one particle and no constraints, i.e. N = 1 and k = 0. So, we have
n = 3N− k = 3 generalized coordinates, say

q1 = x, q2 = y, q3 = z.

The total kinetic energy of the system is given by

T =
1
2

mv2 =
1
2

m ˙̄r2 =
1
2

m(ẋ2 + ẏ2 + ż2).

Therefore,
∂T
∂ ẋ

= mẋ,
∂T
∂ ẏ

= mẏ,
∂T
∂ ż

= mż

and so
d
dt

(
∂T
∂ ẋ

)
= mẍ,

d
dt

(
∂T
∂ ẏ

)
= mÿ,

d
dt

(
∂T
∂ ż

)
= mz̈

Also, since T is independent of x,y and z, we have

∂T
∂x

=
∂T
∂y

=
∂T
∂ z

= 0.

Now, the generalized forces Q j are given as follows:

Q j =
N

∑
i=1

F̄i ·
∂ r̄i

∂q j
, j = 1,2,3.

Since, in our case, we have only one particle,

Q j = F̄ · ∂ r̄
∂q j

, j = 1,2,3.
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Let the position vector of the particle be given by r̄ = xî+ y ĵ+ zk̂ and the force on the particle
be given by F̄ = Fx î+Fy ĵ+Fzk̂. Then

Q1 = F̄ · ∂ r
∂x

= (Fx î+Fy ĵ+Fzk̂) · î = Fx.

Similarly, Q2 = Fy and Q3 = Fz. So, Lagrange’s equations of motion can be given by

d
dt

(
∂T
∂ ẋ

)
− ∂T

∂x
= Q1⇒ mẍ−0 = Fx,

i.e. Fx = mẍ. Similarly, the other two equations are obtained as Fy = mÿ and Fz = mz̈. Observe
that in this case,

Fx î+Fy ĵ+Fzk̂ = m(ẍî+ ÿ ĵ+ z̈k̂)⇒ F̄ = m ¨̄r = mā.

Thus, we obtained Newton’s equations of motion as Lagrange’s equations of motion as in this
case we have no constraints. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

1.6 Lagrange’s Equations of Motion: Special Cases

In this section various types of applied forces will be considered and appropriate form of
Lagrange’s equations of motion will be derived.

1.6.1 Conservative Force

Suppose applied forces are conservative and derivable from a potential function depending on
positions of the particles only, i.e. V ≡V (r̄1, r̄2, . . . , r̄N). In this case, applied forces are given
by

F̄(a)
i =−∇iV, i = 1,2, . . . ,N, (1.40)

where ∇i denotes vector differential operator at the position of ith particle, i.e. ∇i≡
(

∂

∂xi
, ∂

∂yi
, ∂

∂ zi

)
.

Using this in Equation (1.401.40) we get,

Q j =
N

∑
i=1

F̄i(a) ·
∂ r̄i

∂q j

=
N

∑
i=1
−∇iV ·

∂ r̄i

∂q j

= − ∂V
∂q j

(1.41)

using these in (1.381.38), we get

d
dt

(
∂T
∂ q̇ j

)
− ∂T

∂q j
=− ∂V

∂q j
.

or
d
dt

(
∂T
∂ q̇ j

)
− ∂T

∂q j
+

∂V
∂q j

= 0. (1.42)
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Further we subtract a vanishing term ∂V
∂ q̇ j

from the first term on left hand side of above equation
to get

d
dt

(
∂T
∂ q̇ j

)
− ∂V

∂ q̇ j
− ∂T

∂q j
+

∂V
∂q j

= 0, j = 1,2, . . . ,n,

or
d
dt

(
∂ (T −V )

∂ q̇ j

)
− ∂ (T −V )

∂q j
= 0, j = 1,2, . . . ,n.

Now we define a function L≡ L(q1,q2, . . . ,qn, q̇1, q̇2, . . . , q̇n, t) given by

L = T −V (1.43)

Using this in above equation yields

Lagrange’s equations of motion (Conservative Force)

d
dt

(
∂L
∂ q̇ j

)
− ∂L

∂q j
= 0, j = 1,2, . . . ,n. (1.44)

These equations are referred to as Lagrange’s equations of motion and the function L is called
Lagrangian of the system.

Exercise 1.6.1: LEOM for Simple Pendulum

Obtain Lagrange’s equations of motion for simple pendulum.

Solution.

As we have seen earlier, simple pendulum is a system of
one particle where the particle is suspended by a rigid
weightless and inextendable string from a fixed point. The
particle is allowed to move in vertical plane and motion
takes place under gravity. The constraints are

1. x2 + y2 + z2 = l2.
2. z = 0.

Therefore degrees of freedom is n = 3N− k = 1.

O x

l

P my

θ

Choosing the angle θ made by the pendulum with the vertical axis as the generalized
coordinate, we write

x = l sinθ , y = l cosθ , z = 0.
ẋ = l cosθ θ̇ , ẏ = −l sinθ θ̇ , ż = 0.

Therefore, the kinetic energy in terms of generalized coordinates can be written as

T =
1
2

m(ẋ2 + ẏ2 + ż2) =
m
2

l2
θ̇

2 .
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Here, the force is the gravitational force which is conservative. We choose the potential V = 0
at the point of suspension and so potential is given by

V = mgh =−mgy =−mgl cosθ .

Now,
L = T −V =

m
2

l2
θ̇

2 +mgl cosθ .

Hence, Lagrange’s equations of motion is

d
dt

(
∂L
∂ θ̇

)
− ∂L

∂θ
= 0.

From the Lagrangian, we have

∂L
∂ θ̇

= ml2
θ̇ ⇒ d

dt

(
∂L
∂ θ̇

)
= ml2

θ̈ . (1.45)

∂L
∂θ

= −mgl sinθ . (1.46)

Using these values in the above LEOM, we get

ml(lθ̈ +gsinθ) = 0.

Therefore ml = 0 or lθ̈ +gsinθ = 0. But ml = 0 is not possible as both m and l are non-zero
constants. Therefore, we have

lθ̈ +gsinθ = 0

⇒ d2θ

dt2 +
(g

l

)
sinθ = 0.

The above equation is a non-linear differential equation. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

1.6.2 Non-conservative Force

In the previous section we discussed the case of conservative force which can be derived from
a scalar potential depending on the positions of the particles in the system. In some case
forces can be derived from a more general potential which may depend on velocities also. A
known case of such force is of electromagnetic force. In such situations also it is possible to
associate a Lagrangian function. Suppose the applied forces are derivable from a potential
U ≡U(q1,q2, . . . ,qn; q̇1, q̇2, . . . , q̇n), in the following prescription

Q j =−
∂U
∂q j

+
d
dt

(
∂U
∂ q̇ j

)
, j = 1,2, . . . ,n. (1.47)

Then using these in (1.381.38), we get

d
dt

(
∂T
∂ q̇ j

)
− ∂T

∂q j
=− ∂U

∂q j
+

d
dt

(
∂U
∂ q̇ j

)
.
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or
d
dt

(
∂T
∂ q̇ j

)
− ∂T

∂q j
+

∂U
∂q j
− d

dt

(
∂U
∂ q̇ j

)
= 0.

or
d
dt

(
∂ (T −U)

∂ q̇ j

)
− ∂ (T −U)

∂q j
= 0.

Defining Lagrangian as L = T −U , above equations read as

d
dt

(
∂L
∂ q̇ j

)
− ∂L

∂q j
= 0, j = 1,2, . . . ,n.

From (1.471.47) it is clear that if velocity terms are absent in the expression of U then it reduces to
potential V, thus U is called general potential, it is also called velocity dependent potential.

1.6.3 Frictional Forces and Rayleigh’s Dissipation Function

It is known that frictional forces are not conservative and also they are proportional to the
velocity. In many cases frictional forces are derivable from a function called Rayleigh’s
dissipation function. His function is denoted by R. Let the frictional force on ith particle be
denoted by F(d)

i , then
F(d)

i =−λiṙi,

where λi are constants. Here the corresponding generalized forces are given by,

Q(d)
j =

N

∑
i=1

F(d)
i · ∂ r̄i

∂q j

= −
N

∑
i=1

λi ˙̄ri ·
∂ r̄i

∂q j

= −
N

∑
i=1

λi ˙̄ri ·
∂ ˙̄ri

∂ q̇ j

(
∵

∂ r̄i

∂q j
=

∂ ˙̄ri

∂ q̇ j

)
=

N

∑
i=1

∂

∂ q̇ j

(
−1

2
λiṙ2

i

)
=

∂

∂ q̇ j

(
1
2

N

∑
i=1

λiṙ2
i

)

= − ∂R
∂ q̇ j

, (1.48)

where

R =
1
2

N

∑
i=1

λiṙ2
i (1.49)

is called Rayleigh’s dissipation function.
Now suppose in a system, there are conservative applied forces as well as frictional forces

derivable from a dissipation function R then using (1.481.48) in (1.381.38) along with (1.441.44), we get
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Lagrange’s equations of motion (Frictional forces)

d
dt

(
∂L
∂ q̇ j

)
− ∂L

∂q j
+

∂R
∂ q̇ j

= 0, j = 1,2, . . . ,n. (1.50)

1.7 Kinetic Energy in generalized Coordinates

In the previous section we have seen that Lagrange’s equations of motion are written in terms
of kinetic energy expressed in terms of generalized coordinates and generalized velocities.
We now derive expression of kinetic energy of a system of particles in terms of generalized
quantities.

The expression of kinetic energy of a system of particles is given by

T =
N

∑
i=1

1
2

miv2
i , (1.51)

where v̄i denotes velocity of ithparticle. As seen earlier it is given by

v̄i =
n

∑
j=1

∂ r̄i

∂q j
q̇ j +

∂ r̄i

∂ t
, (1.52)

when this is used in the above expression gives,

T =
N

∑
i=1

1
2

mi

(
n

∑
j=1

∂ r̄i

∂q j
q̇ j +

∂ r̄i

∂ t

)
·

(
n

∑
k=1

∂ r̄i

∂qk
q̇k +

∂ r̄i

∂ t

)

=
N

∑
i=1

∑
j,k

1
2

mi

(
∂ r̄i

∂q j
· ∂ r̄i

∂qk
q̇ jq̇k +

∂ r̄i

∂q j
· ∂ r̄i

∂ t
q̇ j +

∂ r̄i

∂qk
· ∂ r̄i

∂ t
q̇k +

∂ r̄i

∂ t
· ∂ r̄i

∂ t

)

=
N

∑
i=1

∑
j,k

1
2

mi
∂ r̄i

∂q j
· ∂ r̄i

∂qk
q̇ jq̇k +

N

∑
i=1

n

∑
j=1

mi
∂ r̄i

∂q j
· ∂ r̄i

∂ t
q̇ j +

N

∑
i=1

1
2

mi
∂ r̄i

∂ t
· ∂ r̄i

∂ t
. (1.53)

The above equation is rewritten as,

T = T2 +T1 +T0, (1.54)

where Ti (i = 1,2,3) represents a term of ith degree in generalized velocities and these terms
are given by,

T2 =
N

∑
i=1

∑
j,k

1
2

mi
∂ r̄i

∂q j
· ∂ r̄i

∂qk
q̇ jq̇k,

T1 =
N

∑
i=1

n

∑
j=1

mi
∂ r̄i

∂q j
· ∂ r̄i

∂ t
q̇ j, (1.55)

T0 =
N

∑
i=1

1
2

mi
∂ r̄i

∂ t
· ∂ r̄i

∂ t
.
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1.8 Configuration Space and Lagrangian

1.8.1 Configuration space and system point

Definition 1.8.1: Configuration space

Consider a system of n-degrees of freedom. Let q1,q2, . . . ,qn be chosen generalized
coordinates. The position of the system can be determined if q1,q2, . . . ,qn are known.
Thus a space of n-dimension, say Rn, can be assumed to be associated with the system.
For this n-dimensional space, q1,q2, . . . ,qn are taken as coordinates.

The n-dimensional space, associated with a system, having q1,q2, . . . ,qn as coordinates
is called configuration space of the system.

Definition 1.8.2: System point

At any given time t, the position of the system can be determined using q1,q2, . . . ,qn.
Hence we can associate a point in the configuration space with the motion of the system.
This point is called the system point in the configuration space.

1.8.2 Remarks on Lagrange’s equation of motion

Remarks 1.8.3. For a system of n degrees of freedom, let q1,q2, . . . ,qn be the chosen gen-
eralized coordinates and let L(q1,q2, . . . ,qn, q̇1, q̇2, . . . , q̇n, t)≡ L(q, q̇, t) be Lagrangian. Then
Lagrange’s equation of motion are given by

d
dt

(
∂L
∂ q̇ j

)
− ∂L

∂q j
= 0, j = 1,2, . . . ,n. (1.56)

1. In (1.561.56) we have a system of n second order ordinary differential equation with q1,q2, . . . ,qn
as dependent variables and t as independent variable.

2. The solution of the system is given in the form

q j ≡ q j(t), j = 1,2, . . . ,n. (1.57)

3. The exact form of the above solution can be obtained using the initial condition. The
solution (1.571.57) describes a curve in the configuration space. We will say that the system
point describes the curve given in (1.571.57) following the motion of the system.

4. Lagrange’s equation of motion form a system of non-linear second order ordinary dif-
ferential equations. Such systems are very difficult to solve. However in many cases,
first integrals are possible (i.e. some of the equations reduce to the first order equations)
which provide some physical principles.
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1.8.3 Uniqueness of Lagrangian

We know that Lagrangian of a system is given by L = T −V , where T is the kinetic energy and
V is the potential energy of the system.

1. For a system, potential V is not unique. In fact, we have seen that, V is unique upto
addition of a constant. Thus for a system another, Lagrangian can be obtained by adding
a constant, i.e.

L = T −V +λ = T − (V −λ ) = T −V1,

where V1 =V −λ is also potential.

2. For any system, the generalized coordinates can be chosen in different ways. Then the
form of Lagrangian may differ in this case.

3. Let L≡ L(q1,q2, . . . ,qn, q̇1, q̇2, . . . , q̇n, t) be Lagrangian of the system. Then it satisfies

d
dt

(
∂L
∂ q̇ j

)
− ∂L

∂q j
= 0, j = 1,2, . . . ,n.

Let L′ be given by L′ = L+ dF
dt , where F ≡ F(q1,q2, . . . ,qn, t) is an arbitrary function.

Then L′ also satisfies LEOM (Prove! see Exercise 1.251.25), i.e.

d
dt

(
∂L′

∂ q̇ j

)
− ∂L′

∂q j
= 0, j = 1,2, . . . ,n

and hence L′ is also Lagrangian of the system.

These three aspects indicates that Lagrangian of the system need not be unique.

Exercises

Exercise 1.11.1
Determine the degrees of freedom and assign generalized coordinates (if possible) in the fol-

lowing systems:

1. Two particles connected by an in-extensible rod of length l.

2. Two particles connected by an in-extensible rod of length l and the center of the rod
moving on a circle of radius r.

3. Simple pendulum (or a particle moving on a circle).

4. motion of a particle on a parabola or ellipse.

Exercise 1.21.2
Determine the degrees of freedom, assign generalized coordinates and express kinetic energy

in terms of generalized coordinates for the motion of a particle in XY -plane in terms of plane
polar coordinates.
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Exercise 1.31.3
Express kinetic energy of a particle moving in space in terms of spherical coordinates.

Exercise 1.41.4
Distance between two points (x,y) and (x+dx,y+dy) (in plane) is given by ds2 = dx2 +dy2.

Express this in terms of polar coordinates.

Exercise 1.5
Distance between two points (x,y,z) and (x+dx,y+dy,z+dz) is given by ds2 = dx2 +dy2 +

dz2. Express this in terms of spherical coordinates.

Exercise 1.6
For a particle moving on the surface of a cylinder

1. Find the constraints and classify them.

2. Determine degrees of freedom and assign generalized (cylindrical) coordinates.

3. Obtain and expression of kinetic energy in terms of generalized coordinates.

Exercise 1.71.7
Describe the motion of a double pendulum and determine degrees of freedom by discussing

its constraints. Also assign generalized coordinates to it.

Exercise 1.81.8
Define a spherical pendulum. Discuss all of its constraints, determine its degrees of freedom

and assign generalized coordinates.

Exercise 1.9

Show that Lagrange’s equation of motion in the form of
d
dt

(
∂T
∂ q̇ j

)
− ∂T

∂q j
= Q j (i.e. gen-

eral form) can also be written as
∂ Ṫ
∂ q̇ j
−2

∂T
∂q j

= Q j. These are known as Nielsen form of the

Lagrange’s equations.

Exercise 1.10
Obtain Lagrange’s equations of motion for a particle moving in XY -plane under the effect of

force F̄ using plane polar coordinates as generalized coordinates.

Exercise 1.11
Obtain Lagrange’s equations of motion for a particle moving in space under the effect of force

F̄ using cylindrical coordinates as generalized coordinates.

Exercise 1.121.12
Express Kinetic energy for the motion of double pendulum in terms of generalized coordinates

and hence obtain its Lagrange’s equations of motion.
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Exercise 1.131.13
Express Kinetic energy of a spherical pendulum (or a particle moving on a sphere) in terms of

generalized coordinates and hence obtain its Lagrange’s equations of motion.

Exercise 1.14
Describe Atwood’s machine with a diagram.

1. State its constraints and classify them. Determine its degrees of freedom.

2. Assign generalized coordinates and express kinetic energy in terms of generalized
coordinates.

3. Obtain Lagrange’s equations of motion.

Exercise 1.15
A pendulum is suspended from a point moving according to x = acosωt.

1. State the constraints and classify them. Determine its degrees of freedom.

2. Assign generalized coordinates and express kinetic energy in terms of generalized
coordinates.

3. Obtain Lagrange’s equations of motion.

Exercise 1.161.16
Describe Simple Harmonic Oscillator (SHO) and obtain Lagrange’s equation of motion for it.

Exercise 1.17

Lagrangian of a particle in one dimension is given by L =
1
2

mẋ2−V + ẋA, where A and V are
functions of x. Obtain Lagrange’s equation of motion.

Exercise 1.18
Obtain Lagrange’s equation of motion for a two dimensional isotropic oscillator. Also express

it in terms of polar form (polar coordinates).

Exercise 1.19
Obtain Lagrange’s equation of motion for a system for which Lagrangian is given by

L =
I1

2
(θ̇ 2 + φ̇

2 sin2
θ)+

I3

2
(ψ̇ + φ̇ cosθ)2−mglcosθ .

Exercise 1.20
Two mass points of mass m1 and m2 are connected by a string passing through a hole in a

smooth table so that m1 rests on the table surface and m2 hangs suspended. Assuming m2 moves
only in vertical line, what are the generalized coordinates for the system? Write the Lagrangian
equations of motion for the system.

Exercise 1.21
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Define a point transformation. Show that the form of Lagrange’s equations of motion are
invariant under a point transformation. [Refer Goldstein’s book: Derivation exercise no. 10,
page no. 30].

Exercise 1.22
A particle is falling vertically under gravity. Air friction is present and it is derivable from a

dissipation function R = 1
2kv2. Obtain Lagrange’s equation of motion.

Exercise 1.23

For kinetic energy T of a system of n-degrees of freedom, evaluate
n

∑
j=1

q̇ j
∂T
∂ q̇ j

.

Exercise 1.24

For a system of scleronomic constraints show that
n

∑
j=1

q̇ j
∂T
∂ q̇ j

= 2T.

Exercise 1.251.25
If L is given Lagrangian of a system of n-degrees of freedom satisfying Lagrange’s equations

of motion then show that L′ = L+
dF(q1,q2, . . . ,qn, t)

dt
also satisfies Lagrange’s equations of

motion, where F is an arbitrary differentiable function of its arguments.

