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Hilbert Spaces

In this unit, we shall learn Inner product spaces, normed linear spaces, Banach spaces,
examples of inner product spaces, Polarization identity, Schwarz inequality, parallelogram
law, uniform convexity of the norm induced by inner product, orthonormal sets, Pythagoras
theorem, Gram-Schmidt othonormalization, Bessel’s inequality, Riesz-Fischer theorem.
Hilbert spaces, orthonormal basis, characterization of orthonormal basis, separable Hilbert
spaces.

1.1 Inner Product Spaces

1.1.1 Normed Linear Space

Definition 1.1.1. Let X be a linear (vector) space over K (where K = R or C). A
function ‖ · ‖ : X → R is called a norm on X if it satisfies the following properties.

1. ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.
2. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X.
3. ‖λx‖ = |λ|‖x‖ for all x ∈ X, λ ∈ K.

(X, ‖ · ‖) is called a normed linear space or a normed space. If K = R, then X is also
called a real normed linear space. If K = C, then X is also called a complex normed
linear space.

Examples 1.1.2. 1. Let X = Kn, where K = R or C. Define

‖x‖p =


(

n∑
i=1
|x(i)|p

) 1
p

if 1 ≤ p <∞
sup

1≤i≤n
|x(i)| if p =∞,

where x = (x(1), x(2), . . . , x(n)) ∈ X = Kn. Then (X, ‖ · ‖p) is a normed linear space
for 1 ≤ p ≤ ∞.

9



10 §1.1. Inner Product Spaces

2. Let X = `p = {x = (x(1), x(2), . . .) : x(i) ∈ K and
∞∑
i=1
|x(i)|p < ∞} if 1 ≤ p < ∞

and `∞ = {x = (x(1), x(2), . . .) : x(i) ∈ K and sup
i≥1
|x(i)| <∞}. Define

‖x‖p =


( ∞∑
i=1
|x(i)|p

) 1
p

if 1 ≤ p <∞
sup
i≥1
|x(i)| if p =∞,

where x = (x(1), x(2), . . .) ∈ `p. Then (X, ‖ · ‖p) is a normed linear space for
1 ≤ p ≤ ∞.

3. Let C[a, b] denote the collection of all continuous f : [a, b] → K for 1 ≤ p ≤ ∞.
Define

‖f‖p =
(∫ b

a
|f(t)|pdt

) 1
p

and
‖f‖∞ = sup{|f(t)| : t ∈ [a, b]}.

Then ‖ · ‖p is a norm on C[a, b] for 1 ≤ p ≤ ∞.

Note: A complete normed linear space is called a Banach space. In the above example
C[a, b] is a Banach space with the ‖ · ‖∞ norm but not a Banach space with ‖ · ‖p norm.

Definition 1.1.3. Let (X, ‖ · ‖) be a normed linear space. Define d(x, y) = ‖x − y‖
for all x, y ∈ X, then d(· , ·) is a metric on (X, ‖ · ‖). This metric is called the metric
induced by the norm ‖ · ‖.

Remark 1.1.4. Whenever we have a normed linear space (X, ‖.‖), we get a metric
(induced by the norm) which makes (X, d) a metric space. Thus, every normed linear space
is a metric space. The converse is not true as X may not have a vector space structure at
all, i.e. x+ y may not be defined for x, y ∈ X. For example, any non-empty set X with a
discrete metric.

1.1.2 Inner Product Space

Definition 1.1.5. Let X be a linear space over the field K, where K = R or C. A
function 〈· , ·〉 : X × X → K is called an inner product on X if it satisfies following
properties.

1. (Positive-definiteness) 〈x, x〉 ≥ 0 for all x ∈ X and 〈x, x〉 = 0 if and only if
x = 0.

2. (Linearity in the first variable): 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉 and 〈αx, y〉 =
α〈x, y〉 for every x, y, z ∈ X and α ∈ K.

3. (Conjugate symmetry) 〈y, x〉 = 〈x, y〉 for every x, y ∈ X.
A linear (vector) space together with an inner product is called an inner product

space.

Remark 1.1.6. From the conjugate symmetry, it follows that an inner product is conjugate
linear in the second variable. That is,

〈x, y + z〉 = 〈y + z, x〉 = 〈y, x〉+ 〈z, x〉 = 〈x, y〉+ 〈x, z〉 for all x, y, z ∈ X

PS02CMTH24 2018-19



§1.1. Inner Product Spaces 11

and
〈x, αy〉 = 〈αy, x〉 = α〈y, x〉 = α〈x, y〉 for all x, y ∈ X, α ∈ K.

Examples 1.1.7. 1. LetX = Kn. For x = (x(1), x(2), . . . , x(n)), y = (y(1), y(2), . . . , y(n)) ∈
Kn, define

〈x, y〉 =
n∑
i=1

x(i)y(i).

Then 〈· , ·〉 is an inner product on X = Kn.
2. Let X = c00 be the linear space of all real (or complex) sequences each with

only finitely many non-zero terms. For x = (x(1), x(2), . . . , x(n), 0, 0, . . .) and
y = (y(1), y(2), . . . , y(n), 0, 0, . . .) in X = c00, define

〈x, y〉 =
∞∑
i=1

x(i)y(i).

Then it is easy to see that 〈· , ·〉 is an inner product on c00.
3. Let X = `2. For x = (x(1), x(2), . . .), y = (y(1), y(2), . . .) ∈ X, define

〈x, y〉 =
∞∑
n=1

x(n)y(n).

Then 〈· , ·〉 is an inner product on `2.
4. Let X = C[a, b]. For f, g ∈ X, define

〈f, g〉 =
∫ b

a
f(t)g(t) dt.

Then 〈· , ·〉 is an inner product on X = C[a, b].

Proposition 1.1.8. Let 〈· , ·〉 be an inner product on a vector space X.
1. (Polarization identity) For all x, y ∈ X,

4〈x, y〉 = 〈x+ y, x+ y〉 − 〈x− y, x− y〉+ i〈x+ iy, x+ iy〉 − i〈x− iy, x− iy〉.

2. Let x ∈ X. Then 〈x, y〉 = 0 for all y ∈ X if and only if x = 0.
3. (Schwarz inequality) For all x, y ∈ X,

|〈x, y〉|2 ≤ 〈x, x〉〈y, y〉, (1.1)

and the equality holds if and only if x and y are linearly dependent.

Proof. (11) Due to linearity of 〈· , ·〉 in the first variable and conjugate-linearity in the
second variable, the right hand side can be reduced to left hand side as follows.

〈x+ y, x+ y〉 − 〈x− y, x− y〉+ i〈x+ iy, x+ iy〉 − i〈x− iy, x− iy〉
= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉 − 〈x, x〉+ 〈x, y〉+ 〈y, x〉 − 〈y, y〉+ i〈x, x〉
− i2〈x, y〉+ i2〈y, x〉 − i3〈y, y〉 − i〈x, x〉 − i2〈x, y〉+ i2〈y, x〉+ i3〈y, y〉

= 4〈x, y〉.

Dr. Jay Mehta jay mehta@spuvvn.edujay mehta@spuvvn.edu
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12 §1.1. Inner Product Spaces

(22) If x = 0, then
〈0, y〉 = 〈0 + 0, y〉 = 〈0, y〉+ 〈0, y〉.

Therefore, 〈0, y〉 = 0.
Conversely, assume that 〈x, y〉 = 0 for all y ∈ X. In particular, taking y = x, we get

〈x, x〉 = 0. Hence, by the positive-definiteness of inner product (Definition 1.1.51.1.5), x = 0.
(33) For x, y ∈ X, consider z = 〈y, y〉x− 〈x, y〉y. Then

0 ≤ 〈z, z〉 = 〈〈y, y〉x− 〈x, y〉y, 〈y, y〉x− 〈x, y〉y〉
= 〈y, y〉2〈x, x〉 − 〈y, y〉〈x, y〉〈x, y〉 − 〈x, y〉〈y, y〉〈y, x〉+ 〈x, y〉〈x, y〉〈y, y〉
= 〈y, y〉2〈x, x〉 − 〈x, y〉〈y, y〉〈y, x〉
= 〈y, y〉2〈x, x〉 − 〈x, y〉〈y, y〉〈x, y〉
= 〈y, y〉(〈x, x〉〈y, y〉 − |〈x, y〉|2).

Now, if 〈y, y〉 > 0, then 〈x, x〉〈y, y〉 − |〈x, y〉|2 ≥ 0 and the Schwarz inequality follows.
If 〈y, y〉 = 0, then by the definition of inner product, y = 0 and hence by (22) above, we

have 〈x, y〉 = 0. Hence, |〈x, y〉|2 = 0 = 〈x, x〉〈y, y〉.
Now assume that equality holds in the Schwarz inequality (1.11.1). Then 〈z, z〉 = 0 implies

z = 0. Hence,
〈y, y〉x− 〈x, y〉y = z = 0.

Thus, x and y are linearly dependent.
Conversely if x and y are linearly dependent, then y = αx for some α ∈ K. Then

〈x, y〉 = 〈x, αx〉 = α〈x, x〉
〈y, y〉 = 〈αx, αx〉 = |α|2〈x, x〉.

and
|〈x, y〉|2 = |α|2〈x, x〉2 = 〈x, x〉〈y, y〉.

Hence the equality holds in the Schwarz Inequality 1.11.1. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 1.1.9. Let 〈· , ·〉 be an inner product on a linear space X. For x ∈ X, define
‖x‖ =

√
〈x, x〉, the non-negative square root of 〈x, x〉. Then

|〈x, y〉| ≤ ‖x‖‖y‖ for all x, y ∈ X

and ‖ · ‖ is a norm on X, i.e. the function ‖ · ‖ : X → K is a norm function.

Proof. By the Schwarz inequality, we have, for x, y ∈ X,

|〈x, y〉|2 ≤ ‖x‖2‖y‖2; (1.2)

and therefore |〈x, y〉| ≤ ‖x‖‖y‖. Now, we verify that ‖ · ‖ is a norm on X.
• ‖x‖ =

√
〈x, x〉 ≥ 0 for all x ∈ X since 〈x, x〉 ≥ 0 for all x. Also,

‖x‖ = 0⇔ 〈x, x〉 = 0⇔ x = 0.

PS02CMTH24 2018-19



§1.1. Inner Product Spaces 13

• For all x, y ∈ X, we have,

‖x+ y‖2 = 〈x+ y, x+ y〉
= 〈x, x〉+ 〈y, x〉+ 〈x, y〉+ 〈y, y〉
= ‖x‖2 + 〈x, y〉+ 〈x, y〉+ ‖y‖2

= ‖x‖2 + 2 Re〈x, y〉+ ‖y‖2

≤ ‖x‖2 + 2|〈x, y〉|+ ‖y‖2

≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2 (by 1.21.2).

Therefore, ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X.
• For all x ∈ X and α ∈ K, we have

‖αx‖2 = 〈αx, αx〉 = αᾱ〈x, x〉 = |α|2〈x, x〉 = |α|‖x‖2.

Therefore, ‖αx‖ = |α|‖x‖ for all x ∈ X and α ∈ K.
�

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

The norm ‖ · ‖ defined above is called the the norm induced by the inner product or the
norm defined by the inner product or norm generated by the inner product.

Remark 1.1.10. From the above theorem, we can say that, “every inner product space is
a normed linear space.” However, the converse is not true. We will address to the converse
very soon but first we recall the law of parallelogram.

Law of Parallelogram

x

y

x−
y

x+
y

x

y

0

Recall that the parallelogram law states
that the sum of the squares of the lengths
of four sides of a parallelogram is equal to
the sum of the squares of its diagonals.

We have the following theorem:

Theorem 1.1.11 (Parallelogram law). Let X be an inner product space. Then ‖ · ‖
induced by the inner product satisfies

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2) for all x, y ∈ X.

Proof. Let x, y ∈ X. Then

‖x+ y‖2 + ‖x− y‖2 = 〈x+ y, x+ y〉+ 〈x− y, x− y〉
= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉

+ 〈x, x〉 − 〈x, y〉 − 〈y, x〉+ 〈y, y〉
= 2〈x, x〉+ 2〈y, y〉
= 2(‖x‖2 + ‖y‖2).

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Dr. Jay Mehta jay mehta@spuvvn.edujay mehta@spuvvn.edu
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14 §1.1. Inner Product Spaces

Theorem 1.1.12 (Polarization identity). Suppose X is an inner product space. Then
for x, y ∈ X,

〈x, y〉 = 1
4
[
‖x+ y‖2 + ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2

]
.

Proof. Exercise. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Question 1.1.13. Is it true that every normed linear space is an inner product space?
The answer to this question is given by the following theorem.

Theorem 1.1.14 (Jordan and von Neumann). Let ‖ · ‖ be a norm on a linear space X
which satisfies the parallelogram law. Define 〈· , ·〉 : X ×X → K by

〈x, y〉 = 1
4
(
‖x+ y‖2 + ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2

)
for all x, y ∈ X. Then 〈· , ·〉 is the unique inner product on X satisfying

√
〈x, x〉 = ‖x‖

for all x ∈ X.

Proof. Seminar. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Remark 1.1.15. By the above result, we can say that a normed linear space is an inner
product space if the norm satisfies the parallelogram law. The following proposition makes
it more clear.

Proposition 1.1.16. The normed linear space (`p, ‖ · ‖p) is an inner product space if
and only if p = 2.

Proof. Define the inner product on `2 by

〈x, y〉 =
∞∑
i=1

x(n)y(n), (x = (x(1), x(2), . . .), y = (y(1), y(2), . . .) ∈ `2).

Then clearly, (verify!) 〈· , ·〉 is an inner product on `2 making `2 an inner product space.
Also, the norm is defined as

‖x‖ =
√
〈x, x〉 =

( ∞∑
i=1
|x(n)|2

)1/2

= ‖x‖2 .

Conversely, assume that (`p, ‖ · ‖p) is an inner product space. Then the norm ‖ · ‖p
satisfies the parallelogram law, i.e. for x, y ∈ `p,

‖x+ y‖2
p + ‖x− y‖2

p = 2(‖x‖2
p + ‖y‖2

p) (1.3)

must hold. Now, take x = (1, 0, 0, . . .) and y = (0, 1, 0, . . .) in `p. Then

x+ y = (1, 1, 0, . . .)

PS02CMTH24 2018-19



§1.1. Inner Product Spaces 15

x− y = (1,−1, 0, . . .).

Therefore, ‖x+ y‖p = 2
1
p , ‖x− y‖p = 2

1
p , ‖x‖p = 1 and ‖y‖p = 1. Thus by (1.31.3), we get

2
2
p + 2

2
p = 2(1 + 1)

⇒2
2
p = 2

⇒ p = 2 .

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Proposition 1.1.17. Let X be an inner product space. If {xn} and {yn} are sequences
in X such that ‖xn − x‖ → 0 and ‖yn − y‖ → 0 in X. Then

1. 〈xn, yn〉 → 〈x, y〉 i.e. inner product is jointly continuous.
2. 〈xn, z〉 → 〈x, z〉 for all z ∈ X.

Proof. 1. |〈xn, yn〉 − 〈x, y〉| = |〈xn, yn〉 − 〈xn, y〉+ 〈xn, y〉 − 〈x, y〉|
≤ |〈xn, yn − y〉|+ |〈xn − x, y〉|
≤ ‖xn‖‖yn − y‖+ ‖xn − x‖‖y‖ (by the Schwarz inequality)
→ 0.

2. |〈xn, z〉 − 〈x, z〉| = |〈xn − x, z〉|
≤ ‖xn − x‖‖z‖ (by the Schwarz inequality)
→ 0.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Definition 1.1.18. Let V be a vector space over K. A subset C of V is said to be
convex if for each x, y ∈ C and 0 ≤ t ≤ 1,

tx+ (1− t)y ∈ C.

That is, the line segment joining x and y is also in C.

Example 1.1.19. Every subspace of a vector space is convex.

Definition 1.1.20. Let X be a normed linear space. Then

S1(0) = {x ∈ X : ‖x‖ < 1}

is called the open unit ball of X and

S1(0) = {x ∈ X : ‖x‖ ≤ 1}

is called the closed unit ball of X.

Example 1.1.21. The open unit ball in X, S1(0) is convex.

Dr. Jay Mehta jay mehta@spuvvn.edujay mehta@spuvvn.edu

mailto:jay_mehta@spuvvn.edu


16 §1.1. Inner Product Spaces

Solution. Let x, y ∈ S1(0). Then ‖x‖ < 1 and ‖y‖ < 1. Now,

‖tx+ (1− t)y‖ ≤ ‖tx‖+ ‖(1− t)y‖
= t‖x‖+ (1− t)‖y‖ (since t ∈ [0, 1])
< t(1) + (1− t)(1)
= 1.

So, the (open) unit ball in X is convex. Similarly, the closed unit ball in X is also
convex. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Definition 1.1.22. A normed linear space X is called uniformly convex if for every
ε > 0 there exists δ > 0 such that for each x, y ∈ X with ‖x‖ ≤ 1, ‖y‖ ≤ 1 and
‖x− y‖ ≥ ε, ∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ.

Theorem 1.1.23. Let X be an inner product space. Then the normed linear space X
with the induced norm is uniformly convex.

Proof. Let ε > 0 be given and let x, y ∈ X such that ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε.
By parallelogram law,

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2).

Therefore,

‖x+ y‖2 = 2(‖x‖2 + ‖y‖2)− ‖x− y‖2

≤ 2(1 + 1)− ε2

= 4− ε2.

Therefore, ∥∥∥∥x+ y

2

∥∥∥∥2
≤ 4− ε2

4 or
∥∥∥∥x+ y

2

∥∥∥∥ ≤
√

1− ε2

4 .

Take δ = 1−
√

1− ε2

4 . Then
∥∥∥x+y

2

∥∥∥ ≤ √1− ε2

4 = 1− δ. Thus, X with the norm induced
from the inner product is uniformly convex. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Seminar Topics 1.
1. Let X be a nonzero vector space and B = {vi : i ∈ I} be a basis. For v = ∑

i∈I
αivi ∈ X,

define ‖x‖ = ∑
i∈I
|αi|. Show that ‖ · ‖ is a norm on X.

2. For x = (x(1), x(2), . . . , x(n)) ∈ Kn and p ∈ [1,∞), let ‖x‖p =
(

n∑
i=1
|x(i)|p

) 1
p

. Show
that ‖ · ‖p is a norm on Kn.

3. For x = (x(1), x(2), . . . , x(n)) ∈ Kn and p ∈ [1,∞), let ‖x‖∞ = sup
1≤i≤n

|x(i)|. Show

that ‖ · ‖∞ is a norm on Kn.
4. Show that for 1 ≤ p ≤ ∞, (`p, ‖ · ‖p) is a normed linear space.
5. Show that (`p, ‖ · ‖p) is complete for 1 ≤ p ≤ ∞.

PS02CMTH24 2018-19



§1.2. Orthonormal sets 17

6. For 1 ≤ p1 ≤ p2 ≤ ∞, show that `p1 ⊂ `p2 .
7. Let c0 = {x = (x(1), x(2), . . .) : x(i) ∈ K and lim

n→∞x(n) = 0}. For x ∈ c0 define
‖x‖∞ = sup

n∈N
|x(n)|. Show that ‖ · ‖∞ is a norm on c0.