Exercise 1.26
A Lagrangian for a particular physical system can be written as

L′ =
m
2
(aẋ2 +2bẋẏ+ cẏ2)− k

2
(ax2 +2bxy+ cy2),

where a,b,c are arbitrary constants but subject to condition that b2− ac 6= 0. What are La-
grange’s equations of motion? Examine particularly the two cases a = c = 0 and b = 0,c =−a.
What is physical system by the above Lagrangian? Show that the usual Lagrangian for this
system defined by the equation

L′(q, q̇, t) = L(q, q̇, t)+
dF
dt

is related by L′ by point transformation. What is the significance of the condition on the value
of b2−ac 6= 0.
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Variational principles

2.1 Hamilton’s principle

2.1.1 Action Integral

Consider a system with n-degrees of freedom. Let q1,q2, . . . ,qn be the chosen generalized
coordinates and L≡ L(q1,q2, . . . ,qn, q̇1, q̇2, . . . , q̇n, t) be Lagrangian of the system, where L =
T −V .

Suppose the system travels along a path C during the time interval [t1, t2]. Then the action
integral, denoted by I or A, for the time interval [t1, t2] along the path C in the configuration
space is defined as the line integral given by

Action Integral

I =

t2∫
t1

along C

L(q1 . . . ,qn, q̇1, . . . , q̇n, t) dt

or simply by

I =
∫ t2

t1
L dt.

Note: The line integral in the above expression may be evaluated in the configuration space by
associating a system point to the system.

2.1.2 Hamilton’s principle

For a system with n degrees of freedom, let q1,q2, . . . ,qn be the chosen generalized coordinates
and L(q, q̇, t) be Lagrangian. Then Hamilton’s principle states that,
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Hamilton’s principle

“among all the possible paths in the time interval [t1, t2], the system point travels on the
path on which the action integral is extremum (or stationary).”

That is, the system point takes the path on which the integral

I =
∫ t2

t1
L(q, q̇, t)dt

is extremum (or stationary).

William Rowan Hamilton (1805-1865)

Here by extremum we mean maximum or
minimum with respect to various cases. The
condition or the equivalent form of the inte-
gral I being stationary is given as follows:

δ I = δ

∫ t2

t1
L(q1, . . . ,qn, q̇1, . . . , q̇n, t)dt = 0,

(2.1)
where δ denotes the variation due to the
change in the path. Thus, the integral I is
extremum if the variation δ I is zero.

2.2 Calculus of Variations

Calculus of variations deals with the variational problems. For example, (2.12.1) is a variational
problem, i.e. we need to determine a curve on which the variation is zero. In this section and in
what follows, we discuss some techniques of the Calculus of Variations and its applications.

2.2.1 Condition for extremum

Consider a function f (y, ẏ,x), where y≡ y(x), ẏ = dy
dx and x is an independent variable. We state

the condition for extremum of the line integral

J =
∫ x2

x1

f (y, ẏ,x)dx. (2.2)

The required condition for the integral in (2.22.2) to be extremum. The above equation is called
Euler’s equation in calculus of variation.

Euler’s equation

∂ f
∂y
− d

dx

(
∂ f
∂ ẏ

)
= 0 (2.3)

The above equation is called Euler’s equation in calculus of variation. Next we shall state some
extensions of this condition for extremum of certain integrals.
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Certain Extensions

1. The condition for extremum of the integral of the form

I =
∫ x2

x1

f (y1,y2, . . . ,yn, ẏ1, ẏ2, . . . , ẏn,x) dx,

is given by

Euler-Lagrange equations

∂ f
∂yi
− d

dx

(
∂ f
∂ ẏi

)
= 0, i = 1,2, . . . ,n.

The above equations are known as Euler-Lagrange equations.

2. Suppose there are multiple integrals as follows:

I =
∫∫
· · ·
∫

︸ ︷︷ ︸
m integrals

f (y1,y2, . . . ,yn, ẏ1, ẏ2, . . . , ẏn,x1,x2, . . . ,xm)dx1dx2 · · ·dxm,

where yi = yi(x1,x2, . . . ,xm), i = 1,2, . . . ,n. Then the condition for extremum is given by

∂ f
∂yi
− ∂

∂x1

(
∂ f

∂yi(1)

)
− ∂

∂x2

(
∂ f

∂yi(2)

)
−·· ·− ∂

∂xm

(
∂ f

∂yi(m)

)
= 0,

where y( j)
i = ∂yi

∂x j
.

3. For the integral I =
∫

f (y, ẏ, ÿ,x)dx, the condition for extremum is

∂ f
∂y
− d

dx

(
∂ f
∂ ẏ

)
+

d2

dx2

(
∂ f
∂ ÿ

)
= 0.

2.2.2 Some applications of calculus of variations

Exercise 2.2.1: Shortest distance between two points in a plane

Obtain the geodesics on a plane i.e., obtain the curve of shortest distance between two
points in a plane (with Euclidean geometry).

Solution. We shall show that the curve of shortest distance between two points in a plane is a
straight line.

Consider two points P(x1,y1) and Q(x2,y2) in the plane. The problem is to determine the
curve on which the distance between P and Q is minimum. The distance between to neighboring
points (x,y) and (x+dx,y+dy) on a curve is given by

ds2 = dx2 +dy2 = dx2

(
1+
(

dy
dx

)2
)
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50 §2.2. Calculus of Variations

⇒ ds = (1+ ẏ2)
1
2 dx,

where ẏ = dy
dx . The distance between P(x1,y1) and Q(x2,y2) is given by the integral

I =
∫ x2

x1

ds =
∫ x2

x1

√
1+ ẏ2 dx. (2.4)

Now, our problem is to determine the curve on which the integral I is minimum. We use
techniques in calculus of variations by taking

f (y, ẏ,x) = (1+ ẏ2)
1
2 . (2.5)

Hence the condition for minimum of the integral in (2.42.4) is given by the Euler’s equation, i.e.

∂ f
∂y
− d

dx

(
∂ f
∂ ẏ

)
= 0. (2.6)

We need to solve equation (2.62.6) for f given in equation (2.52.5). Now,

∂ f
∂y

= 0.

Also,

∂ f
∂ ẏ

=
∂

∂ ẏ

(
1+ ẏ2) 1

2 =
1
2
(1+ ẏ2)−

1
2 2ẏ = (1+ ẏ2)−

1
2 ẏ.

Therefore,
d
dx

(
∂ f
∂ ẏ

)
=

d
dx

(
ẏ

(1+ ẏ2)
1
2

)
.

Using this values in equation (2.62.6), we get

− d
dx

(
ẏ

(1+ ẏ2)
1
2

)
= 0⇒ ẏ

(1+ ẏ2)
1
2
= A (A is constant).

Solving the above equation algebraically for ẏ, we get

ẏ = A (1+ ẏ2)
1
2

⇒ ẏ2 = A2(1+ ẏ2)
⇒ ẏ2(1−A2) = A2

⇒ ẏ2 = A2

1−A2

Therefore,
ẏ = a,

where a =
(

A2

1−A2

) 1
2 which is a constant. Hence,

y = ax+b ,

where a and b are constants. The above equation represents a straight line. Thus, we have
shown that the curve between two points in a plane on which the distance is minimum is a
straight line joining these two points. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Exercise 2.2.2: Minimum surface of revolution

Obtain the curve for minimum surface of revolution.

Solution.
Suppose we form a surface by taking a curve in
xy-plane passing through two fixed end points
(x1,y1) and (x2,y2) and revolving the curve
about y-axis (as shown in figure). Our prob-
lem is to find the curve for which the area of the
surface of revolution obtained from the curve is
minimum.
We shall show that this curve is given by

x = acosh
y−b

a
,

which is the equation of a catenary.
(Seminar Exercise - refer Goldstein, page num-
ber 40−41).

y

(x1, y1)

(x2, y2)

z

x

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Exercise 2.2.3: Brachistochrone problem

Describe Brachistochrone problem (problem of least time) and obtain its solution, i.e.
obtain the curve of quickest descend.

Solution.
Brachistochrone problem is a well-known
problem to find a curve joining two points such
that a particle at rest at the higher point falling
under gravity travels to the lower point in least
time, i.e. to find the curve of quickest descend.

Let t12 be time taken by the particle at rest to
travel from a higher point 1 to a lower point 2
under gravity with velocity v. If ds is the length
of the arc, then the time taken is ds

v . Then the
problem is to find a minimum of the integral

t12 =
∫ 2

1

ds
v
.

b

b

y

x

v

1

2

We know that ds =
√

dx2 +dy2 =
√

1+ ẏ2 dx =
√

1+ ẋ2 dy. Therefore

t =
∫ 2

1

√
1+ ẋ2

v
dy.
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Suppose y is measure downwards from the higher point. Since the particle is initially at rest,
kinetic energy at point 1 is T = 0 and its potential energy is V = 0. Hence, its total energy is 0.
At point 2, the kinetic energy is T = 1

2mv2 and potential energy is −mgy. Hence total energy is
T +V = 1

2mv2−mgy. Then by law of conservation of energy, we have

1
2

mv2−mgy = 0.

Therefore v =
√

2gy which implies

t =
∫ 2

1

√
1+ ẋ2

2gy
dy.

By calculus of variation, we know that the condition for extremum of the above integral is given
by Euler’s equation, i.e.

∂ f
∂x
− d

dy

(
∂ f
∂ ẋ

)
= 0,

where we take f =
√

1+ẋ2

2gy . Now, clearly ∂ f
∂x = 0 and

∂ f
∂ ẋ

=
2ẋ

2
√

1+ ẋ2√2gy
=

ẋ√
(1+ ẋ2)2gy

.

Hence, by Euler’s equations, we have

d
dy

(
∂ f
∂ ẋ

)
=

d
dy

(
ẋ√

(1+ ẋ2)2gy

)
= 0.

Therefore
ẋ√

(1+ ẋ2)2gy
= c1 (where c1 is constant)

or
ẋ√

(1+ ẋ2)y
=
√

2gc1 = c2 (where c2 is constant).

Therefore

ẋ = c2

√
(1+ ẋ2)y

ẋ2 = c3y+ c3yẋ2y (c3 = c2
2)

ẋ2(1− c3y) = c3y

ẋ2 =
c3y

1− c3y

ẋ2 =
y

1
c3
− y

=
y

a− y

(
1
c3

= a
)

ẋ =
√

y
a− y

.

Integrating both side with respect to y, we get∫
dx =

∫ √ y
a− y

dy.
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Take y = asin2 θ

2 , then dy = asin θ

2 cos θ

2 dθ . Therefore

x =
∫ √ asin2 θ

2

a−asin2 θ

2

asin
θ

2
cos

θ

2
dθ

=
∫ sin θ

2√
1− sin2 θ

2

asin
θ

2
cos

θ

2
dθ

=
∫ a

2
2sin2 θ

2
dθ

=
∫ a

2
(1− cosθ)dθ .

This implies, x = a
2 [θ − sinθ ]+b. Take a

2 = a′, then

x = a′(θ − sinθ)+b.

Now, b = 0 at point (0,0). Then x = a′(θ − sinθ)+ b. Also, we obtain y = a′(1− cosθ).

Thus, the parametric equation of the
required path is{

x = a′(θ − sinθ),
y = a′(1− cosθ).

which represents a cycloid. y

xx

a

aθ

y θ

(πa,2a)

x = a(θ − sinθ)
y = a(1− cosθ)

2πa

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

2.3 Derivation of Lagrange’s equations from Hamilton’s prin-
ciple

Recall that Hamilton’s principle states that “among all the possible paths in the time interval
[t1, t2] the system point in the configuration space will take the path on which the action integral
is extremum,” i.e. the integral

I =
∫ x2

x1

L(q1,q2, . . . ,qn, q̇1, q̇2, . . . , q̇n, t)dt (2.13)

is extremum.
By calculus of variations, we know that, the condition for the integral

J =
∫ x2

x1

f (y1,y2, . . . ,yn, ẏ1, ẏ2, . . . , ẏn,x)dx (2.14)

to be extremum is given by Euler-Lagrange equations, i.e.

∂ f
∂yi
− d

dx

(
∂ f
∂ ẏi

)
= 0 i = 1,2, . . . ,n. (2.15)
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Now, comparing equations (2.132.13) and (2.142.14), we consider the following transformation

f → L
yi→ qi i = 1,2, . . . ,n
x→ t.

Using these replacements in equation (2.152.15), we get

∂L
∂qi
− d

dt

(
∂L
∂ q̇i

)
= 0 i = 1,2, . . . ,n.

or
d
dt

(
∂L
∂ q̇i

)
− ∂L

∂qi
= 0 i = 1,2, . . . ,n. (2.16)

Equations (2.162.16) are Lagrange’s equations of motion. Thus, we have derived Lagrange’s
equations of motion from the Hamilton’s principle.

2.4 Cyclic coordinates and Generalized momenta

Definition 2.4.1: Cyclic coordinate

Consider a system of n-degrees of freedom. Let q1,q2, . . . ,qn be the chosen generalized
coordinates and L be the Lagrangian. A coordinate q j is said to be cyclic coordinate if
Lagrangian does not depend explicitly on the coordinate q j.

Lagrangian L(q, q̇, t) does not explicitly depend on q j implies that ∂L
∂q j

= 0. Therefore,

q j is cyclic ⇔ ∂L
∂q j

= 0.

Examples 2.4.2.

1. Consider motion of a particle in XY -plane with usual Cartesian coordinates (x,y) as
generalized coordinates and force derivable from a potential depending on the distance of
the particle from the origin. In this case, the Lagrangian is given by

L =
m
2
(ẋ2 + ẏ2)−V (

√
x2 + y2).

Then, in this case, there are no cyclic coordinates, as V (and hence L) is dependent on
both the generalized coordinates x and y.

2. Consider motion of a spherical pendulum. Then the Lagrangian is given by

L =
m
2

l2(θ̇ 2 + sin2
θφ̇

2)+mgl cosθ .

Here, φ is a cyclic coordinates as clearly the Lagrangian L does not depend on φ . Since
L depends explicitly on θ , the generalized coordinate θ is non-cyclic.
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Definition 2.4.3: Generalized momentum

Consider a system of n-degrees of freedom. Let q1,q2, . . . ,qn be the chosen generalized
coordinates and L(q1,q2, . . . ,qn, q̇1, q̇2, . . . , q̇n, t)≡ L(q, q̇, t) be the Lagrangian. The gen-
eralized momentum conjugate to the generalized coordinate q j is denoted by p j and is
given by

p j =
∂L
∂ q̇ j

.

Generalized momentum conjugate to a generalized coordinate is sometimes also called conju-
gate momentum. Consider some examples below:

Examples 2.4.4.

1. Consider motion of a particle in XY -plane with usual Cartesian coordinates x and y as
generalized coordinates, where the Lagrangian is given by

L =
m
2
(ẋ2 + ẏ2)−V (

√
x2 + y2).

Therefore, the generalized momenta conjugate to generalized coordinates is given by

px =
∂L
∂ ẋ

= mẋ and py =
∂L
∂ ẏ

= mẏ.

2. Consider the Lagrangian of a Gyroscope given by

L =
I1

2
(θ̇ 2 + φ̇

2 sin2
θ)+

I3

2
(ψ̇ + φ̇ cosθ)2−mglcosθ ,

where θ ,φ ,ψ are generalized coordinates. Then the generalized momenta are

pθ =
∂L
∂ θ̇

= I1θ̇

pφ =
∂L
∂ φ̇

= I1φ̇ sin2
θ + I3 cosθ(ψ̇ + φ̇ cosθ)

pψ =
∂L
∂ψ̇

= I3(ψ̇ + φ̇ cosθ).

3. We have seen that the Lagrangian in case of simple pendulum is given by

L =
m
2

l2
θ̇

2 +mgl cosθ .

Then the generalized momentum corresponding to the generalized coordinate θ is

pθ =
∂L
∂ θ̇

= ml2
θ̇ .
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Theorem 2.4.5

The generalized momentum conjugate to a cyclic coordinate is conserved.

Proof. Suppose for a system a generalized coordinate q j is cyclic. Now, Lagrange’s equations
of motion corresponding to q j is given by

d
dt

(
∂L
∂ q̇ j

)
− ∂L

∂q j
= 0.

Since q j is cyclic, L does not depend on q j explicitly and hence

∂L
∂q j

= 0.

Therefore, we have
d
dt

(
∂L
∂ q̇ j

)
= 0⇒ ∂L

∂ q̇ j
= constant,

i.e. ṗ j = 0⇒ p j = constant. Hence, the generalized momentum conjugate to a cyclic coordinate
is conserved. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Remark 2.4.6. We know that Lagrange’s equations of motion (LEOM) are second order
ordinary differential equations (ODE). If the coordinate is cyclic then the generalized momentum
conjugate to that cyclic coordinate is conserved. This provides the first integral to the LEOM,
i.e. we get a first order ODE. For instance, consider the following example.

Example 2.4.7. Consider the motion of a gyroscope. The Lagrangian in this case is

L =
I1

2
(θ̇ 2 + φ̇

2 sin2
θ)+

I3

2
(ψ̇ + φ̇ cosθ)2−mglcosθ .

Clearly, here φ and ψ are cyclic coordinates as the Lagrangian does not depend on them
explicitly. Therefore, the corresponding generalized linear momenta are given by

pφ =
∂L
∂ φ̇

= I1φ̇ sin2
θ + I3 cosθ(ψ̇ + φ̇ cosθ)

pψ =
∂L
∂ψ̇

= I3(ψ̇ + φ̇ cosθ).

Notice that the above equations are first order ordinary differential equations.

2.5 Conservation theorems and Symmetry properties

2.5.1 Conservation of linear momentum in Lagrangian formalism

We have Lagrange’s equations of motion given by

d
dt

(
∂L
∂ q̇ j

)
− ∂L

∂q j
= 0, j = 1,2, . . . ,n.

PS01EMTH22 2018-19



§2.5. Conservation theorems and Symmetry properties 57

But
∂L
∂ q̇ j

= p j. Therefore the above equation can be written as

d p j

dt
=

∂L
∂q j
⇒ ṗ j =

∂L
∂q j

, j = 1,2, . . . ,n. (2.17)

Suppose a generalized coordinate q j corresponds to translation of the system along a vector n̂,
i.e. change in the coordinate q j denoted by dq j results into translational motion of the system
in the direction n̂.

Suppose the constraints are scleronomic and potential depends on position only, i.e. potential
is velocity independent. Then

∂L
∂ q̇ j

=
∂ (T −V )

∂ q̇ j
=

∂T
∂ q̇ j
− ∂V

∂ q̇ j
=

∂T
∂ q̇ j

(
∵

∂V
∂ q̇ j

= 0
)
.

Thus,

p j =
∂L
∂ q̇ j

=
∂T
∂ q̇ j

, j = 1,2, . . . ,n. (2.18)

Also since the motion is translational in this case, clearly q j cannot appear in T (i.e. T is

independent of q j) as the velocities are not affected by shifting the origin. Therefore,
∂T
∂q j

= 0

and hence
∂L
∂q j

=
∂ (T −V )

∂q j
=− ∂V

∂q j
= Q j, j−1,2, . . . ,n. (2.19)

Thus, for the chosen coordinate q j, equations (2.182.18) and (2.192.19) when used in equation (2.172.17)
and Lagrange’s equations of motion gives

ṗ j =
d
dt

(
∂T
∂ q̇ j

)
=− ∂V

∂q j
= Q j.

or
ṗ j = Q j, j = 1,2, . . . ,n. (2.20)

By definition of generalized forces for j = 1,2, . . . ,n, we have

Q j =
N

∑
i=1

F̄i ·
∂ r̄i

∂q j
. (2.21)

To evaluate
∂ r̄i

∂q j
, we note that it is rate of change of r̄i

with respect to q j. As shown in figure

dr̄i = change in r̄i

= r̄i(q j +dq j)− r̄(q j)

= n̂dq j.

r̄ i
(q
j
) dr̄i = n̂ dqj

r̄i(qj
+ dqj

)

Now,
∂ r̄i

∂q j
= lim

dq j→0

r̄i(q j +dq j)− r̄(dq j)

dq j
= n̂. (2.22)

Dr. Jay Mehta jay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edu

mailto:jay_mehta@spuvvn.edu
jay_mehta@spuvvn.edu
jay_mehta@spuvvn.edu


58 §2.5. Conservation theorems and Symmetry properties

Using equation (2.222.22) in (2.212.21), we get

Q j =
N

∑
i=1

F̄i · n̂ = n̂
N

∑
i=1

F̄i.

Therefore
Q j = n̂ · F̄ , (2.23)

where F̄ = ∑
N
i=1 F̄i is the total force. Thus, Q j is component of the total force along n̂. From

equation (2.182.18)

p j =
∂T
∂ q̇ j

=
∂

∂ q̇ j

(
N

∑
i=1

1
2

miv2
i

)

=
∂

∂ q̇ j

(
N

∑
i=1

1
2

mi ˙̄ri · ˙̄ri

)

=
N

∑
i=1

mi ˙̄ri ·
∂ ˙̄ri

∂ q̇ j

=
N

∑
i=1

miv̄i
∂ r̄i

∂q j
(by law of cancellation of dots)

=
N

∑
i=1

p̄i · n̂ = n̂
N

∑
i=1

p̄i.

Thus,
p j = n̂ · p̄,

where p̄ = ∑
N
i=1 p̄i is the total linear momentum of the system. Therefore, we have

ṗ j =
d
dt

(n̂ · p̄) . (2.24)

Using equations (2.232.23) and (2.242.24) in equation (2.202.20), we get

n̂F̄ =
d
dt

(n̂ · p̄) . (2.25)

For a single particle we know that F̄ = ˙̄p, i.e. F̄ = d p̄
dt . Thus, recall that, law of conservation

of linear momentum for a single particle states that if F̄ = 0 then p̄ is conserved. Here, from
equation (2.252.25), we get law of conservation of linear momentum of a system (in Lagrangian
formalism), which is stated as follows:

Law of conservation of linear momentum (Lagrangian formalism)

“Component of total linear momentum along a vector n̂ is conserved if component of total
force along that vector n̂ is zero.”

Remark 2.5.1. The derivation of law of conservation of angular momentum in Lagrangian
formalism is left as a seminar exercise.
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2.6 Energy Function and the Conservation of Energy

2.6.1 Energy function

Consider a system of n degrees of freedom. Let L(q, q̇, t) be Lagrangian of the system. The
total time derivative of Lagrangian is given by

dL
dt

=
n

∑
j=1

∂L
∂q j

q̇ j +
n

∑
n=1

∂L
∂ q̇ j

q̈ j +
∂L
∂ t

. (2.26)

Now, by Lagrange’s equations of motion, we have

∂L
∂q j

=
d
dt

(
∂L
∂ q̇ j

)
, j = 1,2, . . . ,n. (2.27)

Using these equations in (2.262.26), we get

dL
dt

=
n

∑
j=1

d
dt

(
∂L
∂ q̇ j

)
q̇ j +

n

∑
j=1

∂L
∂ q̇ j

q̈ j +
∂L
∂ t

.

Therefore,

∂L
∂ t

= −
n

∑
j=1

d
dt

(
∂L
∂ q̇ j

)
q̇ j−

n

∑
j=1

∂L
∂ q̇ j

q̈ j +
dL
dt

= −
n

∑
j=1

{
d
dt

(
∂L
∂ q̇ j

)
q̇ j +

∂L
∂ q̇ j

dq̇ j

dt

}
+

dL
dt

= −
n

∑
j=1

d
dt

(
q̇ j

∂L
∂ q̇ j

)
+

dL
dt

= − d
dt

(
n

∑
j=1

q̇ j
∂L
∂ q̇ j

)
+

dL
dt

= − d
dt

{
n

∑
j=1

q̇ j
∂L
∂ q̇ j
−L

}

Therefore, we write
∂L
∂ t

=−dh
dt

, (2.28)

where

Energy function

h =
n

∑
j=1

q̇ j
∂L
∂ q̇ j
−L. (2.29)

The function h defined in (2.292.29) is called energy function of the system.
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Corollary 2.6.1

If Lagrangian of a system does not depend on time t explicitly, then the energy function h

is conserved, i.e.
∂L
∂ t

= 0⇒ h is conserved.

Proof. Here, we have
∂L
∂ t

=−dh
dt

= 0, where h =
n

∑
j=1

q̇ j
∂L
∂ q̇ j
−L. Hence, h is conserved. �Dr. Jay Mehta,

Department of
Mathematics,
Sardar Patel
University.

Exercise 2.6.2

Lagrangian of the spherical pendulum is given by

L =
m
2

l2(θ̇ 2 + φ̇
2 sin2

θ)+mgl cosθ .

Evaluate the energy function using the above formula.

Solution. The energy function h is given by

h = ∑
j

q̇ j p j−L

= θ̇
∂L
∂ θ̇

+ φ̇
∂L
∂ φ̇
−L

= ml2
θ̇

2 +ml2
φ̇

2 sin2
θ − ml2

2
(θ̇ 2 + sin2

θ φ̇
2)−mgl cosθ

=
ml2

2
(θ̇ 2 + φ̇

2 sin2
θ)−mgl cosθ .

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Exercise 2.6.3

Lagrangian of a system (a Gyroscope) is given by

L =
I1

2
(θ̇ 2 + φ̇

2 sin2
θ)+

I3

2
(ψ̇ + φ̇ cosθ)2−mgl cosθ ,

where θ ,φ ,ψ are generalized coordinates. Find the energy function.

Solution. We know that the energy function h is given by

h =
n

∑
j=1

q̇ j
∂L
∂ q̇ j
−L

= θ̇
∂L
∂ θ̇

+ φ̇
∂L
∂ φ̇

+ ψ̇
∂L
∂ψ̇
−L

= θ̇ pθ + φ̇ pφ + ψ̇ pψ −L.
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From given Lagrangian

pθ =
∂L
∂ θ̇

= I1θ̇

pφ =
∂L
∂ φ̇

= I1 sin2
θφ̇ + I3(ψ̇ + φ̇ cosθ)cosθ

pψ =
∂L
∂ψ̇

= I3(ψ̇ + φ̇ cosθ).

Using these values in expression for h, we get

h = I1θ̇
2 + I1 sin2

θφ̇
2 + I3φ̇(ψ̇ + φ̇ cosθ)cosθ + I3ψ̇(ψ̇ + φ̇ cosθ)

− I1

2
[
θ̇

2 + φ̇
2 sin2

θ
]
− I3

2
[
ψ̇ + φ̇ cosθ

]2
+mgl cosθ

=
I1

2
[
θ̇

2 + sin2
θφ̇

2]+ I3
[
φ̇ ψ̇ cosθ + φ̇

2 cos2
θ + ψ̇

2 + ψ̇φ̇ cosθ
]

− I3

2
[
ψ̇ + φ̇ cosθ

]2
+mgl cosθ

=
I1

2
[
θ̇

2 + sin2
θφ̇

2]− I3

2
[
ψ̇ + φ̇ cosθ

]2
+mgl cosθ .

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Remarks 2.6.4.

1. In many cases the energy function becomes the total energy of the system. (This is the
reason for giving the name ‘Energy function’).

2. If constraints are scleronomic and potential does not depend on velocities then h = T +V
is the total energy of the system.

Example 2.6.5. Lagrangian of the spherical pendulum is given by

L =
m
2

l2(θ̇ 2 + φ̇
2 sin2

θ)+mgl cosθ .

Find the energy function.

Solution. Here,

T =
m
2

l2(θ̇ 2 + φ̇
2 sin2

θ) and V =−mgl cosθ .

Here the generalized coordinates are θ and φ . The constraint in spherical pendulum is clearly
scleronomic. Observe that here kinetic energy T is a homogeneous function of generalized
velocities of degree 2. Also the potential V is independent of generalized velocities θ̇ and φ̇ .
Therefore, in this case, the energy function h is the total energy, i.e.

h = T +V =
m
2

l2(θ̇ 2 + φ̇
2 sin2

θ)−mgl cosθ .

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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2.6.2 Conservation of energy in Lagrangian formalism

Before we prove the law of conservation of energy using Lagrangian formalism, we state the
following theorem due to Euler which is used in proving the law of conservation of energy.

Theorem 2.6.6: Euler

If f is a homogeneous function of degree n in variables xi, then

∑
i

xi
∂ f
∂xi

= n f . (2.31)

Theorem 2.6.7: Law of conservation of energy (in Lagrangian formalism)

If constraints are scleronomic, potential does not depend on the velocity and Lagrangian
does not depend on time t explicitly then the total energy of the system is conserved.

Proof. It is known that the kinetic energy of the system of particles when expressed in terms of
generalized coordinates can be decomposed in to three parts, namely

T = T0 +T1 +T2, (2.32)

where Ti, (i = 0,1,2) contains ith degree terms of generalized velocities. If the constraints are
scleronomic then the transformation equations for generalized coordinates and usual coordinates
do not depend on t explicitly and hence in (2.322.32), we will get

T = T2, (2.33)

i.e. T is a function of velocities of degree 2.
In analogy with (2.322.32), if we write the potential as

V =V0 +V1 +V2,

then in the case of potential which is velocity independent, we get

V =V0, (2.34)

i.e. V is a function of velocity of degree zero.
Now, Lagrangian of such a system is

L = T −V = T2−V0. (2.35)

Using equation (2.352.35), the energy function is given by

h =
n

∑
j=1

q̇ j
∂L
∂ q̇ j
−L

=
n

∑
j=1

q̇ j
∂ (T2−V0)

∂ q̇ j
− (T2−V0)
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=
n

∑
j=1

q̇ j
∂T2

∂ q̇ j
−

n

∑
j=1

q̇ j
∂V0

∂ q̇ j
− (T2−V0)

= 2T2− (T2−V0)

(
∵ by Euler’s theorem,

∂V0

∂ q̇ j
= 0
)

= T2 +V0

= T +V = E.

Therefore
h = T +V = E. (2.36)

Thus, for a system with scleronomic constraints and velocity independent potential, energy
function is equal to total energy of the system. Further it is known that

∂L
∂ t

=−dh
dt

.

If Lagrangian does not depend on time explicitly, then h is conserved. Now, from (2.362.36) we get
conservation of total energy E. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Remarks 2.6.8.

1. For the conservation of total energy we need to compute the expression of total energy.

2. Since total energy is expressed in terms of first order differentials, hence conservation of
energy provides first integral for the equations of motion.

Exercise 2.6.9: Simple Harmonic Oscillator (SHO)

Obtain Lagrangian for Simple Harmonic Oscillator (SHO). Is total energy conserved for a
SHO?

Solution. Constraints are y = 0, z = 0. They are scleronomic. Choosing x as distance from the
fixed point on the straight line as generalized coordinate.

T =
1
2

mẋ2 and V =
1
2

kx2 (k ≥ 0 constant).

Note that potential V is velocity independent. Also,

L = T −V =
1
2

mẋ2− 1
2

kx2.

Here L does not depend on t explicitly. Since the constraints are scleronomic, potential does not
depend on velocity and Lagrangian L does not depend on t, by law of conservation of energy in
Lagrangian formalism, the total energy of the system (SHO) is conserved. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 2.6.10

Consider the problem of extremum of

J =
∫ x2

x1

f (y, ẏ,x)dx.

Dr. Jay Mehta jay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edu

mailto:jay_mehta@spuvvn.edu
jay_mehta@spuvvn.edu
jay_mehta@spuvvn.edu


64 Exercises

The condition for extremum is given by Euler’s equation, i.e.

∂ f
∂y
− d

dx

(
∂ f
∂ ẏ

)
= 0.

If f does not depend on x explicitly, then for g = f − ẏ
∂ f
∂ ẏ

,

dg
dx

= 0.

In other words, if ∂ f
∂x = 0, then Euler’s equation implies dg

dx = 0, where g = f − ẏ∂ f
∂ ẏ .

Proof. Here g = f − ẏ
∂ f
∂ ẏ

. Therefore,

dg
dx

=
d f
dx
− d

dx

(
ẏ

∂ f
∂ ẏ

)
=

∂ f
∂y

ẏ+
∂ f
∂ ẏ

ÿ− ẏ
d
dx

(
∂ f
∂ ẏ

)
− ÿ

∂ f
∂ ẏ

= ẏ
(

∂ f
∂y
− d

dx

(
∂ f
∂ ẏ

))
= ẏ(0) = 0.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Exercises

Exercise 2.12.1
Find the curve for minimum distance between two points in space (with Euclidean geometry).

Exercise 2.22.2
Using calculus of variation, determine the curve between two fixed end points such that the

area of the surface of revolution obtained from the curve is minimum.

Exercise 2.32.3
Determine the curve of shortest distance between two points on the surface of a sphere.

Exercise 2.4
Discuss law of conservation of angular momentum of a system using Lagrangian formalism.

Exercise 2.52.5
State the Lagrangian in the following cases. Compute the generalized momenta and the energy

function. Which of them are conserved? Justify in each of the following cases.
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1. Simple pendulum (or particle moving on a circle).

2. Double pendulum.

3. Simple Harmonic Oscillator (SHO).

4. Two dimensional isotropic oscillator.

Exercise 2.62.6
In the each of the following cases, compute the generalized momenta and the energy function,

where Lagrangian L for a system is given. Which of them are conserved? Why?

1. L =
m
2
(
aẋ2 +2bẋẏ+ cẏ2)− k

2
(
ax2 +2bxy+ cy2).

2. L = aẋ2 +b
ẏ
x
+ cẋẏ+ f y2ẋż+gẏ− k

√
x2 + y2.

3. L = q̇2
1 +

q̇2
2

a+bq12 + k1q1
2 + k2q̇1q̇2.

Exercise 2.72.7

Lagrangian of a system is given by L =
1
2
(
ṙ2 + r2

θ̇
2)+ 1

r
. Compute all generalized momenta

and energy function. Which of them are conserved? Why?

Exercise 2.82.8
If f does not depend on x explicitly and F = ẏ∂ f

∂ ẏ − f , then show that

∂ f
∂y
− d

dx

(
∂ f
∂ ẏ

)
= 0⇒ F is constant, i.e.

dF
dx

= 0.
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T
E

R

Hamilton’s Formulation

3.1 Legendre Transformations and Hamilton Equations of
Motion

3.1.1 Legendre Transformation

Consider a function f (x,y) which is continuous and differentiable. Then the differential of this
function is

d f =
∂ f
∂x

dx+
∂ f
∂y

dy

= udx+ vdy, (3.1)

where u = ∂ f
∂x and v = ∂ f

∂y .

Now, we define another function g using f and its derivative u = ∂ f
∂x as

g = f −ux. (3.2)

The differential of g is given by

dg = d( f −ux)
= d f −d(ux)
= udx+ vdy− (udx+ xdu)

∴ dg = vdy− xdu. (3.3)

From (3.33.3) it is clear that g is a function of u and y, i.e. we get g(u,y). Hence we can write

dg =
∂g
∂u

du+
∂g
∂y

dy. (3.4)

67
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Comparing (3.33.3) and (3.43.4), we get

v =
∂g
∂y

and x =−∂g
∂u

.

The function g obtained from f using (3.23.2) is called Legendre transformation of f .

Remarks 3.1.1.

1. Here the basis of description of f from (x,y) is changed to basis of description (u,y). It
is possible to change the basis of description from (x,y) to (x,v) also.

2. In case of function of more variables f (x1,x2, . . . ,xm) by Legendre transformation we will
get a new function g(u1,u2, . . . ,uk,xk+1,xk+2, . . . ,xm), where u j =

∂ f
∂x j

, j = 1,2, . . . ,k.

In this case, g is defined as

g = f −
k

∑
j=1

u jx j.

3. Inverse Legendre transformation is also a Legendre transformation.

3.1.2 Hamiltonian and Hamilton’s equations of motion

Consider a system of n-degrees of freedom. Let L(q, q̇, t) be Lagrangian of the system. La-
grange’s equation of motion are given by

d
dt

(
∂L
∂ q̇ j

)
− ∂L

∂q j
= 0, j = 1,2, . . . ,n.

or

ṗ j =
∂L
∂q j

, (3.5)

where

p j =
∂L
∂ q̇ j

.

Now we define a new function H given by H(q, p, t) =
n

∑
j=1

q̇ j

(
∂L
∂ q̇ j

)
−L, i.e.

Hamiltonian

H(q, p, t) =
n

∑
j=1

q̇ j p j−L. (3.6)

Now,

dH =
n

∑
j=1

d(q̇ j p j)−dL
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=
n

∑
j=1

p jdq̇ j +
n

∑
j=1

q̇ jd p j−

{
n

∑
j=1

∂L
∂q j

dq j +
n

∑
j=1

∂L
∂ q̇ j

dq̇ j +
∂L
∂ t

dt

}

=
n

∑
j=1

p jdq̇ j +
n

∑
j=1

q̇ jd p j−
n

∑
j=1

ṗ jdq j−
n

∑
j=1

p jdq̇ j−
∂L
∂ t

dt.

Therefore

dH =
n

∑
j=1

q̇ jd p j−
n

∑
j=1

ṗ jdq j−
∂L
∂ t

dt. (3.7)

Also since H = H(q, p, t), we get

dH =
n

∑
j=1

∂H
∂q j

dq j +
n

∑
j=1

∂H
∂ p j

d p j +
∂H
∂ t

dt. (3.8)

Comparing (3.73.7) and (3.83.8), we get
∂H
∂ t

=−∂L
∂ t

and for j = 1,2, . . . ,n,

Hamilton’s equations of motion

q̇ j =
∂H
∂ p j

, ṗ j =−
∂H
∂q j

. (3.9)

The expression H(q, p, t) given in (3.63.6) is called Hamiltonian and (3.93.9) are called Hamilton’s
equations of motion (HEOM).

Remark 3.1.2. In what we saw above, we derived Hamilton’s equations of motion from
Lagrange’s equations of motion.

3.1.3 Steps for deriving Hamilton’s equation for a given system

1. Obtain Lagrangian L.

2. Obtain generalized momenta
∂L
∂ q̇ j

= p j.

3. Compute h =
n

∑
j=1

q̇ j p j−L(q, q̇, t).

This will be a function of q1,q2, . . . ,qn, p1, p2, . . . , pn, q̇1, q̇2, . . . , q̇n and t.

4. The generalized velocity terms can be eliminated from above expression using generalized
momenta obtained in Step-2. This gives required Hamiltonian H(q, p, t).

5. Obtain Hamilton’s equations of motion.

Let us consider some examples (solved exercises) to obtain Hamiltonian of a system when
Lagrangian is given.
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Exercise 3.1.3: Hamiltonian for Simple Harmonic Oscillator

Lagrangian of SHO is given by L =
m
2

ẋ2− k
2

x2. Obtain its Hamiltonian.

Solution. The generalized coordinate is x and hence the momentum conjugate to x is given by

px =
∂L
∂ ẋ

= mẋ

and so ẋ =
px

m
. So

h = ẋpx−L

= ẋpx−
(

m
2

ẋ2− k
2

x2
)

= px

( px

m

)
− m

2

( px

m

)2
+

k
2

x2

=
1

2m

(
p2

x + kmx2)
Therefore

H =
1

2m

(
p2

x +m2w2x2) ,
where w = k

m . Thus, H is a function of x and px only and without generalized velocity ẋ. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Exercise 3.1.4

Lagrangian for system of 2-degrees of freedom is given by

L = q̇2
1 +

q̇2
2

a+bq2
1
+ k1q2

1 + k2q̇1q̇2 (3.10)

Obtain Hamiltonian and derive Hamilton’s equation of motion.

Solution. Using (3.103.10), the generalized momenta are

p1 =
∂L
∂ q̇1

= 2q̇1 + k2q̇2 (3.11)

and

p2 =
∂L
∂ q̇2

=
2q̇2

a+bq2
1
+ k2q̇1. (3.12)

Now,

h =
2

∑
j=1

q̇ j p j−L

= q̇1 p1 + q̇2 p2−L
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= q̇1 p1 + q̇2 p2−
{

q̇2
1 +

q̇2
2

a+bq2
1
+ k1q2

1 + k2q̇1q̇2

}
(3.13)

Using equations (3.113.11) and (3.123.12), to eliminate q̇1 and q̇2, we get

q̇1 =
−k2 p2(a+bq2

1)+2p1

4− k2
2(a+bq2

1)

and

q̇2 =
(−2p2 + p1k2)(a+bq2

1)

4− k2
2(a+bq2

1)
.