8. Show that (c0, ‖ · ‖∞) is complete.
9. Let P[0, 1] denote the set of all polynomials with complex coefficients. For p(x) =

a0 + a1x+ · · · anxn ∈ P [0, 1], define

‖p(x)‖∞ = sup
0≤x≤1

|p(x)| (1.4)

‖p(x)‖sup = sup
0≤i≤n

|ai| (1.5)

‖p(x)‖sum =
n∑
i=0
|ai|. (1.6)

Show that all these define norms on P [0, 1].
10. Let B[0, 1] = {f : [0, 1] → K : f is bounded }. For f ∈ B[0, 1], define ‖f‖∞ =

sup
0≤t≤1

|f(t)|. Show that ‖ · ‖∞ is a complete norm on B[0, 1].

11. Let C[0, 1] = {f : [0, 1]→ K : f is continuous}. For 1 ≤ p ≤ ∞, show that ‖ · ‖p is
a norm on C[0, 1]. Show that ‖ · ‖∞ is a complete norm on C[0, 1].

12. Show that the sequence {fn} in C[0, 1] defined by fn(t) = tn, (t ∈ [0, 1], n ∈ N),
converges pointwise but does not converge in the supnorm ‖ · ‖∞ on C[0, 1].

13. Let (X, 〈· , ·〉) be an inner product space. For a scalar λ, define 〈x, y〉λ = λ〈x, y〉,
(x, y ∈ X). Show that 〈· , ·〉λ is an inner product if and only if λ > 0.

14. Prove the Polarization identity (Theorem 1.1.121.1.12).
15. Prove Jordan and von Neumann identity.
16. On `2 define

〈x, y〉 =
∞∑
i=1

x(n)y(n), (x = (x(1), x(2), . . .), y = (y(1), y(2), . . .) ∈ `2).

Show that 〈· , ·〉 is an inner product on `2.
17. Show that the open unit ball in X, S1(0) is convex.
18. Let (X, ‖ · ‖) be a normed linear space, x0 ∈ X and r > 0. Show that

Sr(x0) = {x ∈ X : ‖x− x0‖ < r}

is convex.
19. Show that (C[0, 1], ‖ · ‖∞) is not uniformly convex.

1.2 Orthonormal sets

Definition 1.2.1. Let X be a normed linear space. Two elements x, y ∈ X are said
to be orthogonal if 〈x, y〉 = 0. In this case, we write x ⊥ y (read x perp y) i.e. x is
orthogonal to y or x is perpendicular to y.

Examples 1.2.2. 1. In X = R2, the elements x = (1, 0) and y = (0, 0) are orthogonal
as 〈x, y〉 = 0. In fact, 0 is orthogonal to every element.

2. Take X = R2 and x = (2, 0), y = (0,−7). Then x ⊥ y.

Dr. Jay Mehta jay mehta@spuvvn.edujay mehta@spuvvn.edu
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18 §1.2. Orthonormal sets

Two nonzero vectors in R2 or R3, are orthogonal if and only if they are perpendicular
in the usual sense.

Definition 1.2.3. A non-empty subset E of X is said to be orthogonal subset if for
every x, y ∈ E such that x 6= y, then 〈x, y〉 = 0.

Examples 1.2.4. 1. In X = R2, the set E = {(1, 0), (0, 8), (0, 0)} is an orthogonal
subset of X.

2. Take X = R2 and E = {(4, 18), (9,−2)}. Then E is orthogonal.

Definition 1.2.5. An orthogonal subset E of X is said to be orthonormal if ‖x‖ = 1
for all x ∈ E.

Examples 1.2.6. 1. In X = R3, the set E = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is an orthonor-
mal subset of X.

2. Take X = C2 and E = {( i2 ,
√

3
2 ), ( i

√
3

2 , 1
2)}. Then E is an orthonormal subset of C2.

Remark 1.2.7. An orthonormal set E will never contain the zero element since ‖x‖ = 1
for all x ∈ E. So 0 6∈ E. Also, every orthonormal set is an orthogonal set.

Theorem 1.2.8 (Pythagoras theorem). Let X be an inner product space and x1, x2, . . . , xn ∈
X be orthogonal. Then

‖x1 + x2 + · · ·+ xn‖2 = ‖x1‖2 + ‖x2‖2 + · · ·+ ‖xn‖2.

i.e. ∥∥∥∥∥∥
n∑
j=1

xj

∥∥∥∥∥∥
2

=
n∑
j=1
‖xj‖2.

Proof. Since x1, x2, . . . , xn ∈ X are orthogonal, if j 6= i, then 〈xj, xi〉 = 0 and if j = i,
then 〈xj, xi〉 = ‖xj‖2. So, we have,∥∥∥∥∥∥

n∑
j=1

xj

∥∥∥∥∥∥
2

=
〈

n∑
j=1

xj,
n∑
i=1

xi

〉

=
n∑
j=1

n∑
i=1
〈xj, xi〉

=
n∑
j=1
‖xj‖2.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 1.2.9. Let X be an inner product space and E ⊂ X be orthogonal such that
0 6∈ E. Then E is a linearly independent set. In particular, if E is orthonormal, then E
is linearly independent. In fact, if E has more than one element, then the diameter of
E is

√
2.
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§1.2. Orthonormal sets 19

Proof. Let x1, x2, . . . , xn ∈ E and α1, α2, . . . , αn ∈ K such that

α1x1 + α2x2 + · · ·+ αjxj + · · ·+ αnxn = 0.

Then for j = 1, 2, . . . , n, we have

0 = 〈0, xj〉
= 〈α1x1 + α2x2 + · · ·+ αjxj + · · ·+ αnxn, xj〉
= α1〈x1, xj〉+ α2〈x2, xj〉+ · · ·+ αj〈xj, xj〉+ · · ·+ αn〈xn, xj〉
= αj‖xj‖2 (∵ 〈xi, xj〉 = 0 if i 6= j).

Since 0 6∈ E, ‖xj‖ 6= 0 and hence, αj = 0 for all j = 1, 2, . . . , n. Therefore, E is linearly
independent.

Clearly, if E is orthonormal, then E is orthogonal and 0 6∈ E. Hence, E is linearly
independent by the same argument as above.

Now, suppose E is an orthonormal set and it has more than one element. Then for any
x, y ∈ E, x 6= y

‖x− y‖2 = 〈x− y, x− y〉 = 〈x, x〉+ 〈y, y〉 = ‖x‖2 + ‖y‖2 = 2.

Therefore, the diameter of E is diam(E) = sup{‖x− y‖ : x, y ∈ E} =
√

2. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Remark 1.2.10. Thus, we have seen that (by the above result), every orthogonal set
which does not contain 0 and so, every orthonormal set is a linearly independent set. Then
we have the following question asking about its converse.

Question 1.2.11. Is the converse of above true? That is, if E ⊂ X is linearly independent,
then is it true that E is orthogonal or orthonormal. The answer is NO in general. Consider
the following example.

Example 1.2.12. Let X = K2 and E = {(1, 0), (1, 1)}. Then clearly, (Check!) E is a
linearly independent set but E is not orthogonal (or orthonormal).

Remark 1.2.13. We have seen so far that an orthogonal set not containing 0 or an
orthonormal set is always linearly independent but the converse is not true. However,
given any linearly independent set, we can always find an orthonormal set such that
they span the same set. This result (given below) is well-known as the Gram-Schmidt
orthonormalization theorem and the process by which we obtain the required orthonormal
set is called the Gram-Schmidt orthonormalization process. More precisely, we have the
following theorem.

Theorem 1.2.14 (Gram-Schmidt orthonormalization). Let X be an inner product space
and {x1, x2, . . .} be a linearly independent subset of X. Then there exists an orthonormal
subset {u1, u2, . . .} of X such that for each k = 1, 2, . . .,

L({u1, u2, . . . , uk}) = L({x1, x2, . . . , xk}).

In fact, the above set can be obtained as follows:

Dr. Jay Mehta jay mehta@spuvvn.edujay mehta@spuvvn.edu
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20 §1.2. Orthonormal sets

Define y1 = x1, u1 = y1
‖y1‖ and for j = 2, 3, . . ., define

yj = xj − 〈xj, u1〉u1 − 〈xj, u2〉u2 − · · · − 〈xj, uj−1〉uj−1, uj = yj
‖yj‖

.

Proof. We prove this result by the principle of mathematical induction on j.
Case: j = 1. Since {x1} = {y1} is linearly independent as x1 6= 0 and since u1 =
y1
‖y1‖ , ‖u1‖ = 1, and hence clearly {u1} is an orthonormal set and L({u1}) = L({x1}).

For understanding only, not required to prove

Case: j = 2. Note that y2 = x2 − 〈x2, u1〉u1. If y2 = 0, then x2 = 〈x2,x1〉
‖x1‖2 x1 ∈ L({x1}),

which is not possible as the {x1, x2} is a linearly independent set. Now,

〈y2, u1〉 = 〈x2 − 〈x2, u1〉u1, u1〉
= 〈x2, u1〉 − 〈x2, u1〉〈u1, u1〉
= 0 (∵ 〈u1, u1〉 = ‖u1‖2 = 1).

Also, u2 = y2
‖y2‖ . Then ‖u2‖ = 1 and from the above, we have 〈u2, u1〉 = 1

‖y2‖〈y2, u1〉 = 0,
i.e. {u1, u2} is orthonormal. Also since u2 ∈ L({x1, x2}), we have

L({u1, u2}) = L({x1, u2}) ⊂ L({x1, x2}).

Since dimension of both the spaces L({u1, u2}) and L({x1, x2}) is 2 (same), we have

L({u1, u2}) = L({x1, x2}).

Induction Hypothesis: j = k. Assume that the result holds for j = k, i.e. yk and uk
defined above are such that {u1, u2, . . . , uk} is an orthonormal set and

L({u1, u2, . . . , uk}) = L({x1, x2, . . . , xk}).

Case: j = k + 1. Now,

yk+1 = xk+1 − 〈xk+1, u1〉u1 − 〈xk+1, u2〉u2 − · · · − 〈xk+1, uk〉uk.

If yk+1 = 0, then xk+1 ∈ L({u1, u2, . . . , uk}) = L({x1, x2, . . . , xk}), which is not possible
since {x1, x2, . . . , xk, xk+1} is a linearly independent set. Hence, yk+1 6= 0. Now, for i ≤ k

〈yk+1, ui〉 = 〈xk+1 − 〈xk+1, u1〉u1 − · · · − 〈xk+1, uk〉uk, ui〉
= 〈xk+1, ui〉 − 〈xk+1, u1〉〈u1, ui〉 − · · · − 〈xk+1, uk〉〈uk, ui〉
= 〈xk+1, ui〉 − 〈xk+1, ui〉 (∵ 〈uj, ui〉 = 0, j 6= i and 〈ui, ui〉 = 1)
= 0.

Take uk+1 = yk+1
‖yk+1‖ , Then ‖uk+1‖ = 1 and for ≤ i ≤ k, 〈uk+1, ui〉 = 1

‖yk+1‖〈yk+1, ui〉 = 0.
Hence, {u1, u2, . . . , uk+1} is an orthonormal set. Also,

L({u1, u2, . . . , uk+1}) = L({x1, x2, . . . , xk, uk+1}) = L({x1, x2, . . . , xk+1}).

(since dimension of the above spaces is same).
This completes the proof. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Example 1.2.15. Let X = `2. For n = 1, 2, . . . , let xn = (1, . . . , 1︸ ︷︷ ︸
n times

, 0, 0, . . .) i.e. 1 occurs

only in the first n entries. It can be easily seen that by Gram-Schmidt orthonormalization
process, we get an orthonormal set {u1, u2, . . .}, where

yn = (0, . . . , 0, 1︸︷︷︸
nth

, 0, 0, . . .) = un,

where 1 occurs only in the nth entry.

Lemma 1.2.16 (Bessel’s inequality). Let X be an inner product space and {u1, u2, . . .}
be a countable orthonormal subset of X. Then for each x ∈ X

∞∑
n=1
|〈x, un〉|2 ≤ ‖x‖2,

where the equality holds if and only if x =
∞∑
n=1
〈x, un〉un.

Proof. Let x ∈ X and for m = 1, 2, . . ., let

xm =
m∑
n=1
〈x, un〉un.

Then,

〈xm, x〉 =
〈

m∑
n=1
〈x, un〉un, x

〉

=
m∑
n=1
〈x, un〉〈un, x〉

=
m∑
n=1
|〈x, un〉|2.

Since the above entity is a real number, we have

〈x, xm〉 = 〈xm, x〉 =
m∑
n=1
|〈x, un〉|2.

Also,

〈xm, xm〉 =
〈

m∑
n=1
〈x, un〉un,

m∑
k=1
〈x, uk〉uk

〉

=
m∑
n=1

m∑
k=1
〈x, un〉〈x, uk〉〈un, uk〉

=
m∑
n=1
〈x, un〉〈x, un〉 (∵ {u1, u2, . . .} is orthonormal)

=
m∑
n=1
|〈x, un〉|2.
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22 §1.2. Orthonormal sets

Thus,
〈xm, xm〉 = 〈x, xm〉 = 〈xm, x〉 =

m∑
n=1
|〈x, un〉|2. (1.7)

Now,

0 ≤ ‖x− xm‖2 = 〈x− xm, x− xm〉
= 〈x, x〉 − 〈x, xm〉 − 〈xm, x〉+ 〈xm, xm〉

= 〈x, x〉 −
m∑
n=1
|〈x, un〉|2 (by (1.71.7)). (1.8)

Thus, for each m = 1, 2, . . .
m∑
n=1
|〈x, un〉|2 ≤ 〈x, x〉 = ‖x‖2.

Taking limit as m→∞, we get
∞∑
n=1
|〈x, un〉|2 ≤ ‖x‖2.

(Sm = ∑m
n=1 |〈x, un〉|2 increasing and bounded above by ‖x2‖. So, it is convergent). By

equation (1.81.8), the equality holds if and only if

lim
m→∞ ‖x− xm‖

2 = 0 if and only if

lim
m→∞xm = x if and only if
∞∑
n=1
〈x, un〉un = x.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Example 1.2.17. Derive Schwarz inequality using Bessel’s inequality.

Solution. We know that the Schwarz inequality is trivially true if y = 0. So, we assume
that y 6= 0. Take u = y

‖y‖ , then {u} is orthonormal subset and by the Bessel’s inequality,
we have

|〈x, u〉|2 ≤ ‖x‖2

⇒
∣∣∣〈x, y

‖y‖

〉∣∣∣2 ≤ ‖x‖2

⇒ 1
‖y‖2 |〈x, y〉|2 ≤ ‖x‖2

⇒ |〈x, y〉|2 ≤ ‖x‖2‖y‖2.

Therefore, |〈x, y〉|2 ≤ 〈x, x〉〈y, y〉 . Hence, we have deduced the Schwarz inequality from
the Bessel’s inequality. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Seminar Topics 2.
1. Let X = K3, where K = R or C. Let x1 = (1, 0, 0), x2 = (1, 1, 0) and x3 = (1, 1, 1).

Orthonormalize the set {x1, x2, x3}.
2. Let a = (1 + 2i, 4, 7) ∈ C. Show that

a ⊥ {x = (x(1), x(2), x(3)) ∈ C : a ⊥ x}

is a subspace of C3. Find the dimension of a⊥.
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3. Let {u1, u2, u3} be an orthonormal set in an inner product space X over C. Show
that {α1u1, α2u2, α3u3} is orthonormal iff |αi| = 1.

4. Orthonormalize the following set in respective inner product spaces.
(i) {(1, 0, 1), (1, 0, 2), (1, 1, 1)} in R3.

(ii) {(1, 0, 2), (1, 0, 1), (1, 1, 1)} in R3.
(iii) {(1, 0, 0), (1, 1, 0), (1, 1, 1)} in R3.

1.3 Hilbert spaces

Definition 1.3.1. A complete inner product space is called a Hilbert space.

Theorem 1.3.2 (Riesz-Fischer theorem). Let H be a Hilbert space and {u1, u2, . . .} be
a countable orthonormal subset of a Hilbert space H. Suppose {αn} is a sequence in

K. Then
∞∑
n=1

αnun converges to some x ∈ H if and only if
∞∑
n=1
|αn|2 <∞. In this case,

αn = 〈x, un〉 for all n.

Proof. Suppose
∞∑
n=1

αnun = x ∈ H. Then for m = 1, 2, . . .,

〈x, um〉 =
〈 ∞∑
n=1

αnun, um

〉

=
∞∑
n=1

αn〈un, um〉 (since inner product is a continuous function)

= αm.

Therefore, by the Bessel’s inequality,
∞∑
n=1
|αn|2 =

∞∑
n=1
|〈x, un〉|2 ≤ ‖x‖2.

Next suppose that
∞∑
n=1
|αn|2 <∞. Let Sm =

m∑
n=1

αnun for m = 1, 2, . . .. Then for k ≤ m,

Sm − Sk =
m∑
k+1

αnun and so

‖Sm − Sk‖2 =
∥∥∥∥∥∥

m∑
n=k+1

αnun

∥∥∥∥∥∥
2

=
〈

m∑
n=k+1

αnun,
m∑

l=k+1
αlul

〉

=
m∑

n=k+1

m∑
l=k+1

αnαl〈un, ul〉
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24 §1.3. Hilbert spaces

=
m∑

n=k+1
αnαn

=
m∑

n=k+1
|αn|2 → 0 as n,m→ 0. (1.9)

Therefore, {Sm} is a Cauchy sequence in H. Since H is complete, {Sm} converges to some
x ∈ H, i.e.

∞∑
n=1

αnun = x ∈ H.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Definition 1.3.3. An orthonormal subset E of a Hilbert space H is called a maximal
orthonormal set if for every orthonormal set F ⊂ H, E ⊂ F ⇒ E = F . A maximal
orthonormal subset of a Hilbert space H is called an orthonormal basis for H.

Examples 1.3.4. 1. Let H be finite dimensional, i.e. dimH <∞. If x1, x2, . . . , xn ∈
H are linearly independent such that L({x1, x2, . . . , xn}) = H, then Gram-Schmidt
orthonormalization yields an orthonormal set {u1, u2, . . . , un} such that

L({u1, u2, . . . , un}) = L({x1, x2, . . . , xn}) = H.

Note that there no linearly independent superset of {u1, u2, . . . , un}. Thus, {u1, u2, . . . , un}
is an orthonormal basis for H.

2. H = `2 = {{xn}|
∑∞
n=1 |xn|2 <∞}. In this case, {e1, e2, . . .} is orthonormal, where

e1 = (1, 0, 0, . . .), e2 = (0, 1, 0, . . .), . . ..

Theorem 1.3.5. Let X be an inner product space and E be an orthonormal subset of
X. Then for each x ∈ X the set

Ex = {u ∈ E : 〈x, u〉 6= 0}

is countable. Suppose Ex = {u1, u2, . . .} (countable) and X is complete. Then
∞∑
n=1
〈x, un〉un

converges to y
∞∑
n=1
〈x, un〉un in X such that x− y ⊥ E.

Proof. Let x ∈ X. If x = 0, then Ex = ∅. So assume that x 6= 0. For j = 1, 2, . . ., consider
the set

Fj = {u ∈ E : ‖x‖ ≤ j|〈x, u〉|}.
Fix j. Let u1, u2, . . . , um ∈ Fj, then

‖x‖ ≤ j|〈x, ui〉| i = 1, 2, . . . ,m.

Therefore, by Bessel’s inequality, we have
m∑
i=1
‖x‖2 ≤ j2

m∑
i=1
|〈x, ui〉| ≤ j2‖x‖2.
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Therefore, m ≤ j2. Thus, Fj has at most j2 elements (i.e., it is a finite set).