Now substituting these values in the expression of h above, we get Hamiltonian.
(Complete as exercise)

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Exercise 3.1.5

L = aẋ2 +b
ẏ
x
+ cẋẏ+ f y2ẋż− k

√
x2 + y2,

where x,y,z are generalized coordinates, a,b,c, f ,k are constants. Obtain Hamiltonian and
derive Hamilton’s equations of motion.

Solution. Generalized momenta are given by

px =
∂L
∂ ẋ

= 2aẋ+ cẏ+ f y2ż.

py =
∂L
∂ ẏ

=
b
x
+ cẋ.

pz =
∂L
∂ ż

= f y2ẋ.

Now,

h = ẋpx + ẏpy + żpz−L

= aẋ2 + cẋẏ+ f y2ẋż+ k
√

x2 + y2

= aẋ2 + ẋ(cẏ+ f y2ż)+ k
√

x2 + y2 (3.14)

Therefore, from above three equations, we have

cẏ+ f y2ż = px−2aẋ = px−
2apz

f y2 .

Eliminating the generalized velocities ẋ, ẏ, ż from the above expression of H, we get the
Hamiltonian of the form (Verify!)

H =
ap2

z

f 2y4 +
pz

f y2

(
px−

2apz

f y2

)
+ k
√

x2 + y2 =
pz

f y2

(
px−

a
f y2

)
+ k
√

x2 + y2.

Deduce HEOM (exercise). �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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3.1.4 Derivation of Lagrange’s equations of motion from Hamilton’s equa-
tions of motion

Consider a system of n-degrees of freedom. Let q1,q2, . . . ,qn be the generalized coordinates and
p1, p2, . . . , pn be corresponding generalized momenta and H(q, p, t) be Hamiltonian. Hamilton’s
equations of motion (HEOM) are given by

q̇ j =
∂H
∂ p j

, ṗ j =−
∂H
∂q j

, j = 1,2, . . . ,n. (3.15)

Consider a Legendre transformation

L =
n

∑
j=1

q̇ j p j−H(q, p, t)

=
n

∑
j=1

p j
∂H
∂ p j
−H(q, p, t). (by HEOM) (3.16)

From above equation

dL =
n

∑
j=1

d
(

p j
∂H
∂ p j

)
−d(H(q, p, t))

=
n

∑
j=1

d(p jq̇ j)−dH(q, p, t)

=
n

∑
j=1

p jdq̇ j +
n

∑
j=1

q̇ jd p j−

{
n

∑
j=1

∂H
∂q j

dq j +
n

∑
j=1

∂H
∂ p j

d p j +
∂H
∂ t

dt

}

=
n

∑
j=1

p jdq̇ j +
n

∑
j=1

q̇ jd p j +
n

∑
j=1

ṗ jdq j−
n

∑
j=1

q̇ jd p j−
∂H
∂ t

dt (using HEOM in (3.153.15))

=
n

∑
j=1

p jdq̇ j +
n

∑
j=1

ṗ jdq j−
∂H
∂ t

(3.17)

From (3.173.17) it is clear that L≡ L(q, q̇, t) then

L =
n

∑
j=1

∂L
∂q j

dq j +
n

∑
j=1

∂L
∂ q̇ j

dq̇ j +
∂L
∂ t

dt. (3.18)

From (3.173.17) and (3.183.18), comparing the coefficients, for j = 1,2, . . . ,n we get

ṗ j =
∂L
∂q j

. (3.19)

p j =
∂L
∂ q̇ j

. (3.20)

∂L
∂ t

= −∂H
∂ t

. (3.21)

From (3.193.19) and (3.203.20), we get

ṗ j =
d p j

dt
=

d
dt

(
∂L
∂ q̇ j

)
and ṗ j =

∂L
∂q j

,
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i.e.

d
dt

(
∂L
∂ q̇ j

)
− ∂L

∂q j
= 0, j = 1,2, . . . ,n. (3.22)

In (3.223.22), we have Lagrange’s equations of motion.

Remark 3.1.6. Using Legendre transformation it is possible to construct functions

L′(p, ṗ, t) (Lagrangian like) or
G(q̇, p, t) (Hamiltonian like).

Derive equations of motion for L′ and G.

3.1.5 Matrix form of Hamilton’s equations of motion

Consider a system of n-degrees of freedom. Let H(q, p, t) be Hamiltonian. For writing
Hamilton’s equations of motion we define a 2n×1 matrix (or a column matrix with 2n roots) η

defined as

η =



q1
q2
...

qn
p1
p2
...

pn


. (3.23)

This matrix consists of generalized coordinates and generalized momenta. This matrix can also
be written as η j = q j, η j+n = p j, for j = 1,2, . . . ,n.

Next we define a matrix denoted by η̇ given by

η̇ =



q̇1
q̇2
...

q̇n
ṗ1
ṗ2
...

ṗn


. (3.24)
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We also define another column matrix denoted by ∂H
∂η

given by

∂H
∂η

=



∂H
∂q1
∂H
∂q2
...

∂H
∂qn
∂H
∂ p1
∂H
∂ p2
...

∂H
∂ pn


. (3.25)

Hamliton’s equations of motion are given by

ṗ j =−
∂H
∂q j

, q̇ j =
∂H
∂ p j

, j = 1,2, . . . ,n. (3.26)

To represent these equations in matrix form we finally define a 2n×2n matrix denote by J and
given by

J =



0 0 · · · 0 1 0 · · · 0
0 0 · · · 0 0 1 · · · 0
...

... . . . ...
...

... . . . ...
0 0 · · · 0 0 0 · · · 1
−1 0 · · · 0 0 0 · · · 0
0 −1 · · · 0 0 0 · · · 0
...

... . . . ...
...

... . . . ...
0 0 · · · −1 0 0 · · · 0


=

[
0 I
−I 0

]
. (3.27)

We note that the matrix J is formed using n×n identity matrices and n×n zero entries. Now,
using this HEOM in (3.263.26) are given in matrix form by by

Matrix form of Hamilton’s equations of motion

η̇ = J
∂H
∂η

(3.28)

The elements in J are given by, for i = 1,2, . . . ,n,

Ji j = 0
Ji( j+n) = δi j

J(i+n) j = −δi j

J(i+n)( j+n) = 0
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(3.29)

where δi j = 1 if i = j and 0 otherwise. For n = 3 we have

J =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0



Exercise 3.1.7: Matrix form of HEOM for n = 2

Verify that equation (3.283.28) gives Hamilton’s equations of motion for n = 2.

Solution. For n = 2,

η =


q1
q2
p1
p2

 , η̇ =


q̇1
q̇2
ṗ1
ṗ2

 .
Also,

∂H
∂η

=


∂H
∂q1
∂H
∂q2
∂H
∂ p1
∂H
∂ p2

 , J =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 .

Then right hand side of equation (3.283.28) is

J
∂H
∂η

=


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0




∂H
∂q1
∂H
∂q2
∂H
∂ p1
∂H
∂ p2



=


∂H
∂ p1
∂H
∂ p2

− ∂H
∂q1

− ∂H
∂q2



=


q̇1
q̇2
ṗ1
ṗ2

= η̇ .

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Remark 3.1.8. If J′ denote the transpose of the matrix J then observe that

J′ =−J

i.e. J is a skew-symmetric matrix.

Exercise 3.1.9

Show that J−1 = J′ =−J or JJ′ = I =−J2, where I is a 2n×2n identity matrix.

3.2 Cyclic coordinates and Conservation Theorems

3.2.1 Cyclicity of a generalized coordinate in Hamiltonian

Theorem 3.2.1

If H is Hamiltonian of a system, then

dH
dt

=
∂H
∂ t

.

Proof. We have

dH
dt

= ∑
j

∂H
∂q j

q̇ j +∑
j

∂H
∂ p j

ṗ j +
∂H
∂ t

= ∑
j
(−ṗ)q̇ j +∑

j
q̇ j ṗ j +

∂H
∂ t

=
∂H
∂ t

.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Corollary 3.2.2

If Hamiltonian does not depend on time t explicitly, then it is conserved i.e.

∂H
∂ t

= 0⇒ dH
dt

= 0.

Corollary 3.2.3

If Lagrangian does not depend on time t explicitly, then Hamiltonian is conserved i.e.

∂L
∂ t

= 0⇒ dH
dt

= 0.
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Proof. Recall that derivation of Hamilton’s equations of motion from Lagrange’s equations of
motion yields

−∂L
∂ t

=
dH
dt
⇒ dH

dt
= 0.

Hence, H is conserved. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 3.2.4

If a coordinate q j is cyclic in L i.e. ∂L
∂q j

= 0 then it is cyclic in H also, i.e. ∂H
∂q j

= 0.

Proof. Exercise. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

3.2.2 Ignorable coordinate

It is known that a generalized coordinate q j is called cyclic if H does not depend on q j explicitly.
Suppose q j is cyclic coordinate then

∂H
∂q j

= 0⇒ ṗ j = 0⇒ p j = constant = α j (say).

In this case the from of Hamiltonian is

H(q1, . . . ,q j−1,q j+1, . . . ,qn, p1, . . . , p j−1,α j, p j+1, . . . , pn, t).

Thus, H is a function of (n−1) generalized coordinates and (n−1) generalized momenta (as
p j is replaced by α j). In other words, the problem reduces to a problem with (n−1) degrees
of freedom, thus the coordinate which is cyclic is now ignored. Hence, a cyclic coordinate in
Hamiltonian formalism is ignorable.

Remark 3.2.5. Note that, it can be easily seen, a coordinate is cyclic with respect to Lagrangian
formalism if and only if it is cyclic in Hamiltonian formalism. However, we call the cyclic
coordinate ignorable in Hamiltonian but not in Lagrangian. The reason for this is the following.

Lagrangian of the system is given by

L(q1,q2 . . . ,qn, q̇1, q̇2, . . . , q̇n, t).

Thus, even if a generalized coordinate, say q j is cyclic with respect to Lagrangian, it cannot be
ignored as Lagrangian is also a function of the corresponding generalized velocity, i.e. L still
depends on q̇ j. On the other hand, observe that Hamilton of a system is given as

H(q1,q2 . . . ,qn, p1, p2, . . . , pn, t).

Thus, if a generalized coordinate q j is cyclic in Hamiltonian formalism then, as seen before, the
generalized momenta p j conjugate to q j are constant and so the cyclic coordinate q j can be
ignored.

Thus, a cyclic coordinate cannot be completely ignored in Lagrangian but it is ignorable
in Hamiltonian. This fact is used in obtaining a function, called Routhian, of a system and
deriving Routhian equations of motion, as given in Section 3.33.3 below.
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78 §3.3. Routh’s Procedure

3.3 Routh’s Procedure

In Routhian procedure, cyclic coordinates and non-cyclic coordinates are dealt with separately.
It is known that in the Hamiltonian formalism a cyclic coordinate is ignorable. In other words,
in Hamiltonian formalism, cyclic coordinates are handled efficiently. Non-cyclic coordinates
are equally handled efficiently by Lagrangian formalism (and Hamiltonian formalism). In
Routh’s procedure both the formalism are combined.

Consider a system of n-degrees of freedom. Let q1,q2, . . . ,qn be chosen generalized co-
ordinates. Suppose q1,q2, . . . ,qs are non-cyclic coordinates and qs+1,qs+2, . . . ,qn are cyclic
coordinates.

Now, using Legendre transformation, we replace the generalized velocities corresponding to
cyclic coordinates. Thus we define a new function called Routhian which is denoted by R and
given by

Routhian

R =
n

∑
j=s+1

q̇ j p j−L. (3.30)

It can be check that (Verify!) equation (3.303.30) gives the function R described as

R(q1,q2, . . . ,qs, q̇1, q̇2, . . . , q̇s, ps+1, ps+2, . . . , pn, t).

It is also clear from equation (3.303.30) that, we can write

R = Hcyclic−Lnon−cyclic. (3.31)

i.e. Routhian is Hamiltonian for cyclic coordinates and Lagrangian for non-cyclic coordinates.
The equations of motion for the system in terms of R are called Routhian equations of motion
(REOM). Thus, Routhian equations of motion are like LEOM for non-cyclic coordinates and
HEOM for cyclic coordinates. They are given by

Routhian equations of motion

d
dt

(
∂R
∂ q̇ j

)
− ∂R

∂q j
= 0, j = 1,2, . . . ,s (Non-cyclic) (3.32)

and
∂R
∂q j

=−ṗ j,
∂R
∂ p j

= q̇ j, j = s+1,s+2, . . . ,n (Cyclic). (3.33)

Let us consider one example to see how to derive Routhian equations of motion for a system
whose Lagrangian is given.
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Exercise 3.3.1

Obtain Routhian equations of motion for a system with Lagrangian

L =
m
2
(
ṙ2 + r2

θ̇
2)+ k

r
. (3.34)

Solution. Clearly, here θ is a cyclic coordinate and r is a non-cyclic coordinate. Thus,

R = θ̇ pθ −L = θ̇ pθ −
m
2
(
ṙ2 + r2

θ̇
2)− k

r
. (3.35)

Since pθ =
∂L
∂ θ̇

= mr2
θ̇ , we have

θ̇ =
pθ

mr2 . (3.36)

Equation (3.353.35) gives

R = mr2
θ̇

2− m
2

ṙ2− m
2

r2
θ̇

2− k
r

=
mr2θ̇ 2

2
− m

2
ṙ2− k

r

=
m
2

r2 p2
θ

m2r4 −
m
2

ṙ2− k
r

(using (3.363.36)).

Therefore, Routhian of the system is

R =
p2

θ

2mr2 −
m
2

ṙ2− k
r
. (3.37)

Now, Routhian equations of motion are

d
dt

(
∂R
∂ ṙ

)
− ∂R

∂ r
= 0 and

∂R
∂θ

=−ṗθ ,
∂R
∂Pθ

= θ̇ .

This gives

mr̈− pθ
2

r3m
+

k
r
= 0, and

ṗθ = 0⇒ pθ = constant,
pθ

mr2 = θ̇ .

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Note: Notice that LEOM are two equations of 2nd order. HEOM are four equations of 1st order,
while REOM are three equations of which one is 2nd order and other two are 1st order.
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3.4 Phase space and Canonical variables

In Hamiltonian formalism, generalized coordinates and generalized momenta are put on equal
footing as these two types of variables are used to describe Hamiltonian and equations of motion
are given in terms of these variables.

Definition 3.4.1: Phase space

For a system of n-degrees of freedom, let q1,q2, . . . ,qn be chosen generalized coordinates
and p1, p2, . . . , pn be generalized momenta corresponding to q1,q2, . . . ,qn respectively.
For such a system a 2n-dimensional space can be associated in which

(q1,q2, . . . ,qn, p1, p2, . . . , pn)≡ (q, p)

represent coordinates of a point in this space. Following the motion of the system,
coordinates (q, p) will change.

The 2n-dimensional space associated with the system is called Phase space of the
system and the point representing the system is called system point of the phase space.

Definition 3.4.2: Canonical variables

Coordinates (q1,q2, . . . ,qn, p1, p2, . . . , pn)≡ (q, p) are also called canonical variables.

3.5 Derivation of Hamilton’s equations from a variational
principle

3.5.1 Hamilton’s modified principle

The motion of a system in time interval [t1, t2] is characterized by Hamilton’s modified principle.
Consider a system of n-degrees of freedom. Let (q, p) be canonical variables. We can

associate a system point in the phase space which traces a curve according to the motion of the
system. In the time interval [t1, t2] the system point traces a curve. To find this curve, Hamilton’s
modified principle is used which states that

Hamilton’s modified principle

“Among all possible paths for the interval [t1, t2], a system point in the phase space travels
on the curve on which the integral

I =

t2∫
t1

(
n

∑
j=1

p jq̇ j−H(q, p, t)

)
dt

is extremum.”
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In other words, the path on which system point travels is such that

δ I = δ

t2∫
t1

(
n

∑
j=1

p jq̇ j−H(q, p, t))dt = 0.

3.5.2 Derivation of Hamilton’s equations from Hamilton’s modified prin-
ciple

Consider a system of n-degrees of freedom. Let H(q, p, t) be Hamiltonian, then Hamilton’s
modified principle states that on the actual path

δ I = δ

t2∫
t1

(
n

∑
j=1

p jq̇ j−H(q, p, t))dt = 0. (3.38)

Recall that, Euler-Lagrange’s equations for the function of type f (y1,y2, . . . ,yn, ẏ1.ẏ2. . . . , ẏn,x)
are given by

∂ f
∂yi
− d

dx

(
∂ f
∂ ẏi

)
= 0, i = 1,2, . . . ,n. (3.39)

Also, Euler-Lagrange’s equations for the function of the type
f (y1,y2, . . . ,yn,z1,z2, . . . ,zn, ẏ1.ẏ2. . . . , ẏn, ż1.ż2. . . . , żn,x) are given by equations (3.393.39) and also

∂ f
∂ zi
− d

dx

(
∂ f
∂ żi

)
= 0, i = 1,2, . . . ,n. (3.40)

From equation (3.383.38), in our case, the function is

f (q1,q2, . . . ,qn, p1, p2, . . . , pn, q̇1, q̇2, . . . , q̇n, ṗ1, ṗ2, . . . , ṗn, t) =
n

∑
i=1

(q̇i pi−H(q, p, t)). (3.41)

From equation (3.413.41) it is clear that ṗ1, ṗ2, . . . , ṗn do not appear in the expression of f . Also
there are 2n dependent variables q1,q2, . . . ,qn and p1, p2, . . . , pn. Now, Euler-Lagrange equa-
tions are of the form

∂ f
∂q j
− d

dt

(
∂ f
∂ q̇ j

)
= 0, j = 1,2 . . . ,n. (3.42)

∂ f
∂ p j
− d

dt

(
∂ f
∂ ṗ j

)
= 0, j = 1,2 . . . ,n. (3.43)

From (3.413.41), we have
∂ f
∂ q̇ j

= p j−
∂H
∂ q̇ j

= p j.

Therefore,
d
dt

(
∂ f
∂ q̇ j

)
= ṗ j.

Using this in (3.423.42), we get

− ∂H
∂q j
− ṗ j = 0⇒ ∂H

∂q j
=−ṗ j, j = 1,2, . . . ,n. (3.44)
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From (3.413.41), we also have for j = 1,2, . . . ,n

∂ f
∂ p j

= q̇ j−
∂H
∂ p j

and
∂ f
∂ ṗ j

= 0⇒ d
dt

(
∂ f
∂ ṗ j

)
= 0.

Using these in (3.433.43), we get

q̇ j−
∂H
∂ p j

= 0⇒ ∂H
∂ p j

= q̇ j, j = 1,2, . . . ,n. (3.45)

Equations (3.443.44) and (3.453.45) are Hamilton’s equations of motion.

Exercises

Exercise 3.13.1
Assuming the form of Lagrangian in the following systems, obtain Hamiltonian and hence

derive Hamilton’s equations of motion.

1. Simple pendulum (or particle moving on a circle).

2. Spherical pendulum (or particle moving on a sphere).

3. Double pendulum.

4. Simple Harmonic Oscillator (SHO).

5. Two dimensional isotropic oscillator.

Exercise 3.23.2
In the each of the following systems, compute Hamiltonian and hence derive Hamilton’s

equations of motion from the given Lagrangian L.

1. L =
m
2
(
aẋ2 +2bẋẏ+ cẏ2)− k

2
(
ax2 +2bxy+ cy2).

2. L = aẋ2 +b
ẏ
x
+ cẋẏ+ f y2ẋż+gẏ− k

√
x2 + y2.

3. L = q̇2
1 +

q̇2
2

a+bq12 + k1q1
2 + k2q̇1q̇2.

4. L =
I1

2
(θ̇ 2 + φ̇

2 sin2
θ)+

I3

2
(ψ̇ + φ̇ cosθ)2−mgl cosθ .

5. L =
m
2
(
ṙ2 + r2

θ̇
2)−V (r).

Exercise 3.3
Derive Hamilton’s equations of motion for a system with Hamiltonian

H =
1

2m

(
P2

r +
P2

θ

2
+

P2
θ

r2 sin2
θ

)
+

k
2

r2,

where r and θ are generalized coordinates.
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Exercise 3.4
Using Legendre transformation, obtain Lagrangian corresponding to

H =
1

2m

(
P2

r +
P2

θ

2
+

P2
θ

r2 sin2
θ

)
+V (r).

Also derive Lagrange’s equation of motion.

Exercise 3.5
A Hamiltonian of one degree of freedom has the form

H =
p2

2α
−bqpe−αt +

bq
2

q2e−αt(α +be−αt)+
kq2

2

where q,b,α,k are constants and find the Lagrangian corresponding to Hamiltonian.

Exercise 3.6

For given Hamiltonian H =
1

2m

(
p2 +m2

ω
2q2), obtain the corresponding Lagrangian and

hence derive Lagrange’s equations of motion.

Exercise 3.7

For given Hamiltonian H =
p2

2m
−mAtx, find the corresponding Lagrangian and derive La-

grange’s equations of motion.

Exercise 3.8
A Hamiltonian like formalism can be set up in which q̇i and ṗi are the independent variable

with a Hamiltonian G(q̇, ṗ, t). [Here pi are defined in terms of q̇i, q̇i in the usual manner].
Starting from the Lagrangian formulation show in details how to construct G(q̇i, ṗi, t) and
derive the corresponding Hamilton’s equations of motion.

Exercise 3.9
Using appropriate Legendre transformation and Hamiltonian H(q, p, t), find the equations of

motion for the function L(p, ṗ, t).

Exercise 3.10
If a coordinate q j is cyclic in L i.e. ∂L

∂q j
= 0 then it is cyclic in H also, i.e. ∂H

∂q j
= 0.

Exercise 3.113.11
Obtain Routhian equations of motion (REOM) for a heavy symmetrical top with one point

fixed for which Lagrangian is given as below.

L =
I1

2
(θ̇ 2 + sin2

θφ̇
2)+

I3

2
(ψ̇ + φ̇ cosθ)2−mgl cosθ .
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Canonical Transformations

4.1 Canonical Transformation

Canonical transformation is related with canonical variables, i.e. for a system of particles with
generalized coordinates and generalized momenta (q, p).

It is known that choice of generalized coordinates and momenta is arbitrary. Thus another
choice of variables to represent canonical variables is also possible.

Suppose for a system (q, p) are chosen canonical variables. Consider transformation of these
variables. Let (Q,P) be new set of variables. Let the transformation (q, p)→ (Q,P) be given
by

Qi ≡ Qi(q, p, t)
Pi ≡ Pi(q, p, t), i = 1,2, . . . ,n. (4.1)

In principle, this transformation is invertible (non-singular), i.e. we may write

qi ≡ qi(Q,P, t)
pi ≡ pi(Q,P, t), i = 1,2, . . . ,n. (4.2)

Let H(q, p, t) be Hamiltonian for the system. Then Hamilton’s equations of motion are given
by

q̇i =
∂H
∂Pi

, Ṗi =−
∂H
∂qi

, i = 1,2, . . . ,n. (4.3)

Using the transformation given in equation (4.24.2), it is possible to transform H in terms of
(Q,P, t). Let the transformed function H be denoted by K(Q,P, t).

Definition 4.1.1: Canonical transformation

For a system of n-degrees of freedom, let H(q, p, t) be Hamiltonian. Consider a transforma-
tion (q, p)→ (Q,P). Let K(Q,P, t) be the transformed Hamiltonian. The transformation
(q, p)→ (Q,P) is said to be canonical if Hamilton’s equations of motion are satisfied by
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86 §4.1. Canonical Transformation

K(Q,P, t) in terms of new variables (Q,P). In other words, (q, p)→ (Q,P) is canonical if

Q̇i =
∂K
∂Pi

, Ṗi =−
∂K
∂Qi

.

Note: Alternatively, (q, p)→ (Q,P) is canonical if K behaves as Hamiltonian.

Einstein’s Summation Convention and Kronecer Delta function

For a summation of indexed terms, Einstein observed that the index on which the sum is taken
is repeated in a term with product.

Examples 4.1.2. 1. ū = (u1,u2, . . . ,un) and v̄ = (v1,v2, . . . ,vn). Then

ū · v̄ = u1v1 +u2v2 + · · ·+unvn =
n

∑
j=1

u jv j = u jv j.

2. A =

[
a11 a12 a13
a21 a22 a23

]
, B =

b11 b12 b13
b21 b22 b23
b31 b32 b33

. Then C = AB =

[
c11 c12 c13
c21 c22 c23

]
, where

ci j = ai1b1 j +ai2b2 j +ai3b3 j =
3

∑
k=1

aikbk j = aikbk j.

Thus, Einstein’s summation convention states that the repeated index is to be summed
over from the context (i.e. the summation sign is dropped).

3. For matrix B in the above example 2,

bii = b11 +b22 +b33 = tr(B).

Kronecker Delta:

Kronecker delta is a two indexed notation, denoted by δi j, defined as

δi j =

{
1, if i = j,
0, if i 6= j.

Note that symbols δi j form identity matrix.

Examples 4.1.3. 1. δi ju j = ui.

δ2 ju j = δ21u1 +δ22u2 + · · ·+δ2nun

= δ22u2 = u2.

2. δii = δ11 +δ22 + · · ·+δnn = 1+1+ · · ·+1︸ ︷︷ ︸
n times

= n.
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§4.1. Canonical Transformation 87

4.1.1 Condition for a transformation to be Canonical

Consider a system of n-degrees of freedom with H(q, p, t) as Hamiltonian. Let H transforms to
K(Q,P, t) under a transformation (q, p)→ (Q,P). Since H(q, p, t) is Hamiltonian, by Hamil-
ton’s modified principle, we have

δ

t2∫
t1

(q̇i pi−H(q, p, t))dt = 0. (4.4)

(Note that Einstein summation convention is used above.)
The transformation is canonical if the function K(Q,P, t) is also Hamiltonian. Thus, the

transformation is canonical if Hamilton’s modified principle can be written for K(Q,P, t), i.e.

δ

t2∫
t1

(Q̇iPi−K(Q,P, t))dt = 0. (4.5)

From equations (4.44.4) and (4.54.5), we get

δ

t2∫
t1

(q̇i pi−H(q, p, t))dt = δ

t2∫
t1

(Q̇iPi−K(Q,P, t))dt

⇒
t2∫

t1

(q̇i pi−H(q, p, t))dt =

t2∫
t1

(Q̇iPi−K(Q,P, t))dt

The above two integrals are equal if

q̇i pi−H(q, p, t) = Q̇iPi−K(Q,P, t)+
dF
dt

(4.6)

for an arbitrary function F of q1,q2, . . . ,qn, p1, p2, . . . , pn, Q1,Q2, . . . ,Qn, P1,P2, . . . ,Pn. This a
transformation is canonical if condition (4.64.6) is satisfied.

4.1.2 Alternative form of condition for Canonical Transformation

We have seen that a condition for a transformation to be canonical is given by

q̇i pi−H(q, p, t) = Q̇iPi−K(Q,P, t)+
dF
dt

. (4.7)

In the above condition when (Q,P) is replaced by (q, p) on the right hand side of the above
expression of K, we get the function H(q, p, t). Thus, equation (4.74.7) can be rewritten as

q̇i pi− Q̇iPi =
dF
dt

or
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Condition for a transformation to be canonical

pidqi−PidQi = dF. (4.8)

Thus, the condition for a transformation to be canonical is

pidqi−PidQi

is an exact differential form.

Exercise 4.1.4

Show that the identity transformation is canonical, i.e. Qi = qi and Pi = pi for all i =
1,2, . . . ,n.

Solution. Here, dQi = dqi. Therefore

pidqi−PidQi = pidqi− pidqi = 0 = d(constant).

Thus, here the function F = constant and the transformation is canonical. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Exercise 4.1.5

Is the following transformation canonical?

Q1 = q1, P1 = p1−2p2, Q2 = p2, P2 =−2q1−q2.

Solution. Here, dQ1 = dq1 and dQ2 = d p2. Now,

p1dq1 + p2dq2−P1dQ1−P2dQ2 = p1dq1 + p2dq2− (p1−2p2)dq1− (−2q1−q2)d p2

= p1dq1 + p2dq2− p1dq1 +2p2dq1 +2q1d p2 +q2d p2

= p2dq2 +2p2dq1 +2q1d p2 +q2d p2

= d(p2q2)+d(2p2q1)

= d(p2q2 +2p2q1)

= d(p2(q2 +2q1))

Taking F = p2(q2 +2q1) =−p2P2, we get that

p1dq1 + p2dq2−P1dQ1−P2dQ2 = dF.

Hence, the transformation is canonical. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Exercise 4.1.6

Show that the transformation

Q = log(1+
√

qcos p), P = 2(1+
√

qcos p)
√

qsin p
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is canonical.

Solution. Here,

dQ = d (log(1+
√

qcos p))

=
1

(1+
√

qcos p)

(
−√qsin pd p+

cos p
2
√

q
dq
)
.

Now,

pdq−PdQ = pdq−2(1+
√

qcos p)(
√

qsin p) · 1
(1+
√

qcos p)

(
−√qsin pd p+

cos p
2
√

q
dq
)

= pdq−2
(
√

qsin p)
2
√

q
(cos pdq−2qsin pd p)

= pdq− sin p(cos pdq−2qsin pd p)
= pdq− sin p(cos pdq−qsin pd p−qsin pd p)
= pdq− sin p(d(qcos p)−qsin pd p)

= pdq− sin pd(qcos p)+qsin2 pd p

= pdq− sin pd(qcos p)+q(1− cos2 p)d p

= pdq+qd p− sin pd(qcos p)−qcos2 pd p
= d(pq)− (sin pd(qcos p)+qcos pd(sin p))
= d(pq)−d(qsin p cos p)
= d(q(p− sin p cos p)) = dF.

Here we find the function F = q(p− sin p cos p) and hence the given transformation is canoni-
cal.
Alternative method: Sometimes it is difficult to find a function F such that

pdq = PdQ = dF.

In such cases one can check by the method of differential equations that whether the given
differential form is exact or not. We know that the form Mdx+Ndy is exact if ∂M

∂y = ∂N
∂x .

Therefore, here we have

pdq = PdQ = (p− sin pcos p)dq+2qsin2 pd p.

Taking M = (p− sin pcos p) and N = 2qsin2 p, then we verify that ∂M
∂ p = ∂N

∂q .

∂

∂ p
(p− sin pcos p) = 1− (−sin2 p+ cos2 p)

= 1+ sin2 p− cos2 p

= sin2 p+ sin2 p = 2sin2 p

=
∂

∂q

(
2qsin2 p

)
.

Hence, pdq−PdQ is an exact differential form. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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4.2 Generating Function and Canonical Transformations

4.2.1 Generating Function

In the condition for canonical transformation an arbitrary function F appears which is a function
of old and new variables. This function F is in fact useful to generate the transformation. It is
convenient if F can be expressed partly in terms of the new variables and partly in terms of the
old variables. In this case the function is called a generating function.

4.2.2 Generating Function and Canonical Transformations

Definition 4.2.1: Generating function of canonical transformations

Recall that a transformation (q, p)→ (Q,P) is said to be canonical if

q̇i pi−H(q, p, t) = Q̇iPi−K(Q,P, t)+
dF
dt

, (4.9)

where H and K denote the Hamiltonian in variables (q, p) and (Q,P) respectively and
F is an arbitrary function of old and new variables. The function F appearing on the
right hand side of equation (4.94.9) is useful in obtaining the exact form of the canonical
transformation. This is possible only when the function F is expressed in terms of half
of the old set of variables (q1,q2, . . . ,qn only or p1, p2, . . . , pn) and half of the new set of
variables (Q1,Q2, . . . ,Qn or P1,P2, . . . ,Pn). Thus, it acts as a bridge between the old and
the new variables and it is called a generating function of the transformation.

Thus, there are four types of generating functions and they are as follows:

F1(q,Q, t), F2(q,P, t), F3(p,Q, t), F4(p,P, t).

4.2.3 Canonical transformation generated by F1(q,Q, t)

The condition for a transformation (q, p)→ (Q,P) to be canonical is

q̇i pi−H = Q̇iPi−K +
dF
dt

, (4.10)

This condition determines F . Take

F = F1(q,Q, t). (4.11)

Substituting F given in (4.114.11) in equation (4.104.10), we get

q̇i pi−H = Q̇iPi−K +
d
dt

(F1(q,Q, t))

= Q̇iPi−K +
∂F1

∂qi
q̇i +

∂F1

∂Qi
Q̇i +

∂F1

∂ t

=

(
Pi +

∂F1

∂Qi

)
Q̇i +

∂F
∂qi

q̇i−K +
∂F
∂ t

.
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Since the old and new generalized coordinates are separately independent, above equation holds
only if each of the coefficients of q̇i and ṗi vanish. Thus, comparing the coefficients, we get

pi =
∂F1

∂qi
, Pi +

∂F1

∂Qi
= 0, −H =−K +

∂F1

∂ t

or

pi =
∂F1

∂qi
, Pi =−

∂F1

∂Qi
, K = H +

∂F1

∂ t
.

The transformation is thus generated from F1(q,Q, t).

4.2.4 Canonical transformation generated by F2(q,P, t)

The condition for a transformation (q, p)→ (Q,P) to be canonical is

q̇i pi−H = Q̇iPi−K +
dF
dt

, (4.104.10)

This condition determines F . Take

F = F2(q,P, t)−QiPi. (4.12)

Substituting F given in (4.124.12) in equation (4.104.10), we get

q̇i pi−H = Q̇iPi−K +
d
dt

(F2(q,P, t)−QiPi)

= Q̇iPi−K +
∂F2

∂qi
+

∂F2

∂Pi
+

∂F2

∂ t
−Qi

dPi

dt
−Pi

dQi

dt

=
∂F2

∂qi
q̇i +

∂F2

∂ t
−
(

Qi−
∂F2

∂Pi

)
Ṗi−K.

Comparing the coefficients, we get

pi =
∂F2

∂qi
, Qi =

∂F2

∂Pi
, K = H +

∂F2

∂ t
.

The transformation is thus generated from F2(q,P, t).

Exercise 4.2.2

Similarly, find the generating functions of the type F3 and F4, i.e. show that
1. For F = F3(p,Q, t)+qi pi, we have

qi =−
∂F3

∂ pi
, Pi =−

∂F3

∂Qi
.

2. For F = F4(p,P, t)+qi pi−QiPi, we have

qi =−
∂F4

∂ pi
, Qi =

∂F4

∂Pi
.
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Exercise 4.2.3

Obtain the transformation generated by F2(q,P, t) = q jPj.

Solution. The transformation generated by a generating function of type F2(q,P, t) is given by

Qi =
∂F2

∂Pi
, pi =

∂F2

∂qi
.

In our case

Qi =
∂

∂Pi
(q jPj)

= q j
∂Pj

∂Pi

= qi.

and

pi =
∂

∂qi
(q jPj)

= Pj
∂q j

∂qi

= Pi.

Thus, the transformation generated by F2 = q jPj gives

Qi = qi, Pi = pi

or it is identity transformation. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Observation: Identity transformation is also a canonical transformation.

4.3 Symplectic condition for canonical transformation

4.3.1 Matrix form of condition for canonical transformation

Consider the matrix form of Hamilton’s equations of motion in terms of canonical variables
given by

η̇ = J
∂H
∂η

, (4.13)
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where η =



q1
q2
...

qn
p1
p2
...

pn


and J is a 2n× 2n matrix given by J =

[
0 I
−I 0

]
. Now consider a trans-

formation (q, p)→ (Q,P) or η → ζ , where ζ is the column matrix given by ζ =



Q1
Q2
...

Qn
P1
P2
...

Pn


, and

Q̇i = (Qi(q, p, t)), Ṗi = (Pi(q, p, t)). By chain rule

ζ̇i =
∂ζi

∂η j
η̇ j. (4.14)

Here, we have taken the transformation not depending on t. Equations (4.144.14) are written in
matrix form as

ζ̇ = Mη̇ , (4.15)

where M = (Mi j) =

(
∂ζi

∂η j

)
is the Jacobian matrix for the transformation, i.e.

M =


∂Q1
∂q1

∂Q1
∂q2

· · · ∂Q1
∂ pn

...
...

...
∂Pn
∂q1

∂Pn
∂q2

· · · ∂Pn
∂ pn


2n×2n

.

Also, for Hamiltonian H, we can write

∂H
∂ηi

=
∂H
∂ζ j

∂ζ j

∂ηi
.

Therefore, we have
∂H
∂η

= M′
∂H
∂ζ

, (4.16)

where M′ denotes the transpose of the matrix M written above. From equation (4.154.15), we have

ζ̇ = Mη̇ = MJ
∂H
∂η

(using (4.134.13)).

ζ̇ = MJM′
∂H
∂ζ

(using (4.164.16)).

Thus, we have

ζ̇ = MJM′
∂H
∂ζ

. (4.17)
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If the transformation η → ζ is canonical then H satisfies Hamilton’s equations of motion in
terms of ζ , i.e.

ζ̇ = J
∂H
∂ζ

. (4.18)

From equations (4.174.17) and (4.184.18), we get

Symplectic condition for a transformation to be canonical

J = MJM′. (4.19)

Thus, a transformation η → ζ is canonical if the corresponding Jacobian matrix M satisfies
the condition (4.194.19). The condition in equation (4.194.19) is also called symplectic condition for
canonical transformation.

Exercise 4.3.1

Show that the transformation

Q = log
(

sin p
q

)
, P = qcot p

is canonical using symplectic condition.

Solution. The problem is of 1-degrees of freedom and the Jacobian matrix for given transfor-
mation is

M =

[
∂Q
∂q

∂Q
∂ p

∂P
∂q

∂P
∂ p

]
.

Now,

∂Q
∂q

=
q

sin p
(sin p)

(
− 1

q2

)
=−1

q
.

∂Q
∂ p

=
q

sin p
· cos p

q
= cot p.

∂P
∂q

= cot p.

∂P
∂ p

= −qcosec2 p.

So, we have

M =

[
−1

q cot p
cot p −qcosec2 p

]
and so M′ =

[
−1

q cot p
cot p −qcosec2 p

]
= M.

Now,

MJ =

[
−1

q cot p
cot p −qcosec2 p

][
1 0
−1 0

]
PS01EMTH22 2018-19
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=

[
−cot p −1

q
qcosec2 p cot p

]
.

Then,

MJM′ =
[
−cot p −1

q
qcosec2 p cot p

][
−1

q cot p
cot p −qcosec2 p

]
=

[
cot p

q −
cot p

q −cot2 p+ cosec2 p
−cosec2 p+ cot2 p cot p

q −
cot p

q

]

=

[
1 0
−1 0

]
= J.

Thus, the transformation is canonical. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Note: Here

dQ =
∂Q
∂q

dq+
∂Q
∂ p

d p

= − 1
q

dq+ cot pd p.

Definition 4.3.2

A 2n×2n matrix is said to be a simplectic matrix if it satisfies

MJM′ = J.

Theorem 4.3.3

Product of two symplectic matrices is also a symplectic matrix.

Proof. Let M and N be two symplectic matrices, i.e.

MJM′ = J and NJN′ = J.

We want to show that MN is a symplectic matrix, i.e. to prove that (MN)J(MN)′ = J. Now,

(MN)J(MN)′ = (MN)J(N′M′)
= M(NJN′)M′

= MJM′

= J

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Exercise 4.3.4

If M is a symplectic matrix then show that det(M) 6= 0.