Claim: Ex =
∞⋃
j=1

Fj.

If u ∈ Fj for some j, then
0 < ‖x‖ ≤ j|〈x, u〉|.

Therefore, 〈x, u〉 6= 0 and so u ∈ Ex. Thus,
∞⋃
j=1

Fj ⊂ Ex.

Now suppose u ∈ Ex. Then 〈x, u〉 6= 0. So, there exists j0 ∈ N such that

‖x‖ ≤ j0|〈x, u〉|, i.e.

u ∈ Fj0 .
Therefore, Ex ⊂

⋃∞
j=1 Fj and so

Ex =
∞⋃
j=1

Fj.

Hence, Ex is countable.
Take Ex = {u1, u2, . . .}. Now, by Bessel’s inequality, since X is complete,

∞∑
n=1
|〈x, un〉|2 ≤ ‖x‖2 <∞.

Therefore, by Riesz-Fischer theorem,
∞∑
n=1
〈x, un〉un converges inX. Suppose y =

∞∑
n=1
〈x, un〉un

Now for u ∈ E,

〈y, u〉 =
〈 ∞∑
n=1
〈x, un〉un, u

〉

=
∞∑
n=1
〈x, un〉〈un, u〉

= 〈x, u〉 (if u 6= un then 〈u, un〉 = 0 otherwise it is 1).

Therefore, 〈x− y, u〉 = 0. That is, (x− y) ⊥ E. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 1.3.6. Le H be a Hilbert space and E ⊂ H be an orthonormal set. Then the
following are equivalent:

1. E is an orthonormal basis for H.
2. (Fourier expansion): For each x ∈ H,

x =
∞∑
n=1
〈x, un〉un,

where Ex = {u1, u2, . . .}.

Dr. Jay Mehta jay mehta@spuvvn.edujay mehta@spuvvn.edu
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3. (Parseval’s identity): For each x ∈ H,

‖x‖2 =
∞∑
n=1
|〈x, un〉|2,

where Ex = {u1, u2, . . .}.
4. L(E) = H.
5. If for x ∈ H such that 〈x, u〉 = 0 for all u ∈ E, then x = 0.

Proof. (1) ⇒ (2) Suppose E is an orthonormal basis for H, i.e. E is a maximal or-
thonormal set in H. Let x ∈ H and E = {u1, u2, . . .} then by the previous theorem∑∞
n=1〈x, un〉un converges to some y in H. Let

y =
∞∑
n=1
〈x, un〉un ∈ H.

If y = x, then the required equality holds. If y 6= x, then by the last theorem (x− y) ⊥ E.
Take

v = x− y
‖x− y‖ .

Then v ⊥ E and so v 6∈ E. Take E0 = E ∪ {v}. Then E0 is an orthonormal subset of
H and E ( E0, which contradicts our assumption that E is a maximal orthonormal set.
Therefore,

x = y =
∞∑
n=1
〈x, un〉un.

(2) ⇔ (3) This is the proved in the equality case of Bessel’s inequality.

(2) ⇒ (4) Assume that for every x ∈ H, we have x =
∞∑
n=1
〈x, un〉un, where Ex =

{u1, u2, . . .} = {u : 〈x, u〉 6= 0}. Take

xm =
m∑
n=1
〈x, un〉un.

Then xm ∈ E and clearly by our assumption, xm → x. Hence

L(E) = H.

(4) ⇒ (5) L(E) = H. Let x ∈ H such that 〈x, u〉 = 0 for all u ∈ E. Consider a sequence
{xm} in L(E) such that xm → x (∵ L(E) = H). Since xm ∈ L(E), it is of the form

xm = α1mu1 + α2mu2 + · · ·+ αnmun,

where u1, u2, . . . , un ∈ E and α1m, α2m, . . . , αnm ∈ K. Then by our assumption

〈xm, x〉 = 0.

We know that xm → x⇒ 〈xm, x〉 → 〈x, x〉. Therefore, 〈x, x〉 = 0 and hence x = 0
(5) ⇒ (1) Assume that (5) holds, then we have to prove that E is a maximal orthonormal
subset of H. Suppose E is not maximal, then there exists an orthonormal subset E0 of H
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such that E ( E0. Let x ∈ E0 such that x 6∈ E. Since E0 is orthonormal and x 6∈ E, we
have

〈x, u〉 = 0 ∀ u ∈ E.
Then by (5), x = 0 which is contradiction to our assumption that x ∈ E0 since E0 is
orthonormal and an orthonormal set does not contain 0. Therefore, E must be a maximal
orthonormal subset of H, i.e. E is an orthonormal basis for H. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 1.3.7. Let H be an n-dimensional Hilbert space. Then H is isometrically
isomorphic to (Kn, ‖ · ‖2).

Proof. Since dimH = n, consider a basis {x1, x2, . . . , xn} of H, i.e. the set {x1, x2, . . . , xn}
is linearly independent and it spans H. By Gram-Schmidt orthonormalization, there exists
an orthonormal subset {u1, u2, . . . , un} of H such that

L({u1, u2, . . . , un}) = L({x1, x2, . . . , xn}) = H.

Then by the previous theorem, {u1, u2, . . . , un} is an orthonormal basis for H. Define
T : H → Kn by

T (x) = (〈x, u1〉, 〈x, u2〉, . . . , 〈x, un〉) x ∈ H.
Then T is homomorphism (i.e. linear). Now, since u1, u2, . . . , un is an orthonormal basis,
by Parseval’s identity, we have

‖T (x)‖2
2 =

n∑
j=1
|〈x, uj〉|2 = ‖x‖2.

Therefore, T is isometry. Now, let y = (y1, y2, . . . , yn) ∈ Kn. Take

x = y1u1 + y2u2 + · · ·+ ynun =
n∑
j=1

yjuj.

Then

〈x, ui〉 =
〈

n∑
j=1

yjuj, ui

〉

=
n∑
j=1

yj〈uj, ui〉

= yi (∵ 〈uj, ui〉 = 0, j 6= i and 〈ui, ui〉 = 1).

Therefore,
T (x) = (〈x, u1〉, 〈x, u2〉, . . . , 〈x, un〉) = y.

Thus T is an onto linear isometry. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Definition 1.3.8. A metric space, in particular a normed linear space H, is said to be
separable if it has a countable dense subset.

Exercise 1.3.9. Show that `p is separable for 1 ≤ p <∞ but `∞ is not separable.

Solution. Seminar exercise. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Theorem 1.3.10. Let H be an infinite dimensional Hilbert space Then the following
are equivalent:

1. H has a countable orthonormal basis.
2. H is isometrically isomorphic to `2.
3. H is separable (i.e. H has a countable dense subset).

Proof. (1) ⇒ (2) Suppose H has a countable orthonormal basis, say {u1, u2, . . .}. Define
T : H → `2 by

T (x) = (〈x, u1〉, 〈x, u2〉, . . .) for x ∈ H.
Note that, by Bessel’s inequality ∑∞

n=1 |〈x, un〉|2 < ∞ and hence T (x) ∈ `2. Also, T is
(clearly) a homomorphism (i.e. T is linear). Then by the Parseval’s identity, we have

‖T (x)‖2
2 =

∞∑
n=1
|〈x, un〉|2 = ‖x‖2.

Therefore, T is isometry. Now, let y = (y1, y2, . . .) ∈ `2, i.e. ∑∞n=1 |yn|2 < ∞. Then by
Riesz-Fischer theorem,

∞∑
n=1

ynun

converges in H. Suppose x =
∞∑
n=1

ynun. Then for each i = 1, 2 . . .,

〈x, ui〉 =
〈 ∞∑
n=1

ynun, ui

〉

=
∞∑
n=1

yn〈un, ui〉

= yn

T (x) = (〈x, u1〉, 〈x, u2〉, . . .) = (y1, y2, . . .) = y.

Thus, T : H → `2 is an onto linear isometry. In other words, H is isometrically isomorphic
to `2.
(2) ⇒ (3): Let T : H → `2 be a linear onto isometry. Since `2 is separable, `2 has a dense
subset D. Then T−1(D) is a countable dense subset of H and therefore H is separable.
(3) ⇒ (1): Assume that H is separable. So it has a countable dense subset. Suppose
D = {z1, z2, . . .} is a countable dense subset of H. Let i1 be the first integer such that
zi1 6= 0. Let x1 = {zi1}. Clearly,

L({z1, z2, . . . , zi1}) = L({x1}).

Let i2 be the first integer such that x1 and zi2 are linearly independent. Take x2 = zi2 .
Then

L({x1, x2}) = L({z1, z2, . . . , zi1 , . . . , zi2}).
Continuing this way, inductively we can choose a linearly independent subset {x1, x2, . . . , xn}
of H such that for each n = 1, 2, . . ., we have

L({x1, x2, . . . , xn}) = L({z1, . . . , zi1 , . . . , zi2 , . . . , zin}). (1.10)
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Then by Gram-Schmidt orthonormalization, there exists an orthonormal subset {u1, u2, . . .}
of H such that

L({x1, x2, . . .}) = L({u1, u2, . . .}).
Also, since D = H, L(D) = H. But then

L({u1, u2, . . .}) = L({x1, x2, . . .})
= L(D) (by (1.101.10))
= H.

Thus, L({u1, u2, . . .}) is dense in H and hence {u1, u2, . . .} is a countable orthonormal
basis for H. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Seminar Topics 3.
1. Prove that every non-zero Hilbert space has an orthonormal basis.
2. Show that `p is separable for 1 ≤ p <∞ but `∞ is not separable.
3. Show that {en : n ∈ N} is an orthonormal basis of `2 but it is not a basis of `2.
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Approximations and Riesz representation theo-
rem

2.1 Approximation and Optimization

Definition 2.1.1. Let X be an inner product space, E 6= ∅, E ⊂ X and x ∈ X. An
element y ∈ E is said to be a best approximation from E to x if

‖x− y‖ ≤ ‖x− z‖ ∀ z ∈ E.

i.e.
‖x− y‖ = dist(x,E).

Naturally, there are three questions, one may ask here.
1. Does best approximation always exist?
2. If it does, is it unique?
3. How does one find a best approximation?

The following remark answers the first two questions. For the answer to the third question,
in what follows, we prove certain results.

Remarks 2.1.2. 1. In general, best approximation may not exist. For example, take
X = R and E = (0, 1) ∩Q. Then best approximation does not exist for say x = 2.

2. In general, best approximation may not be unique. For example, take X = R2,
E = {z ∈ X : ‖z‖ = 1} and x = (0, 0). Then all the points of the set E are best
approximations from E to x = 0.

Proposition 2.1.3. Let X be an inner product space. If E ⊂ X and x ∈ E, then there
is a best approximation from E to x if and only if x ∈ E.

31
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Proof. If x ∈ E then y = x (i.e. x itself) is a best approximation from E to x. In fact,

dist(x,E) = ‖x− y‖ = 0.

Conversely, let x ∈ E and suppose that y ∈ E is a best approximation from E to x. Then

‖x− y‖ = dist(x,E) = 0 (∵ x ∈ E)

i.e., x = y and hence x ∈ E. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Proposition 2.1.4. Let X be an inner product space. If E ⊂ X is convex and x ∈ X,
then there exists at most one best approximation from E to x.

Proof. Suppose y1 ∈ E and y2 ∈ E are two best approximations from E to x, i.e.

‖x− y1‖ = ‖x− y2‖ = dist(x,E) = d.

Now, by Parallelogram law,

‖(x− y1) + (x− y2)‖2 + ‖(x− y1)− (x− y2)‖2 = 2‖(x− y1)‖2 + 2‖(x− y2)‖2

⇒ ‖2x− (y1 + y2)‖2 + ‖y1 − y2‖2 = 2‖(x− y1)‖2 + 2‖(x− y2)‖2

Therefore

‖y1 − y2‖2 = 2‖(x− y1)‖2 + 2‖(x− y2)‖2 − 4
∥∥∥∥x− (y1 + y2

2

)∥∥∥∥
≤ 2d2 + 2d2 − 4d2

(
∵ E is convex and y1, y2 ∈ E ⇒ −

∥∥∥∥x− (y1 + y2

2

)∥∥∥∥ ≤ −d)
= 0.

Therefore, y1 = y2 . �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Proposition 2.1.5. Let X be an inner product space, Y be a subspace of X and x ∈ X.
Then y ∈ Y is a best approximation from Y to x if and only if (x− y) ⊥ Y .

Proof. Suppose y ∈ Y such that (x− y) ⊥ Y . Then for any z ∈ Y ,

(x− y) ⊥ z i.e. 〈x− y, z〉 = 0.

Also, since Y is a subspace and y, z ∈ Y , y − z ∈ Y and so

〈x− y, y − z〉 = 0.

Therefore by Pythagoras theorem,

‖x− y‖2 + ‖y − z‖2 = ‖(x− y) + (y − z)‖2 = ‖x− z‖2.

Therefore, ‖x− y‖ ≤ ‖x− z‖ for all z ∈ Y . Hence, y is a best approximation from Y to x.
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Conversely, assume that y ∈ Y is a best approximation from Y to x. Let z ∈ Y be such
that ‖z‖ = 1. Consider w = y + 〈x− y, z〉z. Then w ∈ Y . Therefore,

x− w = (x− y)− 〈x− y, z〉z.

Now,

‖x− y‖2 ≤ ‖x− w‖2 (∵ y is best approx. and w ∈ Y )
= 〈x− w, x− w〉
= 〈(x− y)− 〈x− y, z〉z, (x− y)− 〈x− y, z〉z〉
= ‖x− y‖2 − 〈(x− y), 〈x− y, z〉z〉 − 〈〈x− y, z〉z, (x− y)〉+ |〈x− y, z〉|2〈z, z〉
= ‖x− y‖2 − 〈x− y, z〉〈x− y, z〉 − 〈x− y, z〉〈z, x− y〉+ |〈x− y, z〉|2

(∵ 〈z, z〉 = 1)
≤ ‖x− y‖2 − |〈x− y, z〉|2.

Therefore, 〈x− y, z〉 = 0 and hence (x− y) ⊥ z for all z ∈ Y , i.e.

(x− y) ⊥ Y .

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Definition 2.1.6 (Gram matrix). Let X be an inner product space and x1, x2, . . . , xn ∈
X. The matrix

G(x1, x2, . . . , xn) =


〈x1, x1〉 〈x2, x1〉 · · · 〈xn, x1〉
〈x1, x2〉 〈x2, x2〉 · · · 〈xn, x2〉

... ... . . . ...
〈x1, xn〉 〈x2, xn〉 · · · 〈xn, xn〉


is known as the Gram matrix of x1, x2, . . . , xn.

Remarks 2.1.7. 1. x1, x2, . . . , xn are orthogonal if and only if the Gram matrix is a
diagonal matrix.

2. x1, x2, . . . , xn are orthonormal if and only if the Gram matrix is the identity matrix.

Lemma 2.1.8. Let X be an inner product space and x1, x2, . . . , xn ∈ X be linearly
independent. Then the Gram matrix of x1, x2, . . . , xn is regular.

Proof. The Gram matrix of x1, x2, . . . , xn is

M =


〈x1, x1〉 〈x2, x1〉 · · · 〈xn, x1〉
〈x1, x2〉 〈x2, x2〉 · · · 〈xn, x2〉

... ... . . . ...
〈x1, xn〉 〈x2, xn〉 · · · 〈xn, xn〉

 .

Claim: Column rank of M is n.

Dr. Jay Mehta jay mehta@spuvvn.edujay mehta@spuvvn.edu
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Let a1, a2, . . . , an ∈ K be such that

a1


〈x1, x1〉
〈x1, x2〉
· · ·

〈x1, xn〉

+ a2


〈x2, x1〉
〈x2, x2〉
· · ·

〈x2, xn〉

+ · · ·+ an


〈xn, x1〉
〈xn, x2〉
· · ·

〈xn, xn〉

 = 0.

Then for each i = 1, 2, . . . , n,
n∑
j=1

aj〈xj, xi〉 = 0. (2.1)

Now, ∥∥∥∥∥∥
n∑
j=1

ajxj

∥∥∥∥∥∥
2

=
〈

n∑
j=1

ajxj,
n∑
i=1

aixi

〉

=
n∑
i=1

ai

〈
n∑
j=1

ajxj, xi

〉

=
n∑
i=1

ai

 n∑
j=1

aj〈xj, xi〉


= 0 (by (2.12.1)).

Therefore,
n∑
j=1

ajxj = 0.

Since x1, x2, . . . , xn are linearly independent, a1 = a2 = · · · = an = 0. Therefore, the
columns of M are linearly independent which means that the column rank of M is n.
Hence, M is regular. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 2.1.9. Let X be an inner product space and x1, x2, . . . , xn ∈ X be linearly
independent and x ∈ X. Let Y = L({x1, x2, . . . , xn}), then y = α1x1 +α2x2 + · · ·+αnxn
is a best approximation from Y to x, where α1, α2, . . . , αn form the unique solution of
the normal equations.

α1〈x1, x1〉+ α2〈x2, x1〉+ · · ·+ αn〈xn, x1〉 = 〈x, x1〉
α1〈x1, x2〉+ α2〈x2, x2〉+ · · ·+ αn〈xn, x2〉 = 〈x, x2〉

... ... (2.2)
α1〈x1, xn〉+ α2〈x2, xn〉+ · · ·+ αn〈xn, xn〉 = 〈x, xn〉

Proof. Consider the normal equations (2.22.2). Now if y = α1x1 + α2x2 + · · ·+ αnxn ∈ Y is
a best approximation from Y to x, then by Proposition 2.1.52.1.5 (x− y) ⊥ Y . That is,

〈(x− y), xj〉 = 0 for j = 1, 2, . . . , n.

That is,
〈y, xj〉 − 〈x, xj〉 = 0 for j = 1, 2, . . . , n.
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That is,
α1〈x1, xj〉+ α2〈x2, xj〉+ · · ·+ αn〈xn, xj〉 = 〈x, xj〉.

That is, α1, α2, . . . , αn are solutions of the normal equations (by (2.22.2)). The solution is
unique (since the Gram matrix M is regular). �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 2.1.10. Let X be an inner product space, x1, x2, . . . , xn ∈ X be linearly
independent, c1, c2, . . . , cn ∈ K and x ∈ X. Consider the set

E = {y ∈ X : 〈y, xi〉 = ci, i = 1, 2, . . . , n}.

Then the unique best approximation from E to x is given by

y = x+ α1x1 + α2x2 + · · ·+ αnxn, (2.3)

where α1, α2, . . . , αn ∈ K form the unique solution of the equations

α1〈x1, x1〉+ α2〈x2, x1〉+ · · ·+ αn〈xn, x1〉 = c1 − 〈x, x1〉
α1〈x1, x2〉+ α2〈x2, x2〉+ · · ·+ αn〈xn, x2〉 = c2 − 〈x, x2〉

... ... ... (2.4)
α1〈x1, xn〉+ α2〈x2, xn〉+ · · ·+ αn〈xn, xn〉 = cn − 〈x, xn〉

Proof. Since x1, x2, . . . , xn are linearly independent, the Gram matrix for x1, x2, . . . , xn is
regular. So the system (2.42.4) has a unique solution, say α1, α2, . . . , αn, i.e. for i = 1, 2, . . . , n

α1〈x1, xi〉+ α2〈x2, xi〉+ · · ·+ αn〈xn, xi〉 = ci − 〈x, xi〉.