Solution. Since M is a symplectic matrix, MJM′ = J. Therefore

det(MJM′) = det(M)det(J)det(M′) = det(J).

Therefore,
(det(M))2 = 1⇒ det(M) =±1 6= 0.

Thus, det(M) 6= 0 if M is symplectic. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Exercise 4.3.5

If M is symplectic matrix then M is non-singular (or invertible matrix) and |M|=±1.

Solution. Same as above exercise. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Exercise 4.3.6

Prove that If M is symplectic then M−1 is also symplectic.

Theorem 4.3.7

Show that transpose of a symplectic matrix is symplectic, i.e. MJM′ = J if and only if
M′JM = J.

Proof. Suppose the symplectic condition MJM′ = J holds. Then by above theorem the matrix
M and hence M′ is invertible. Now,

MJM′ = J

⇒ MJ = J(M′)−1

⇒ JMJJ = JJ(M′)−1J

⇒ (JM)(JJ) = (JJ)((M′)−1J)

⇒ JM(−1) = (−1)(M′)−1J (∵ J2 =−I)

⇒ JM = (M′)−1J
⇒ M′JM = J.

For converse part, replace M by M′. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Remark 4.3.8. Thus, the condition MJM′ = J or equivalently M′JM = J is the symplectic
condition for a canonical transformation.
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Theorem 4.3.9

(The set of all 2n×2n) symplectic matrices form a group under usual matrix multiplication.

Proof. (Exercise) Show the following:

1. M,N are symplectic implies that their product MN is also symplectic.

2. Associativity (this is trivial since usual matrix multiplication is associative).

3. Identity matrix I is symplectic.

4. M is symplectic then M−1 is also symplectic.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Corollary 4.3.10

The set of all canonical transformations form a group under usual composition.

4.4 Canonical transformation depending on time t

A transformation depending on time t can be regarded as evolving in time, i.e. the transformation
takes place in small intervals of time. Thus the symplectic condition can be obtained in small
intervals of time. In a small interval of time, the change in canonical variables is small. Thus,
we will show that symplectic condition is satisfied for infinitesimal transformation.

By group property, it can be shown that the transformation (or Jacobian) matrix for a time
dependent canonical transformation is a symplectic matrix. More precisely, we shall prove the
following result.

4.4.1 Infinitesimal canonical transformation

Theorem 4.4.1

The matrix for infinitesimal canonical transformation is symplectic.
In other words, for an infinitesimal transformation, symplectic condition is satisfied.

Proof. An infinitesimal transformation is obtained by a small (infinitesimal) change in a variable.
Thus, the transformation (q, p)→ (Q,P) is given by

Qi = qi +δqi, Pi = pi +δ pi, (4.20)

where δ denotes infinitesimal (or small) change. The transformation (4.204.20) can also be written
as

ζ = η +δη . (4.21)
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The transformation (4.204.20) (or (4.214.21)) is obtained by small deviation in the identity transforma-
tion. Also, (as seen in Example 4.2.44.2.4) identity transformation can be generated by a generating
function F2(q,P, t) = qiPi. Thus, a suitable generating function for the transformation given in
(4.204.20) is of type F2 and is given by

F2(q,P, t) = qiPi + ε G(q,P, t), (4.22)

where ε is an infinitesimal parameter and G is an arbitrary differentiable function. We know
that the canonical transformation given by F2 is

p j =
∂F2

∂q j
and Q j =

∂F2

∂Pj
.

Using F2 given in (4.224.22), we get

p j =
∂F2

∂q j
= Pj + ε

∂G
∂q j

.

Therefore by equation (4.204.20), we write

δ p j = Pj− p j =−ε
∂G
∂q j

(4.23)

Similarly,

Q j =
∂F2

∂Pj
= q j + ε

∂G
∂Pj

.

Therefore,

δq j = ε
∂G
∂Pj

(4.24)

Since (by equation (4.204.20)) P differs from p only by infinitesimal, it is consistent in the first
order to replace Pj by p j in the derivative function. We may then consider G as a function of q
and p only (and possibly t), i.e. G(q, p, t) and G can be referred as the generating function of
the infinitesimal canonical transformation. In this case, the above equation can be rewritten as

δq j = ε
∂G
∂ p j

(4.25)

From equations (4.234.23) and (4.254.25), we get

δη = ε J
∂G
∂η

(4.26)

and hence in equation (4.214.21), we get

ζ = η +δη = η + ε J
∂G
∂η

. (4.27)

From (4.274.27), the Jacobian (or the transformation) matrix is

M =
∂ζ

∂η
= I + ε J

∂ 2G
∂η∂η

.
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Here the matrix
∂ 2G

∂η∂η
is a square matrix formed by second order derivative of G with respect

to canonical variables, i.e. it is a 2n×2n matrix with entries (or elements) of the form(
∂ 2G

∂η∂η

)
i j
=

∂ 2G
∂ηi∂η j

=
∂ 2G

∂η j∂ηi

Thus, the matrix
∂ 2G

∂η∂η
is a symmetric matrix. Now the transpose of M is given by

M′ =
(

I + εJ
∂ 2G

∂η∂η

)′
= I + ε

(
J

∂ 2G
∂η∂η

)′
= I + ε

(
∂ 2G

∂η∂η

)′
J′

= I− ε
∂ 2G

∂η∂η
J

(
∵

∂ 2G
∂η∂η

is symmetric and J′ =−J
)

(4.28)

Now,

MJM′ =
(

I + εJ
∂ 2G

∂η∂η

)
J
(

I− ε
∂ 2G

∂η∂η
J
)

=

(
J+ εJ

∂ 2G
∂η∂η

J
)(

I− ε
∂ 2G

∂η∂η
J
)

= J− εJ
∂ 2G

∂η∂η
J+ εJ

∂ 2G
∂η∂η

J− ε
2J

∂ 2G
∂η∂η

J
∂ 2G

∂η∂η
J.

Since ε is an infinitesimal parameter, ε2 term can be neglected. Hence,

MJM′ = J.

Thus, infinitesimal transformation is canonical. �
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University.

4.5 Poisson Brackets and Other Canonical Invariants

4.5.1 Poisson brackets

Definition 4.5.1: Poisson brackets

Let u(q, p, t) and v(q, p, t) be two functions of canonical variables and time. The Poisson
bracket of u and v with respect to canonical variables (q, p) is denoted by [u,v]q,p and is
defined as

[u,v]q,p =
∂u
∂qi

∂v
∂ pi
− ∂u

∂ pi

∂v
∂qi

.

Here, summation convention is used.
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Exercise 4.5.2

Evaluate Poisson bracket [u,v]q,p for u = p1−2p2 and v =−2q1−q2.

Solution. Here the system is of 2-degrees of freedom. Hence, Poisson bracket is given by

[u,v]q,p =
∂u
∂q1

∂v
∂ p1

+
∂u
∂q2

∂v
∂ p2
− ∂u

∂ p1

∂v
∂q1
− ∂u

∂ p2

∂v
∂q2

.

Now,
∂u
∂q1

= 0 =
∂u
∂q2

and
∂v

∂ p1
= 0 =

∂v
∂ p2

.

Also,
∂u
∂ p1

= 1,
∂u
∂ p2

=−2,
∂v
∂q1

=−2,
∂v
∂q2

=−1.

Therefore,
[u,v]q,p = 0+0−1(−2)− (−2)(−1) = 2−2 = 0.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

4.5.2 Fundamental Poisson Brackets

If the functions u and v are taken to be canonical variables then their Poisson bracket is called
Fundamental Poisson Bracket. In other words, Poisson brackets of canonical variables are
called Fundamental Poisson Brackets. There are four types of Fundamental Poisson brackets.
They are

1. [q j,qk]q,p =
∂q j

∂qi

∂qk

∂ pi
−

∂q j

∂ pi

∂qk

∂qi
= 0.

2. [p j, pk]q,p =
∂ p j

∂qi

∂ pk

∂ pi
−

∂ p j

∂ pi

∂ pk

∂qi
= 0.

3. [q j, pk]q,p =
∂q j

∂qi

∂ pk

∂ pi
−

∂q j

∂ pi

∂ pk

∂qi
= δ jiδ ik = δ jk.

4. [p j,qk]q,p =
∂ p j

∂qi

∂qk

∂ pi
−

∂ p j

∂ pi

∂qk

∂qi
=−δ jiδik =−δ jk.

4.5.3 Matrix form of Poisson brackets

Canonical variables are expressed in matrix form by a column matrix η . The Poisson bracket
of u and v with respect to η is given by

[u,v]η =

(
∂u
∂η

)′
J
(

∂v
∂η

)
,

where J =

[
0 I
−I 0

]
.
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Matrix of Fundamental Poisson Brackets:

Matrix form of fundamental Poisson brackets

[η ,η ]η = J,

where [η ,η ]η = ([ηi,η j])i j is a 2n×2n matrix .

Theorem 4.5.3

A coordinate transformation is a canonical transformation if and only if fundamental
Poisson brackets are invariant (under the transformation).

Proof. Recall that fundamental Poisson brackets are of the form

[η ,η ]η = J. (4.29)

Consider a transformation η → ζ . Now,

[ζ ,ζ ]η =

(
∂ζ

∂η

)′
J
(

∂ζ

∂η

)
= M′JM. (4.30)

From equations (4.294.29) and (4.304.30), it is clear that the transformation is canonical if and only if
fundamental Poisson brackets are invariant (under the transformation), i.e.

[ζ ,ζ ]η = [η ,η ]η ⇔M′JM = J.
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Theorem 4.5.4

A coordinate transformation is canonical if and only if all Poisson brackets are invariant.

Proof. Consider a canonical transformation η→ ζ and M be the corresponding Jacobian. Then
M is symplectic matrix, i.e. MJM′ = J. By chain rule, we can write

∂u
∂η

= M′
∂u
∂ζ

,
∂v
∂η

= M′
∂v
∂ζ

where M is the Jacobian matrix, i.e. the matrix of transformation. Now,

[u,v]η =

(
∂u
∂η

)′
J

∂v
∂η

=

(
M′

∂u
∂ζ

)′
J
(

M′
∂v
∂ζ

)
=

(
∂u
∂ζ

)′
MJM′

∂v
∂ζ
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=

(
∂u
∂ζ

)′
J

∂v
∂ζ

= [u,v]ζ .

Thus, if the transformation is canonical, then all the Poisson brackets are invariant.
Conversely, assume that all the Poisson brackets are invariant under the transformation. Then

in particular, the fundamental Poisson brackets are invariant. Therefore, by above theorem, we
conclude that the transformation is canonical. �
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University.

Remark 4.5.5. 1. As an application of above theorem, one can check whether a transfor-
mation is canonical or not by verifying the invariance of Poission brackets.

2. Since, by above theorem, the Poisson brackets are canonical invariants, from now onward
we do not specify the chosen canonical variables as a suffixes.

Exercise 4.5.6

Show that the transformation

Q = log
(

sin p
q

)
, P = qcot p

is canonical using fundamental Poisson brackets.

Solution. By definition of fundamental Poisson brackets, we have

[Q,Q]Q,P = 0 = [P,P]Q,P and [Q,P]Q,P = 1 =−[P,Q]Q,P.

As computed earlier in Example 4.3.14.3.1, we have

∂Q
∂q

=
q

sin p
(sin p)

(
− 1

q2

)
=−1

q
.

∂Q
∂ p

=
q

sin p
· cos p

q
= cot p.

∂P
∂q

= cot p.

∂P
∂ p

= −qcosec2 p.

Then observe that

[Q,P]q,p = ∂Q
∂q

∂P
∂ p −

∂Q
∂ p

∂P
∂q =

(
−1

q

)
(−qcosec2 q)− (cot p)(cot p) = 1 = [Q,P]Q,P

[P,Q]q,p =
∂P
∂q

∂Q
∂ p −

∂P
∂ p

∂Q
∂q = −1 = [P,Q]Q,P

[Q,Q]q,p =
∂Q
∂q

∂Q
∂ p −

∂Q
∂ p

∂Q
∂q = 0 = [Q,Q]Q,P

[P,P]q,p = ∂P
∂q

∂P
∂ p −

∂P
∂ p

∂P
∂q = 0 = [P,P]Q,P
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Thus, in the given transformation η(q, p)→ ζ (Q,P), the fundamental Poisson brackets are
invariant under the transformation, i.e.

[ζ ,ζ ]η = [ζ ,ζ ]ζ .

Hence, the transformation is canonical. �
Dr. Jay Mehta,
Department of
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Sardar Patel
University.

Remark 4.5.7. Thus, by far, we have seen three different ways of showing that (or determining
whether) a given transformation is canonical or not. We showed that the same transformation
given by

Q = log
(

sin p
q

)
, P = qcot p

is canonical by these three different ways, which are, by direct method (i.e. finding the
function F), by symplectic condition and by fundamental Poisson brackets in Example 4.14.1,
Example 4.3.14.3.1 and Example 4.5.34.5.3 respectively.

4.5.4 Properties of Poisson brackets

Anti-Symmetry of Poisson brackets

1. Poisson bracket is anti-symmetric, i.e. [u,v] =−[v,u].

Proof.

[u,v] =
∂u
∂qi

∂v
∂ pi
− ∂u

∂ pi

∂v
∂qi

=−
[

∂u
∂ pi

∂v
∂qi
− ∂u

∂qi

∂v
∂ pi

]
=−[v,u].
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Corollary 4.5.8

[u,u] = 0.

Bilinearity of Possion brackets

2. Poisson bracket is bilinear. In other words, Poisson brackets are linear in both the
arguments i.e.

[au+bv,w] = a[u,w]+b[v,w].

Similarly,
[u,av+bw] = a[u,v]+b[u,w].
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Proof. We show that Poisson bracket is linear in first variable, i.e.

[au+bv,w] = a[u,w]+b[v,w].

[au+bv,w] =
∂ (au+bv)

∂qi

∂w
∂ pi
− ∂ (au+bv)

∂ pi

∂w
∂qi

=

(
a

∂u
∂qi

+b
∂v
∂qi

)
∂w
∂ pi
−
(

a
∂u
∂ pi

+b
∂v
∂ pi

)
∂w
∂qi

=

[
a
{

∂u
∂qi

∂w
∂ pi
− ∂u

∂ pi

∂w
∂qi

}]
+

[
b
{

∂v
∂qi

∂w
∂ pi
− ∂v

∂ pi

∂w
∂qi

}]
= a[u,w]+b[v,w].

Similarly, it can be shown that [u,av+bw] = a[u,v]+b[u,w], i.e. Poisson bracket is linear in
second argument also. �
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Product rule of Poisson brackets

3. Product rule, i.e. [uv,w] = u[v,w]+ v[u,w].
Similarly, [u,vw] = w[u,v]+ v[u,w].

Proof. We have

[uv,w] =
∂ (uv)
∂qi

∂w
∂ pi
− ∂ (uv)

∂ pi

∂w
∂qi

=

(
u

∂v
∂qi

+ v
∂u
∂qi

)
∂w
∂ pi
−
(

u
∂v
∂ pi

+ v
∂u
∂ pi

)
∂w
∂qi

= u
(

∂v
∂qi

∂w
∂ pi
− ∂v

∂ pi

∂w
∂qi

)
+ v
(

∂u
∂qi

∂w
∂ pi
− ∂u

∂ pi

∂w
∂qi

)
= u[v,w]+ v[u,w].

Similarly, we can show [u,vw] = w[u,v]+ v[u,w]. �
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Jacobi’s identity

4. Jacobi Identity for Poisson brackets.
If u,v and w are three functions with continuous second order derivatives then

[u, [v,w]]+ [v, [w,u]]+ [w, [u,v]] = 0;

i.e., the sum of cyclic permutations of the double Poisson brackets of three functions is
zero.
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Proof. The proof can be given using matrix notation of Poisson brackets, i.e.

[u,v] =
(

∂u
∂η

)′
J
(

∂v
∂η

)
= uiJi jv j,

where ui =
∂u
∂ηi

and vi j =
∂ 2v

∂ηi∂η j
. The proof is left as an exercise (given in book for reference).
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4.5.5 Poincare’s Integral

Poincare’s integral is defined as

Poincare’s integeral

J =
∫∫
· · ·
∫

︸ ︷︷ ︸
2n intervals

dq1 dq2 · · · dqn d p1 d p2 · · · d pn .

Since q1,q2, . . . ,qn, p1, p2, . . . , pn are coordinates in phase space, dq1,dq2, . . . ,dqn,d p1,d p2, . . . ,d pn
gives volume in the phase space. It is denoted by (dη).

Now, we shall prove that J is canonical invariant. Thus, we have to prove that∫
(dη) =

∫
(dζ ).

By elementary calculus, we have

(dη) = |det(M)|(dζ ). (4.31)

Now, since η → ζ is a canonical transformation M is symplectic matrix, i.e.

M′JM = J.

Taking determinant on both sides, we get

det(M′JM) = det(M′)det(J)det(M) = det(J)

(det(M))2 = 1.

Therefore, det(M) =±1. Substituting this in equation 4.314.31, we get

(dη) = (dζ ).

4.5.6 Lagrange Brackets

Definition 4.5.9: Lagrange brackets

Let u(q, p, t) and v(q, p, t) be two dynamical quantities associated with a system of n-
degrees of freedom. The Lagrange bracket of u with v with respect to canonical variables
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(q, p) is denoted by {u,v}q,p and defined by

{u,v}q,p =
∂qi

∂u
∂ pi

∂v
− ∂ pi

∂u
∂qi

∂v
.

Matrix form of Lagrange brackets:

Matrix form of Lagrange brackets

{u,v}η =

(
∂η

∂u

)′
J

∂η

∂v
.

4.5.7 Properties of Lagrange brackets

1. Lagrange brackets are invariant under a canonical transformation, i.e.

{u,v}q,p = {u,v}Q,P,

where the transformation (q, p)→ (P,Q) is canonical.

Proof. Exercise (same as in case of invariance of Poisson brackets). �
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2. Anti-symmetric: {u,v}=−{v,u}.
3. Linearity: {au+bv,w}= a{u,w}+b{v,w}.

Theorem 4.5.10

If u(q, p, t) is a dynamical quantity associated with a system of n-degrees of freedom and
H(q, p, t) be Hamitonian of the system then

du
dt

= [u,H]+
∂u
∂ t

.

Proof. By Hamilton’s equations of motion, we have

q̇ j =
∂H
∂ p j

, ṗ j =−
∂H
∂q j

. (4.35)

Also, for u(q, p, t) we have

du
dt

=
∂u
∂q j

q̇ j +
∂u
∂ p j

ṗ j +
∂u
∂ t

=
∂u
∂q j

∂H
∂ p j
− ∂u

∂ p j

∂H
∂q j

+
∂u
∂ t

(by (4.354.35))

= [u,H]+
∂u
∂ t

.
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Corollary 4.5.11

If u is a constant of motion then
∂u
dt

= [H,u].

Proof. If u is a constant of motion then du
dt = 0. Then by above theorem

[u,H]+
∂u
∂ t

= 0

⇒ ∂u
∂ t

=−[u,H] = [H,u].
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Exercise 4.5.12

Show that converse of above corollary is also true.

4.5.8 Equations of motion in Poisson bracket form

Let H(q, p, t) be Hamiltonian of a system of n-degrees of freedom. Then Hamilton’s equations
of motion are given by

q̇ j =
∂H
∂ p j

, ṗ j =−
∂H
∂q j

. (4.36)

Since q j and p j do not depend on t explicitly, we get

q̇ j = [q j,H], ṗ j = [p j,H]. (4.37)

From equations (4.364.36) and (4.374.37),

[q j,H] =
∂H
∂ p j

, [p j,H] =−∂H
∂q j

. (4.38)

In matrix form equation (4.384.38) can be written as

Hamilton’s equations of motion in Poisson bracket form

[η ,H] = J
∂H
∂η

.