If y = x+ α1x1 + α2x2 + · · ·+ αnxn, then for i = 1, 2, . . . , n

〈y, xi〉 = 〈x+ α1x1 + α2x2 + · · ·+ αnxn, xi〉
= 〈x, xi〉+ α1〈x1, xi〉+ · · ·+ αn〈xn, xi〉
= 〈x, xi〉+ ci − 〈x, xi〉 (∵ α1, . . . , αn is the solution of (2.42.4))
= ci.

Therefore y ∈ E.
Claim: E − y is a subspace of X.

Let z1, z2 ∈ E − y, then there exists u1, u2 ∈ E such that z1 = u1 − y, z2 = u2 − y and
〈u1, xi〉 = ci and 〈u2, xi〉 = ci, i = 1, 2, . . . , n. So, z1 + z2 = u1 + u2 − 2y. Therefore, for
i = 1, 2, . . . , n,

〈z1 + z2 + y, xi〉 = 〈u1 + u2 − y, xi〉
= 〈u1, xi〉+ 〈u2, xi〉 − 〈y, xi〉
= ci + ci − ci
= ci.

Thus, z1 + z2 + y ∈ E and so z1 + z2 ∈ E − y. Now, let α ∈ K and z = u− y ∈ E − y for
u ∈ E. For i = 1, 2, . . . , n,

〈αz + y, xi〉 = 〈αu− αy + y, xi〉

Dr. Jay Mehta jay mehta@spuvvn.edujay mehta@spuvvn.edu
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= 〈αu+ (1− α)y, xi〉
= α〈u, xi〉+ (1− α)〈y, xi〉
= αci + (1− α)ci
= ci.

Therefore, αz + y ∈ E, i.e. αz ∈ E − y and hence E − y is a subspace of X.
Now, y is a best approximation from E to x if and only if 0 is a best approximation

form E − y to x− y.

(∵ ‖x− y‖ = dist(E, x) = dist(E − y, x− y) = ‖(x− y)− 0‖).

Now for z ∈ E,

〈z − y, x− y〉 = 〈z − y,−α1x1 − α2x2 − · · · − αnxn〉 (by (2.32.3))
= 〈z,−α1x1 − α2x2 − · · · − αnxn〉 − 〈y,−α1x1 − α2x2 − · · · − αnxn〉
= − α1c1 − α2c2 − · · · − αncn + α1c1 + α2c2 + · · ·+ αncn (∵ y ∈ E)
= 0,

i.e. (x− y) ⊥ E − y. Hence by Proposition 2.1.52.1.5, 0 is a best approximation from E − y to
x−y. Since, E−y is a subspace, it is convex and hence 0 is the unique best approximation
from E − y to x− y or y is the unique best approximation from E to x. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 2.1.11. Let H be a Hilbert space, x1, x2, . . . ∈ H be linearly independent and
x ∈ H. Let

Y = L({x1, x2, . . .})
and let {u1, u2, . . .} be orthonormal subset of H obtained by applying Gram-Schmidt
process to x1, x2, . . .. For m = 1, 2, . . ., consider the subspace

Ym = L({x1, x2, . . . , xm})

and
ym =

m∑
n=1
〈x, un〉un.

Then ym is a unique best approximation from Ym to x. Suppose

y =
∞∑
n=1
〈x, un〉un.

Then y is a unique best approximation from Y to x. Also,

dist(x, Y ) =
(
‖x‖2 −

∞∑
n=1
|〈x, un〉|2

) 1
2

.

Proof. For m = 1, 2, . . ., we have

Ym = L({x1, x2, . . . , xm}) = L({u1, u2, . . . , xm}).
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Now, for k = 1, 2, . . . ,m,

〈x− ym, uk〉 = 〈x, uk〉 − 〈ym, uk〉

= 〈x, uk〉 −
〈

m∑
n=1
〈x, un〉un, uk

〉

= 〈x, uk〉 −
m∑
n=1
〈x, un〉〈un, uk〉

= 〈x, uk〉 − 〈x, uk〉
= 0.

Therefore, (x− ym) ⊥ Ym for m = 1, 2, . . .. Thus, ym is a unique best approximation from
Ym to x (since Ym a subspace and hence it is convex). Also,

Y = L({x1, x2, . . .}) = L({u1, u2, . . .}).

By Theorem 1.3.51.3.5 (using Bessel’s inequality and Riesz-Fischer theorem),

y =
∞∑
n=1
〈x, un〉un

converges in H (since H is Hilbert space).
Now, for k = 1, 2, . . .,

〈x− y, uk〉 = 〈x, uk〉 − 〈y, uk〉

= 〈x, uk〉 −
〈 ∞∑
n=1
〈x, un〉un, uk

〉

= 〈x, uk〉 −
∞∑
n=1
〈x, un〉〈un, uk〉

= 〈x, uk〉 − 〈x, uk〉
= 0.

Therefore, (x− y) ⊥ Y . This, y is a unique best approximation from Y to x (since Y is a
subspace). In fact,

dist(x, Y )2 = ‖x− y‖2

= 〈x− y, x− y〉
= 〈x, x− y〉 − 〈y, x− y〉
= 〈x, x− y〉 (∵ (x− y) ⊥ Y )

=
〈
x, x−

∞∑
n=1
〈x, un〉un

〉

= ‖x‖2 −
∞∑
n=1
|〈x, un〉|2.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Theorem 2.1.12. Let H be a Hilbert space, E ⊂ H be a closed convex subset of H and
x ∈ H. Then there is a unique best approximation from E to x.

Proof. Since d = dist(x,E) = inf{‖y − x‖ : y ∈ E}, there is a sequence {yn} in E such
that ‖yn − x‖ → d. Now for n,m = 1, 2, . . ., by the Parallelogram law

‖(x− yn) + (x− ym)‖2 + ‖(x− yn)− (x− ym)‖2 = 2(‖x− yn‖2 + ‖x− ym‖2).

Therefore,

‖yn − ym‖2 = 2(‖x− yn‖2 + ‖x− ym‖2)− ‖2x− (yn + ym)‖2

= 2(‖x− yn‖2 + ‖x− ym‖2)− 4
∥∥∥∥x− (yn + ym

2

)∥∥∥∥2
.

Since E is convex and yn, ym ∈ E, yn+ym

2 ∈ E (taking t = 1
2) and so by the above equation,

∥∥∥∥x− (yn + ym
2

)∥∥∥∥2
≥ d2.

Therefore,

‖yn − ym‖2 ≤ 2(‖x− yn‖2 + ‖x− ym‖2)− 4d2

→ 2d2 + 2d2 − 4d2 = 0 as n,m→∞.

Hence, {yn} is a Cauchy sequence in E. Since E is a closed subset of a complete (Hilbert)
space H, E is complete. Then there is y ∈ E such that yn → y in E. Therefore,

‖x− y‖ = lim
n→∞ ‖x− yn‖ = d = dist(x,E).

Therefore, y is a best approximation from E to x. Since E is convex, the best approximation
from E to x is unique. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Corollary 2.1.13. Let H be a Hilbert space and E be a closed convex subset of H.
Then E contains a unique vector y of minimum norm.

Proof. Take x = 0. Then by Theorem 2.1.122.1.12, there exists y ∈ E which is the unique best
approximation from E to x, i.e.,

‖y‖ = ‖y − x‖ = dist(x,E)
= inf{‖x− z‖ : z ∈ E}
= inf{‖z‖ : z ∈ E} (∵ x = 0).

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

2.2 Projection
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Definition 2.2.1. Let (X, ‖ · ‖), (y, ‖ · ‖) be two normed linear spaces and T : X → Y
be a linear transformation. The kernel or zero space of T is

ker(T ) = {x ∈ H : Tx = 0}

and the range of T is
R(T ) = {Tx : x ∈ X}.

Definition 2.2.2. Let H be a Hilbert space. A linear transformation T : H → H is
said to be a projection (or idempotent) if T 2 = T .

If T is a projection, then

R(T ) = Range of T = {x ∈ H : Tx = x}
Indeed, for x ∈ R(T ), there exists y ∈ H such that Ty = x. Therefore,

x = Ty = T 2y = T (Ty) = Tx.

On the other hand if x = Tx, then clearly, x ∈ R(T ).

Definition 2.2.3. A projection on a Hilbert space H is called orthogonal projection if
R(T ) ⊥ ker(T ) i.e., if y ∈ R(T ) and x ∈ ker(T ) then 〈x, y〉 = 0.

For a subset E of a Hilbert space H, the set

E⊥ = {y ∈ H : 〈x, y〉 = 0 ∀ x ∈ E}

is called the orthogonal complement of E.

Note that if E = ∅, then E⊥ = H.

Proposition 2.2.4. Let H be a Hilbert space and E ⊂ H, then E⊥ is a closed subspace
of H.

Proof. Since ∅⊥ = H is closed, we assume that E 6= ∅. Let x1, x2 ∈ E⊥. Then 〈x1, y〉 = 0
and 〈x2, y〉 = 0 for all y ∈ E. Therefore,

〈x1 + x2, y〉 = 〈x1, y〉+ 〈x2, y〉 = 0 ∀ y ∈ E.
Also, for α ∈ K and x ∈ E⊥,

〈αx, y〉 = α〈x, y〉 = 0 ∀ y ∈ E.
Thus E⊥ is a subspace of H.

Now, suppose {xn} is a sequence in E⊥ such that xn → x in H. Then for all y ∈ E,

0 = 〈xn, y〉 → 〈x, y〉 ⇒ 〈x, y〉 = 0⇒ x ∈ E⊥.
Therefore, E⊥ is closed in H. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Example 2.2.5. Consider the line ` : y = 2x and m : y = 3
4x. Now the map P : R2 → R2

defined by P (x, y) = (3
5x+ 4

5y,
6
5x+ 8

5y) is a projection.