Theorem 4.5.13: Poisson’s theorem

If u = u(q, p, t) and v = v(q, p, t) are constants of motion then [u,v] is also a constant of
motion.

In other words, Poisson bracket of any two constants of motion is also a constant of
motion.
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Proof. Since u and v are constants of motion, by above corollary

[H,u] =
∂u
∂ t

, [H,v] =
∂v
∂ t

. (4.39)

We want to prove that w = [u,v] is a constant of motion. To prove this consider Jacobi identity
in the form

[H, [u,v]]+ [u, [v,H]]+ [v, [H,u]] = 0

⇒ [H, [u,v]]+
[

u,−∂v
∂ t

]
+

[
v,

∂u
∂ t

]
= 0

⇒ [H, [u,v]]−
[

u,
∂v
∂ t

]
+

[
v,

∂u
∂ t

]
= 0. (4.40)

Now, [
u,

∂v
∂ t

]
=

∂u
∂qi

∂

∂ pi

(
∂v
∂ t

)
− ∂u

∂ pi

∂

∂qi

(
∂v
∂ t

)
=

∂u
∂qi

∂

∂ t

(
∂v
∂ pi

)
− ∂u

∂ pi

∂

∂ t

(
∂v
∂qi

)
.

Similarly, [
v,

∂u
∂ t

]
=

∂v
∂qi

∂

∂ t

(
∂u
∂ pi

)
− ∂v

∂ pi

∂

∂ t

(
∂u
∂qi

)
.

Hence,[
v,

∂u
∂ t

]
−
[

u,
∂v
∂ t

]
=

{
∂v
∂qi

∂

∂ t

(
∂u
∂ pi

)
− ∂v

∂ pi

∂

∂ t

(
∂u
∂qi

)}
−
{

∂u
∂qi

∂

∂ t

(
∂v
∂ pi

)
− ∂u

∂ pi

∂

∂ t

(
∂v
∂qi

)}
=

∂

∂ t

(
∂v
∂qi

∂u
∂ pi

)
− ∂

∂ t

(
∂v
∂ pi

∂u
∂qi

)
= − ∂

∂ t
[u,v]. (4.41)

Substituting (4.414.41) in (4.404.40), we get

[H, [u,v]]− ∂

∂ t
[u,v] = 0⇒ [H, [u,v]] =

∂

∂ t
[u,v]

or

[H,w] =
∂w
∂ t

.

Hence, (by above corollary) w = [u,v] is a constant of motion. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Note: If u and v are constants of motion and do not depend on t explicitly then the proof of
Poisson’s theorem becomes simpler. Consider the following result.

Theorem 4.5.14

If u and v do not depend on t explicitly and they are constants of motion then [u,v] is a
constant of motion.
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Proof. We know that
du
dt

= [u,H]+
∂u
∂ t

.

Since u is a constant of motion, du
dt = 0. Also since u does not depend on time explicitly ∂u

∂ t = 0.
Therefore,

[u,H] = 0⇒ [H,u] = 0.

Similarly,
[v,H] = 0.

Then from Jacobi identity

[H, [u,v]]+ [u, [v,H]]+ [v, [H,u]] = 0

we have
[H, [u,v]] = 0.

Also, if u and v does not depend explicitly on t then [u,v] also do not depend on t explicitly.
Hence

d[u,v]
dt

= [[u,v],H]+
∂ [u,v]

∂ t
= 0.

Therefore, [u,v] is a constant of motion. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Exercise 4.5.15

For a system of 2-degrees of freedom Hamiltonian is given by

H = q1 p1−q2 p2−aq2
1 +bq2

2.

Show that the functions F1 =
p1−aq1

q2
and F2 = q1q2 are constants of motion. Are there any

other constants of motion obtained using Poisson brackets?

Solution. Clearly, F2 does not depend on t explicitly and so ∂F2
∂ t = 0. Thus, to show that F2 is

constant of motion it suffices to show that [F2,H] = 0. Now,

[F2,H] =
∂F2

∂q1

∂H
∂ p1
− ∂F2

∂ p1

∂H
∂q1

+
∂F2

∂q2

∂H
∂ p2
− ∂F2

∂ p2

∂H
∂q2

= (q2)(q1)−0+(q1)(−q2)−0 = 0.

Thus, F2 is a constant of motion. Similarly, show that [F1,H] = 0. Thus, F1 is also a constant of
motion. Now,

[F1,F2] =
∂F1

∂q1

∂F2

∂ p1
− ∂F1

∂ p1

∂F2

∂q1
+

∂F1

∂q2

∂F2

∂ p2
− ∂F1

∂ p2

∂F2

∂q2

= 0−
(

1
q2

)
(q2)+0−0

= −1 6= 0.
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If u and v are constants of motion then (by an earlier result) [u,v] is also a constant of motion.
Hence, further, [u, [u,v]] and [v, [u,v]] are also constants of motion.

A system of 2n first order ordinary differential equations admits at most 2n independent
constants. Therefore, there are no constants of motion obtained using Poisson brackets. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 4.5.16

If u is a dynamical quantity which does not depend on t explicitly, then

u(t) = u0 + t[u,H]0 +
t2

2!
[[u,H],H]0 + · · ·

where suffix 0 denotes the value of a quantity at t = 0.

Proof. By Maclaurin series expansion, we have

u(t) = u0 + t
(

du
dt

)
t=0

+
t2

2!

(
d2u
dt2

)
t=0

+
t3

3!

(
d3u
dt3

)
t=0

+ · · · . (4.42)

Now since u does not depend on t explicitly ∂u
∂ t = 0 and hence

du
dt

= [u,H].

Differentiating again with respect to t (and replacing u by [u,H] in above), we get

d2u
dt2 =

d
dt

(
du
dt

)
=

d
dt
[u,H] = [[u,H],H].

Similarly, higher order time derivatives can be obtained in terms of Poisson brackets with H.
Using them in equation (4.424.42), we get

u(t) = u0 + t[u,H]0 +
t2

2!
[[u,H],H]0 + · · · .

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Remark 4.5.17. Above theorem when used for canonical variables (q, p) gives formal solution
to a mechanical problem in terms of Poisson brackets. That is, formal solution is given by

qi(t) = qi0 + t[qi,H]0 +
t2

2!
[[qi,H],H]0 + · · ·

and

pi(t) = pi0 + t[pi,H]0 +
t2

2!
[[pi,H],H]0 + · · · .
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Exercise 4.5.18

Hamiltonian for a particle moving on a curve with constant acceleration is given by

H =
p2

2m
−max (verify this),

where m is the mass of the particle, x is the generalized coordinate, p is momentum
conjugate to x and a is the acceleration. Solve this problem using Poisson brackets subject
to the conditions x = 0, p0 = mv0 at time t = 0 (or x = 0, dx

dt =
p0
m at t = 0).

Solution. For x and p (by above theorem or remark), we can write

x(t) = x0 + t[x,H]0 +
t2

2!
[[x,H],H]0 + · · · (4.43)

and

p(t) = x0 + t[p,H]0 +
t2

2!
[[p,H],H]0 + · · · . (4.44)

Now,

[x,H] =
∂x
∂x

∂H
∂ p
− ∂x

∂ p
∂H
∂x

=
p
m

(
∵

∂x
∂ p

= 0
)
.

Therefore

[[x,H],H] =
[ p

m
,H
]

=
1
m

{
∂ p
∂x

∂H
∂ p
− ∂ p

∂ p
∂H
∂x

}
=

1
m
(ma) = a (constant)

(
∵

∂ p
∂x

= 0
)
.

Then
[[[x,H],H],H] = [a,H] = 0.

Hence, all other higher order Poisson brackets with x vanish. Now,

[p,H] =
∂ p
∂x

∂H
∂ p
− ∂ p

∂ p
∂H
∂x

= − (−ma) = ma (constant)
(
∵

∂ p
∂x

= 0
)
.

Hence,
[[p,H],H] = [a,H] = 0

and all other higher order Poisson brackets with x vanish. Using these values in equations (4.434.43)
and (4.444.44), we get

x = 0+ t
p0

m
+

t2

2!
a = v0t +

1
2

at2

and
p = p0 + t(ma) = mv0 +mat.

(or mv = mv0 +mat⇒ v = v0 +at). �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Exercise 4.5.19

Consider Hamiltonian given in above exercise. Obtain Hamilton’s equations of motion
and solve them. Verify that the solution thus obtained is same as the solution obtained in
above exercise.

Exercises

Exercise 4.14.1
Show that the transformation

Q = log
(

sin p
q

)
, P = qcot p

is canonical by direct method, i.e. by directly finding the function.

Exercise 4.2
Find the generating functions of the type F3 and F4, i.e. show that

1. For F = F3(p,Q, t)+qi pi, we have

qi =−
∂F3

∂ pi
, Pi =−

∂F3

∂Qi
.

2. For F = F4(p,P, t)+qi pi−QiPi, we have

qi =−
∂F4

∂ pi
, Qi =

∂F4

∂Pi
.

Exercise 4.34.3
Determine the canonical transformation generated by F1 = q jQ j.

Exercise 4.4
Determine the transformation generated by F3 =−(eQ−1)2 tan p.

Exercise 4.5
For a system of 1-degree of freedom, a generating function is given by

F1 =
mwq2

2
cotQ.

Obtain the canonical transformation generated by F1.

Exercise 4.6
Show that the transformation

Q = tan−1
(

αq
p

)
, P =

αq2

2

(
1+

p2

αq2

)
PS01EMTH22 2018-19
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is canonical by verifying that it satisfies symplectic condition (i.e. matrix method).

Exercise 4.7
Prove that If M is symplectic then M−1 is also symplectic.

Exercise 4.8
Let u = q1 p1−q2 p2−aq2

1 +bq2
2 and v =

p1−aq1

q2
. Evaluate [u,v]q,p.

Exercise 4.9
Verify the matrix form of Poisson brackets for a system of 2-degrees of freedom.

Exercise 4.10
Using fundamental Poisson brackets show that the transformation

Q = tan−1
(

q
p

)
, P =

q2

2

(
1+

p2

q2

)
is canonical.

Exercise 4.11
Find under what conditions

Q =
α p
x
, P = βx2,

where α and β are constants, represents a canonical transformation for a system of one degree
of freedom.

Exercise 4.12
Determine whether the transformation

Q1 = q1q2, P1 =
p1− p2

q2−q1
+1

Q2 = q1 +q2, P2 =
q2 p2−q1 p1

q2−q1
− (q2 +q1)

is canonical.

Exercise 4.13
By any method, prove that the following transformation is canonical:

Q1 = q2
1, Q2 = q2 sec p2

P1 =
p1 cos p2−2q2

2q1 cos p2
, P2 = sin p2−2q1

Exercise 4.14
Using fundamental Poisson brackets find the values of α and β for which the equations

Q = qα cosβ p, P = qα sinβ p
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represent a canonical transformation.

Exercise 4.15
Check whether the following transformations are canonical or not.

1. P = logsin p, Q = q tan p

2. P = qp2, Q = 1
p

3. P = q2 sin2p, Q = q2 cos2p

Exercise 4.16
Prove Jacobi’s identity for Poisson brackets.

Exercise 4.174.17
Show that a transformation is a canonical transformation if and only if fundamental Lagrange

brackets are invariant.

Exercise 4.184.18
Show that

D =
pq
2
−Ht

is a constant of motion for a system with Hamiltonian given by

H =
p2

2
− 1

2q2 .

Exercise 4.19

Show that
d[u,v]

dt
=

[
du
dt

,v
]
+

[
u,

dv
dt

]
.
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Answers to Exercises

CHAPTER 1

Solution 1.11.1 (Page 4343).

1. Let P1(x1,y1,z1) and P2(x2,y2,z2) be coordinates of two particles. Since they are
connected by a rod of length l, the distance between them remains constant l during
motion. This is the only constraint of the system and it is a holonomic constraint
expressed by

(x1− x2)
2 +(y1− y2)

2 +(z1− z2)
2 = l2

which is a holonomic constraint. Hence, degrees of freedom of the system is

3N− k = 3(2)−1 = 5.

2. Let P1(x1,y1,z1) and P2(x2,y2,z2) be coordinates of two particles. Since they are
connected by an in-extensible rod of length l one constraint of the system is expressed
by

(x1− x2)
2 +(y1− y2)

2 +(z1− z2)
2 = l2.

Further more the center of the rod which is
(x1+x2

2 , y1+y2
2 , z1+z2

2

)
moves on a circle (i.e.

on a circle in plane) of radius r. Therefore, we have two more holonomic constraints
which are expressed by:

1. z1+z2
2 = 0 i.e. z1 + z2 = 0 or z2 =−z1.

2.
(x1+x2

2

)2
+
(y1+y2

2

)2
= r2.

Thus, there are three constraints and all are holonomic. Hence, degrees of freedom of
the system is

3N− k = 3(2)−3 = 3.

3.

Simple pendulum is a system of one particle where
the particle is suspended by a rigid weightless and
inextendable string from a fixed point. The particle
is allowed to move in vertical plane and motion takes
place under gravity. The constraints are

1. x2 + y2 + z2 = l2.
2. z = 0.

Therefore degrees of freedom is n = 3N− k = 1.

O x

l

P my

θ
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Since l is constant, we choose the angle θ made by the pendulum with the vertical axis
as the generalized coordinate.

4. Here, the number of particles, N = 1. Since the particle moves on a parabola or an ellipse,
it satisfies the equation of the parabola or the ellipse on which it moves. Therefore, the
constraint is

y2 = 4ax or x2 = 4ay

if the particle moves on a parabola and the constraint is

x2

a2 +
y2

b2 = 1

if the particle is moving on an ellipse. In each case, the number of constraint k = 1 and
it is holonomic constraint. Hence, the degrees of freedom is n = 3N− k = 2.
In case of a parabola y2 = 4ax, we choose x (or y) as a generalized coordinate. In case
of an ellipse, we choose either x or y as a generalized coordinate.

Solution 1.21.2 (Page 4343). For a particle moving in Xy-plane, N = 1. The only constraint is z = 0
which is a holonomic constraint. Thus, k = 1 and hence degrees of freedom is n = 3N− k = 2.
Since, we have to choose plane polar coordinates, we have

x = r cosθ and y = r sinθ ,

where r ∈ R and θ ∈ [0,2π) or θ ∈ [−π,π). Since, degrees of freedom of the system is 2, in
terms of plane polar coordinates, the generalized coordinates are q1 = r and q2 = θ .

Note that in terms of Cartesian coordinates, the generalized coordinates are q1 = x and
q2 = y.

Solution 1.31.3 (Page 4444).

Solution 1.41.4 (Page 4444). Seminar Exercise

Solution 1.71.7 (Page 4444). Seminar exercise.

Solution 1.81.8 (Page 4444). Here, degrees of freedom n = 3N = k = 3− 1 = 2. Writing the
coordinates

x = l sinθ cosφ

y = l sinθ sinφ

z = l cosθ

(1.14)

Therefore, the kinetic energy is given by

T =
1
2
(ẋ2 + ẏ2 + ż2)

=
ml2

2
(θ̇ 2 + sin2

θ φ̇
2).
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Also, the potential energy is given by

V =−mgl cosθ .

Then the Lagrangian is given by

L = T −V

=
ml2

2
(θ̇ 2 + sin2

θ φ̇
2)+mgl cosθ .

Now, Lagrange’s equations of motion are given by

d
dt

(
∂L
∂ θ̇

)
− ∂L

∂θ
= 0

d
dt

(
∂L
∂ φ̇

)
− ∂L

∂φ
= 0.

which gives

θ̈ =−1
l

sinθ(g− φ̇
2 l cosθ) and φ̈ =−2

φ̇ θ̇ cosθ

sinθ
.

Solution 1.121.12 (Page 4444). A Double Pendulum is a system of two particles P(x1,y1,z2) and
Q(x2,y2,z2) having masses m1 and m2 respectively, where P is suspended from origin by a rod
of length l1 and second particle Q of mass m2 is suspended from P by a rod of length l2.

Constraints of double pendulum are as follows:

x2
1 + y2

1 = l2
1

(x2− x1)
2 +(y2− y1)

2 = l2
2

z1 = 0
z2 = 0.

Thus, there are k = 4 constraints in case of double pendulum and therefore the degrees of
freedom is

n = 3N− k = 3(2)−4 = 2.

Now, we assign generalized coordinates to the double pendulum. Choosing θ1, the angle made
by OP with vertical line and θ2, the angle made by PQ with the vertical line as the generalized
coordinates.

As shown in figure, in4OSP, we have

sinθ1 =
x1

l1
⇒ x1 = l1 sinθ1.

Also,
cosθ1 =

y1

l1
⇒ y1 = l1 cosθ1.

Similarly, from4PQR, we have

x2 = l1 sinθ1 + l2 sinθ2 and y2 = l1 cosθ1 + l2 cosθ2.
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Now to obtain Lagrange’s equations of motion we first find the Lagrangian for double pendulum.
The Lagrangian L is given by L = T −V , where T is kinetic energy and V is potential energy.
The kinetic energy T is given by

T =
1
2

m1v2
1 +

1
2

m2v2
2

=
1
2
(ẋ1

2 + ẏ1
2 + ż1

2)+
1
2
(ẋ2

2 + ẏ2
2 + ż2

2)

=
1
2

m1(l2
1 θ̇1

2
)+

1
2

m2(l2
1 θ̇1

2
+ l2

2 θ̇2
2
+2l1l2θ̇1θ̇2 cos(θ1−θ2)).

Also, potential V is given by

V = −mgy1−mgy2

= −mgl1(cosθ1)−mg(l1 cosθ1 + l2 cosθ2).

L = T −V

=
1
2

m1l2
1 θ̇1

2
+

1
2

m2(l2
1 θ̇1

2
+ l2

2 θ̇2
2
+2l1l2θ̇1θ̇2 cos(θ1−θ2))

+mgl1(cosθ1)+mg(l1 cosθ1 + l2 cosθ2).

Now Lagrange’s equations of motion are given by

d
dt

(
∂L
∂ θ̇1

)
− ∂L

∂θ1
= 0 and

d
dt

(
∂L
∂ θ̇2

)
− ∂L

∂θ2
= 0.

This gives (after computation),

θ̈1 =
−m2l2θ̈2 cos(θ1−θ2)−m2l2θ̇2

2 sin(θ1−θ2)− (m1 +m2)gsinθ1

(m1 +m2)l1
.

and
θ̈2 =

1
l2

[
−l1θ̈1 cos(θ1−θ2)+ l1θ̇

2
1 sin(θ1−θ2)−gsinθ2

]
.

Solution 1.131.13 (Page 4545). For a spherical pendulum (or a particle moving on a sphere), the
degrees of freedom is 2. We use q1 = θ and q2 = φ as generalized coordinates (in terms of
spherical coordinates). We know that

x = l sinθ cosφ

y = l sinθ sinφ

z = l cosθ

Therefore

ẋ = l[sinθ(−sinφ)φ̇ + cosφ cosθθ̇ ]

ẏ = l[sinθ(cosφ)φ̇ + sinφ cosθθ̇ ]

ż = − l sinθθ̇
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Now, kinetic energy of spherical pendulum is given by

T =
1
2

mv2

=
1
2

m(ẋ2 + ẏ2 + ż2)

=
1
2

ml2[(−sinθ sinφφ̇ + cosθ cosφθ̇)2 +(sinθ cosφφ̇ + cosθ sinφθ̇)2 +(−sinθθ̇)2]

=
1
2

ml2 [sin2
θ sin2

φφ̇
2−2sinθ sinφ cosθ cosφθ̇ φ̇ + cos2

θ cos2
φθ̇

2 + sin2
θ cos2

φφ̇
2

+ 2sinθ sinφ cosθ cosφθ̇ φ̇ + sin2
φ cos2

θθ̇
2 + sin2

θθ̇
2]

=
1
2

ml2[φ̇ 2 sin2
θ(sin2

φ + cos2
φ)+ θ̇

2 cos2
θ(cos2 phi+ sin2

φ)+ sin2
θθ̇

2]

=
1
2

ml2[φ̇ 2 sin2
θ + θ̇

2].

Solution 1.161.16 (Page 4545). A simple harmonic oscillator is an oscillator that is neither driven nor
damped. The motion of simple harmonic oscillator is called simple harmonic motion, which is
motion on a straight line. It consists of a mass m which experiences a single force F̄ , which
pulls the mass m in the direction of the point x = 0 and depends only on the position x. Here x
is the only generalized coordinate. Hence, degrees of freedom is 1.

Now, the force is directly proportional to the negative of the distance of the particle from a
fixed point on the line of motion, i.e. F ∝−x. So, F =−kx (k > 0) or F̄ = kxî. We know that
F̄ =−∇V . Therefore,

−kx =−
(

∂V
∂x

,
∂V
∂y

,
∂V
∂ z

)
⇒V =

kx2

2
+ f (y,z)⇒V =

kx2

2
(∵ f (y,z) = 0).

So the potential energy stored in SHO at position x is V = 1
2kx2. The kinetic energy of SHO is

given by

T =
1
2

mv2 =
1
2

mẋ2.

Therefore, Lagrangian of SHO is

L = T −V =
1
2

mẋ2− 1
2

kx2,

where m is the mass, k is constant and x is the position which is generalized coordinate. Now,
Lagrange’s equation of motion for SHO with degrees of freedom 1 is given by

d
dt

(
∂L
∂ ẋ

)
− ∂L

∂x
= 0

⇒ d
dt
(mẋ)− (−kx) = 0

⇒ mẍ+ kx = 0

⇒ ẍ+ω
2x = 0⇒ x = Acos(ωt +B)

(
ω

2 =
k
m

)
.
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Solution 1.251.25 (Page 4646). We have L′ = L+ dF
dt . Then differentiating above equation with

respect to qi and q̇i respectively, we get

∂L′

∂qi
=

∂L
∂qi

+
∂

∂qi

(
dF
dt

)
(1.58)

and
∂L′

∂ q̇i
=

∂L
∂ q̇i

+
∂

∂ q̇i

(
dF
dt

)
. (1.59)

Now, for the function F(q1,q2, . . . ,qn, t), we have

dF
dt

= ∑
j

∂F
∂q j

q̇ j +
∂F
∂ t

.

Therefore,

∂

∂ q̇i

(
dF
dt

)
=

∂

∂ q̇i

(
∑

j

∂F
∂q j

q̇ j +
∂F
∂ t

)

= ∑
j

∂

∂ q̇i

(
∂F
∂q j

q̇ j

)
+

∂

∂ q̇i

(
∂F
∂ t

)
= ∑

j

(
∂F
∂q j

)
∂ q̇ j

∂ q̇i
+0 =

∂F
∂qi

.

Substituting this value in equation (1.591.59), we get

∂L′

∂ q̇i
=

∂L
∂ q̇i

+
∂F
∂qi

.

Differentiating above equation with respect to t, we have

d
dt

(
∂L′

∂ q̇i

)
=

d
dt

(
∂L
∂ q̇i

)
+

d
dt

(
∂F
∂qi

)
. (1.60)

Now, from equations (1.581.58) and (1.601.60), using the fact that F is differentiable and Lagrangian L
satisfies Lagrange’s equations of motion, we conclude that

d
dt

(
∂L′

∂ q̇i

)
− ∂L′

∂qi
=

{
d
dt

(
∂L
∂ q̇i

)
− ∂L

∂qi

}
+

{
d
dt

(
∂F
∂qi

)
− ∂

∂qi

(
dF
dt

)}
= 0.

Thus, L′ also satisfies Lagrange’s equations of motion.

CHAPTER 2

Solution 2.12.1 (Page 6464). Consider two points P(x1,y1,z1) and Q(x2,y2,z2) in space. Our
problem is to determine the curve in space on which the distance between P and Q is minimum.

The distance between to neighboring points (x,y,z) and (x+dx,y+dy,z+dz) on a curve in
space is given by

ds2 = dx2 +dy2 +dz2 = dx2

(
1+
(

dy
dx

)2

+

(
dz
dx

)2
)
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∴ ds =
√

1+ ẏ2 + ż2 dx,

where ẏ = dy
dx and ż = dz

dx .
Thus, the distance between P(x1,y1) and Q(x2,y2) is given by the integral

I =
∫ x2

x1

ds =
∫ x2

x1

√
1+ ẏ2 + ż2 dx. (2.7)

The curve of shortest distance can be obtained by solving Euler-Lagrange equations for the
above integral, i.e. we need to solve the following equations

∂ f
∂y
− d

dx

(
∂ f
∂ ẏ

)
= 0 (2.8)

∂ f
∂ z
− d

dx

(
∂ f
∂ ż

)
= 0, (2.9)

where f ≡ f (y,z, ẏ, ż,x) = (1+ ẏ2 + ż2)
1
2 . Now,

∂ f
∂y

= 0 and
∂ f
∂ z

= 0.

Also,

∂ f
∂ ẏ

=
∂

∂ ẏ

(
1+ ẏ2 + ż2) 1

2 =
1
2
(1+ ẏ2 + ż2)−

1
2 (2ẏ) = (1+ ẏ2 + ż2)−

1
2 ẏ.

Therefore,
d
dx

(
∂ f
∂ ẏ

)
=

d
dx

(
ẏ

(1+ ẏ2 + ż2)
1
2

)
.

Using this values in equation (2.82.8), we get

− d
dx

(
ẏ

(1+ ẏ2 + ż2)
1
2

)
= 0⇒ ẏ

(1+ ẏ2 + ż2)
1
2
= a1 (a1 is constant).

which gives
(a1

2−1)ẏ2 +a1
2ż2 =−a1

2. (2.10)

Similarly, from equation (2.92.9), we get ż

(1+ẏ2+ż2)
1
2
= b1 for some constant b1 (say) and hence

(b1
2−1)ż2 +b1

2ẏ2 =−b1
2. (2.11)

Solving equations (2.102.10) and (2.112.11) (by elimination method or Cramer’s method), we get

ẏ =
(

a1
2

1−a12−b1
2

) 1
2

= a2 and ż =
(

b1
2

1−a12−b1
2

) 1
2

= b2,

where a2 and b2 are constants. Hence, solving above equations, we have{
y = a2 x+a3

z = b2 x+b3
(2.12)

which are (individually) equations of plane. However, equation (2.122.12) together represents a
straight line in space. Thus, the curve of shortest between two points in space is a straight line
joining these two points.
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Solution 2.22.2 (Page 6464). Curve

Solution 2.32.3 (Page 6464). Great circle.

Solution 2.52.5 (Page 6464).

1. Simple pendulum:

Solution 2.62.6 (Page 6565).

1. L =
m
2
(
aẋ2 +2bẋẏ+ cẏ2)− k

2
(
ax2 +2bxy+ cy2).

Solution 2.72.7 (Page 6565). Here, r and θ are generalized coordinates. The generalized momenta
pr and pθ conjugate to r and θ respectively are given by

pr =
∂L
∂ ṙ

= ṙ and pθ =
∂L
∂ θ̇

= r2
θ̇ . (2.30)

The energy function h is given by

h = ṙpr + θ̇ pθ −L

= ṙ2 + r2
θ̇

2−L

=
1
2
(
ṙ2 + r2

θ̇
2)− 1

r

Since the Lagrangian does not depend on θ (i.e. since θ is cyclic coordinate), the generalized
momenta pθ is conserved.

Since Lagrangian does not depend on time explicitly, i.e. ∂L
∂ t = 0 and we know that ∂L

∂ t =−
dh
dt ,

we have dh
dt = 0 and hence h is conserved.

Solution 2.82.8 (Page 6565). By Theorem 2.6.22.6.2.

CHAPTER 3

Solution 3.13.1 (Page 8282).

1. Simple pendulum:

Solution 3.23.2 (Page 8282).

1. L =
m
2
(
aẋ2 +2bẋẏ+ cẏ2)− k

2
(
ax2 +2bxy+ cy2).

Solution 3.113.11 (Page 8383). Seminar exercise.

Solution 4.14.1 (Page 112112). Seminar exercise (Find F = d(pq+qcot p)).
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Solution 4.34.3 (Page 112112). The canonical transformation is Qi = pi and Pi =−qi.

Solution 4.174.17 (Page 114114). Lagrange brackets are given in matrix form as

{u,v}η =

(
∂η

∂u

)′
J

∂η

∂v
. (4.32)

Therefore Fundamental Lagrange brackets can be written in matrix form as

{η ,η}η = J. (4.33)

Consider a transformation η → ζ . Now,

{ζ ,ζ}η =

(
∂ζ

∂η

)′
J
(

∂ζ

∂η

)
= M′JM. (4.34)

From equations (4.334.33) and (4.344.34), it is clear that the transformation is canonical if and only if
fundamental Poisson brackets are invariant (under the transformation), i.e.

{ζ ,ζ}η = {η ,η}η ⇔M′JM = J.

Solution 4.184.18 (Page 114114). Show that [H,D] =
∂D
∂ t

(Left as exercise).

Dr. Jay Mehta jay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edu

mailto:jay_mehta@spuvvn.edu
jay_mehta@spuvvn.edu
jay_mehta@spuvvn.edu




Index

A

acceleration. . . . . . . . . . . . . . . . . . . . . . . . . .1313
action integral . . . . . . . . . . . . . . . . . . . . . . . .4747
angular momentum . . . . . . . . . . . . . . . . . . . 1414

B

Brachistochrone problem. . . . . . . . . . . . . . 5151

C

calculus of variations . . . . . . . . . . . . . . . . . 4848
Brachistochrone problem . . . . . . . . . . 5151

cancellation of dots . . . . . . . . . . . . . . . . . . . 3030
canonical transformation . . . . . . . . . . . . . . 8585

depending on time . . . . . . . . . . . . . . . . 9797
generated by F1(q,Q, t) . . . . . . . . . . . 9090
generated by F2(q,P, t) . . . . . . . . . . . . 9191
generated by F3(p,Q, t) . . . . . . . 9191, 112112
generated by F4(p,P, t) . . . . . . . 9191, 112112
infinitesimal . . . . . . . . . . . . . . . . . . . . . 9797
Jacobian . . . . . . . . . . . . . . . . . . . . . . . . . 9494
Poisson brackets . . . . . . . . . . . . . . . . .101101
symplectic condition . . . . . . . . . . . . . . 9494

canonical variables . . . . . . . . . . . . . . . . . . . 8080
center of mass . . . . . . . . . . . . . . . . . . . . . . . 1818
classification of constraints . . . . . . . . . . . . 2222
components of mechanics . . . . . . . . . . . . . 1111
condition for canonical transformation . .8787

exact form . . . . . . . . . . . . . . . . . . . . . . . 8888
condition for extremum

Euler’s equation . . . . . . . . . . . . . . . . . . 4848
Euler-Lagrange equations . . . . . . . . . 4949
extensions . . . . . . . . . . . . . . . . . . . . . . . 4949

condition of extremum . . . . . . . . . . . . . . . . 4848
configuration space . . . . . . . . . . . . . . . . . . . 4242
conservative force . . . . . . . . . . . . . . . . . . . . 1515

constraint force . . . . . . . . . . . . . . . . . . . . . . 2222
Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 2121

holonomic . . . . . . . . . . . . . . . . . . . . . . . 2222
non-holonomic . . . . . . . . . . . . . . . . . . . 2323
rheonomic . . . . . . . . . . . . . . . . . . . . . . . 2424
scleronomic . . . . . . . . . . . . . . . . . . . . . . 2424
types of constraints . . . . . . . . . . . . . . . 2222

cyclic coordinate . . . . . . . . . . . . . . . . . . 5454, 7777

D

D’Alembert’s principle . . . . . . . . . . . . . . . 3232
degrees of freedom . . . . . . . . . . . . . . . . . . . 2626
dictionary of mechanics . . . . . . . . . . . . . . . 1212
double pendulum

generalized coordinates . . . . . . . . . . . 4444
Lagrange’s equations of motion . . . . 4444

E

Einstein’s summation convention . . . . . . 8686
energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1515
energy function h . . . . . . . . . . . . . . . . . . . . 5959
Euler’s equation . . . . . . . . . . . . . . . . . . . . . . 4848
Euler’s theorem . . . . . . . . . . . . . . . . . . . . . . 6262
Euler-Lagrange equations . . . . . . . . . . 4949, 8181

F

force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1313
frictional forces . . . . . . . . . . . . . . . . . . . . . . 4040
fundamental Poisson brackets . . . . . . . . 100100

G

generalized coordinates . . . . . . . . . . . . . . . 2626
generalized momentum . . . . . . . . . . . . . . . 5555
generalized velocity . . . . . . . . . . . . . . . . . . 3030
generating function . . . . . . . . . . . . . . . . . . . 9090

125



126 Exercises

H

Hamilton’s equations of motion . . . . . . . . 6969
from Hamilton’s modified principle 8181
in Poisson bracket form . . . . . . . . . . 107107
matrix form . . . . . . . . . . . . . . . . . . . . . . 7474

Hamilton’s modified principle . . . . . . . . . 8080
Hamilton’s principle . . . . . . . . . . . . . . 4747, 5353
Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 6969

conserved. . . . . . . . . . . . . . . . . . . . . . . .7676

I

ignorable coordinate . . . . . . . . . . . . . . . . . . 7777

J

Jacobi identity . . . . . . . . . . . . . . . . . . . . . . 104104
Jacobian matrix M . . . . . . . . . . . . . . . . . . . .9393

K

Kinetic energy . . . . . . . . . . . . . . . . . . . . . . . 1515
Kinetic energy in generalized coordinates4141

L

Lagrange brackets . . . . . . . . . . . . . . . . . . . 105105
matrix form . . . . . . . . . . . . . . . . . . . . . 106106

Lagrange’s equations of motion . . . . . . . . 5454
frictional forces (Rayleigh’s dissipation

function) . . . . . . . . . . . . . . . . . . . . .4040
from Hamilton’s equations of motion7272
from Hamilton’s principle . . . . . . . . . 5353
general form. . . . . . . . . . . . . . . . . . 3333, 3636
in Lagrangian L . . . . . . . . . . . . . . . . . . 3838
special case with L . . . . . . . . . . . . . . . .3737
velocity dependent potential . . . . . . . 4040

Lagrangian . . . . . . . . . . . . . . . . . . . . . . . 3838, 4343
not unique . . . . . . . . . . . . . . . . . . . . . . . 4343

Law of conservation of
energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 1717
generalized momentum . . . . . . . . . . . 5656
linear momentum. . . . . . . . . . . . . . . . . 1414
linear momentum (in Lagrangian

formalism) . . . . . . . . . . . . . . . . . . . 5858
total energy (in Lagrangian formalism)

6262
total linear momentum . . . . . . . . . . . . 2020

Legendre transformation . . . . . . . . . . . . . . 6767
linear momentum . . . . . . . . . . . . . . . . . . . . 1313

linear momentum of a system . . . . . . . . . 1818

P

phase space . . . . . . . . . . . . . . . . . . . . . . . . . . 8080
Poincare’s integral . . . . . . . . . . . . . . . . . . 105105
Poission brackets

matrix form . . . . . . . . . . . . . . . . . . . . . 100100
Poisson brackets . . . . . . . . . . . . . . . . . . . . . 9999

fundamental . . . . . . . . . . . . . . . . . . . . 100100
Jacobi identity . . . . . . . . . . . . . . . . . . 104104
properties . . . . . . . . . . . . . . . . . . . . . . 103103

Poisson’s theorem . . . . . . . . . . . . . . . . . . . 107107
Potential energy . . . . . . . . . . . . . . . . . . . . . . 1515
principle of virtual work . . . . . . . . . . . . . . 3131

R

Rayleigh’s dissipation function . . . . . . . . 4040
Routh’s procedure . . . . . . . . . . . . . . . . . . . . 7878
Routhian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7878
Routhian equations of motion . . . . . . . . . 7878

S

simple harmonic oscillator
Hamiltonian . . . . . . . . . . . . . . . . . . . . . 7070
Lagrangian . . . . . . . . . . . . . . . . . . . . . . 6363

simple pendulum
constraints . . . . . . . . . . . . . . . . . . . . . . . 2525
Lagrange’s equations of motion . . . . 3838

spherical pendulum
Lagrange’s equations of motion . . . . 4545
Lagrangian. . . . . . . . . . . . . . . . . . . . . . .6161

state of particle . . . . . . . . . . . . . . . . . . . . . . 1414
symplectic condition . . . . . . . . . . . . . . . . . 9494
symplectic matrix . . . . . . . . . . . . . . . . . . . . 9595
system point

in configuration space . . . . . . . . . . . . . 4242
in phase space . . . . . . . . . . . . . . . . . . . .8080

V

velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1313
virtual displacement . . . . . . . . . . . . . . . . . . 3030
virtual work . . . . . . . . . . . . . . . . . . . . . . . . . .3131

W

work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1515

PS01EMTH22 2018-19


	Syllabus
	Lagrange's Formulation
	Mechanics of a particle
	Basic terminology and concepts in Mechanics
	Dictionary of Mechanics
	Conservative force field

	Mechanics of a system of particles
	Finite system of particles

	Constraints and their classification
	Constraints
	Classification of constraints
	Difficulties Imposed by Constraints
	Generalized coordinates and Degrees of Freedom
	Constraints and generalized coordinates in a rigid body
	Transformation equations
	Generalized Velocities

	Principle of Virtual Work
	Virtual Displacement and Virtual Work
	Principle of Virtual Work
	Refined version of Principle of Virtual Work

	D'Alemberts Principle and Lagrange's Equations
	D'Alemberts Principle
	Lagrange's Equations of Motion

	Lagrange's Equations of Motion: Special Cases
	Conservative Force
	Non-conservative Force
	Frictional Forces and Rayleigh's Dissipation Function

	Kinetic Energy in generalized Coordinates
	Configuration Space and Lagrangian
	Configuration space and system point
	Remarks on Lagrange's equation of motion
	Uniqueness of Lagrangian

	Exercises

	Variational principles
	Hamilton's principle
	Action Integral
	Hamilton's principle

	Calculus of Variations
	Condition for extremum
	Some applications of calculus of variations

	Derivation of Lagrange's equations from Hamilton's principle
	Cyclic coordinates and Generalized momenta
	Conservation theorems and Symmetry properties
	Conservation of linear momentum in Lagrangian formalism

	Energy Function and the Conservation of Energy
	Energy function
	Conservation of energy in Lagrangian formalism

	Exercises

	Hamilton's Formulation
	Legendre Transformations and Hamilton Equations of Motion
	Legendre Transformation
	Hamiltonian and Hamilton's equations of motion
	Steps for deriving Hamilton's equation for a given system
	Derivation of Lagrange's equations of motion from Hamilton's equations of motion
	Matrix form of Hamilton's equations of motion

	Cyclic coordinates and Conservation Theorems
	Cyclicity of a generalized coordinate in Hamiltonian
	Ignorable coordinate

	Routh's Procedure
	Phase space and Canonical variables
	Derivation of Hamilton's equations from a variational principle
	Hamilton's modified principle
	Derivation of Hamilton's equations from Hamilton's modified principle

	Exercises

	Canonical Transformations
	Canonical Transformation
	Condition for a transformation to be Canonical
	Alternative form of condition for Canonical Transformation

	Generating Function and Canonical Transformations
	Generating Function
	Generating Function and Canonical Transformations
	Canonical transformation generated by F1(q,Q,t)
	Canonical transformation generated by F2(q,P,t)

	Symplectic condition for canonical transformation
	Matrix form of condition for canonical transformation

	Canonical transformation depending on time t
	Infinitesimal canonical transformation

	Poisson Brackets and Other Canonical Invariants
	Poisson brackets
	Fundamental Poisson Brackets
	Matrix form of Poisson brackets
	Properties of Poisson brackets
	Poincare's Integral
	Lagrange Brackets
	Properties of Lagrange brackets
	Equations of motion in Poisson bracket form

	Exercises

	Answers to Exercises
	Index