Dr. Jay Mehta jay mehta@spuvvn.edujay mehta@spuvvn.edu
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`

m

(3.75, 3.75)

v1

P (v1)

(1.95, 2.9625)

v2

P (v2)

(−1, .5)v3

P (v3)

Figure 2.1: Projection on ` along m

Theorem 2.2.6 (Projection theorem). Let H be a Hilbert space and Y be a closed
subspace of H. Then

Y ⊕ Y ⊥ = H and Y ⊥⊥ = Y,

where Y ⊥⊥ = (Y ⊥)⊥.

Proof. Clearly, H⊥ = {0} and {0}⊥ = H. So we take Y 6= {0}. Since Y is a closed
subspace of a Hilbert space H, Y is a non-zero Hilbert space. So, Y has an orthonormal
basis E.

Now let x ∈ H. Then the set

Ex = {u ∈ E : 〈x, u〉 6= 0}

is countable, say Ex = {u1, u2, . . .}. Also, since H is a Hilbert space, ∑∞n=1〈x, un〉un
converges to some y in Y and (x− y) ⊥ E. Since E is an orthonormal basis of Y , we have

(x− y) ⊥ Y,

i.e., z = (x− y) ∈ Y ⊥, so that x = y + z with y ∈ Y and z ∈ Y ⊥. Therefore,

H = Y + Y ⊥.

Now, suppose x ∈ Y ∩ Y ⊥. Then x ∈ Y ⊥ and hence 〈x, y〉 = 0 for all y ∈ Y . Since
x ∈ Y , in particular taking y = x, we get 〈x, x〉 = 0⇒ x = 0. So, Y ∩ Y ⊥ = {0}. Thus,

H = Y ⊕ Y ⊥ .

Now, we show that Y = Y ⊥⊥. If x ∈ Y , then 〈x, z〉 = 0 for all z ∈ Y ⊥. Therefore,
x ∈ (Y ⊥)⊥, i.e.

Y ⊂ Y ⊥⊥.
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Now, suppose x ∈ Y ⊥⊥. Since H = Y ⊕ Y ⊥, there exists y ∈ Y and z ∈ Y ⊥ such that

x = y + z.

Since y ∈ Y ⊂ Y ⊥⊥ and x ∈ Y ⊥⊥, we have

(x− y) = z ∈ Y ⊥⊥.

Therefore,
z ∈ Y ⊥ ∩ Y ⊥⊥ = {0} ⇒ z = 0⇒ x = y.

Thus, x = y ∈ Y and so Y ⊥⊥ ⊂ Y . Hence,

Y ⊥⊥ = Y .

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Proposition 2.2.7. Let H be a Hilbert space and Y be a closed subspace of H. Then
there is an orthogonal projection P on H such that R(P ) = Y and ker(P ) = Y ⊥.

Proof. Since, H = Y ⊕ Y ⊥, for x ∈ H there are unique x1 ∈ Y and x2 ∈ Y ⊥ such that
x = x1 + x2. Define P : H → H by Px = x1. Since x1 is uniquely associated with x, P is
well-defined.

Now, let x, x′ ∈ H. Then there exist x1, x1
′ ∈ Y and x2.x2

′ ∈ Y ⊥ such that

x = x1 + x2 and x′ = x′1 + x′2.

Then, x+ x′ = (x1 + x′1) + (x2 + x′2). Therefore,

P (x+ x′) = x+ x′1 = Px+ Px′.

Similarly, P (αx) = αx1 = αPx for α ∈ K and x ∈ H. Therefore, P : H → H is linear.
Now, let x = x1 + x2 ∈ H with x1 ∈ Y and x2 ∈ Y ⊥. Observe that x1 ∈ (Y ⊂)H. So,

x1 = x1 + 0, where we consider 0 ∈ Y ⊥ and so by the definition of P , Px1 = x1. Therefore,
we have

P 2x = P (Px) = P (x1) = x1 = Px,

i.e. P 2 = P and hence P is a projection on H.
Now, clearly R(P ) ⊂ Y . If x1 ∈ Y , then as before x1 = x1 + 0 and so Px1 = x1 ∈ R(P ).

Therefore R(P ) = Y . Also,

kerP = {x ∈ H : P (x) = 0}
= {x ∈ H : x = x1 + x2, x1 ∈ Y, x2 ∈ Y ⊥, x1 = 0}
= {x ∈ H : x = x2, x2 ∈ Y ⊥} = Y ⊥.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Note: This P in the above proposition is called the orthogonal projection associated to a
closed subspace Y of a Hilbert space H.

2.2.1 Continuous linear functionals
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Definition 2.2.8. Let X and Y be normed linear spaces. A linear transformation
T : X → Y is called bounded if there exists β > 0 such that

‖Tx‖ ≤ β‖x‖ ∀ x ∈ X.

The set of all bounded linear transformation from X to Y is denoted by BL(X, Y ). In
this case, we define,

‖T‖ = sup{‖Tx‖ : x ∈ X, ‖x‖ ≤ 1}.
BL(X,X) is denoted by BL(X). Also, BL(X,K) is denoted by X ′, called the dual of
X. Elements of X ′ are called bounded linear functionals on X.

Remark 2.2.9. Let X and Y be normed linear spaces. and T ∈ BL(X, Y ). Let 0 6= x ∈ X
and y = x

‖x‖ . Then ‖y‖ = 1 and so, ‖Ty‖ ≤ ‖T‖. This gives

‖Tx‖ ≤ ‖T‖‖x‖ ∀ x ∈ H.

Proposition 2.2.10. Let X and Y be normed linear spaces and T : X → Y be a linear
map. Then T is bounded if and only if T is continuous at 0. (In fact, T is uniformly
continuous).

Proof. Suppose T is a bounded linear map. Then there exists β > 0 such that

‖Tx‖ ≤ β‖x‖ ∀ x ∈ X.

Therefore,
‖Tx− Ty‖ = ‖T (x− y)‖ ≤ β‖x− y‖ ∀ x, y ∈ X.

(Take ‖x − y‖ < ε
β
. Then ‖Tx − Ty‖ < ε). Therefore, T is uniformly continuous. In

particular, T is continuous at 0.
Next, suppose that T is continuous at 0. Then for ε > 0, there exists δ > 0 such that

‖Tx‖ < ε whenever x ∈ X and ‖x‖ < δ (since T (0) = 0). Now, let x ∈ X, x 6= 0. Take
y = x

2‖x‖δ then ‖y‖ = δ
2 < δ. Therefore,

‖Ty‖ < ε.

∴ ‖Tx‖ < 2ε
δ
‖x‖ ∀ x ∈ X.

Thus ‖Tx‖ ≤ β‖x‖ for all x ∈ X. Therefore, T is a bounded linear map. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Definition 2.2.11. Let X and Y be normed linear spaces. The collection of all bounded
linear transformations T : X → Y is denoted by BL(X, Y ).

Exercise 2.2.12. (BL(X, Y ), ‖ · ‖) is a normed linear space.

Solution. Seminar exercise. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Remarks 2.2.13. 1. If Y = X, then we denote BL(X,X) by BL(X).
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2. For S, T ∈ BL(X),

‖ST (x)‖ ≤ ‖S‖‖Tx‖ ≤ ‖S‖‖T‖‖x‖.

Therefore, ST ∈ BL(X) and ‖ST‖ ≤ ‖S‖‖T‖.

Exercise 2.2.14. If {Sn} and {Tn} are sequences in BL(X) such that Sn → S and
Tn → T then

1. Sn + Tn → S + T .
2. SnTn → ST and αSn → αS, α ∈ K.

Proposition 2.2.15. Let X be an inner product space and T ∈ BL(X). Then

‖T‖ = sup{|〈Tx, y〉| : x, y ∈ X, ‖x‖ ≤ 1, ‖y‖ ≤ 1}.

Proof. Claim: ‖Tx‖ = sup{|〈Tx, y〉| : y ∈ X, ‖y‖ ≤ 1}, for x ∈ X.
For if y ∈ X with ‖y‖ ≤ 1, then for all x ∈ X,

|〈Tx, y〉| ≤ ‖Tx‖‖y‖ ≤ ‖Tx‖.

Now if Tx 6= 0, take y = Tx
‖Tx‖ , then ‖y‖ = 1 and

〈Tx, y〉 =
〈
Tx,

Tx

‖Tx‖

〉

= 1
‖Tx‖〈Tx, Tx〉

= ‖Tx‖
2

‖Tx‖ = ‖Tx‖.

Therefore,
‖Tx‖ = sup{|〈Tx, y〉| : y ∈ X, ‖y‖ ≤ 1}.

Therefore,

‖T‖ = sup{‖Tx‖ : x ∈ X, ‖x‖ ≤ 1}
= sup{sup{‖〈Tx, y〉| : y ∈ X, ‖y‖ ≤ 1} : x ∈ X, ‖x‖ ≤ 1}
= sup{|〈Tx, y〉| : x, y ∈ X, ‖x‖ ≤ 1, ‖y‖ ≤ 1.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Notation: Let X be a normed linear space. We denote BL(X,K) by X ′ and is known
as the continuous dual of X, i.e. the elements of X ′ are bounded (and hence continuous)
linear functional on X.

Proposition 2.2.16. Let X be an inner product space and y ∈ X. Define f : X → K
by

f(x) = 〈x, y〉 x ∈ X.
Then f is a bounded linear functional on X and ‖f‖ = ‖y‖.

Dr. Jay Mehta jay mehta@spuvvn.edujay mehta@spuvvn.edu

mailto:jay_mehta@spuvvn.edu


44 §2.3. Riesz-Representation Theorem

Proof. Clearly, f : X → K is a linear functional on X. Also for all x ∈ X,

|f(x)| = |〈x, y〉| ≤ ‖x‖‖y‖ = ‖y‖‖x‖.

Therefore, f is bounded linear functional on X and ‖f‖ ≤ ‖y‖. If y 6= 0, then take x = y
‖y‖ .

Then ‖x‖ = 1 and

f(x) = 〈x, y〉 =
〈
y

‖y‖ , y
〉

= ‖y‖.

Therefore, ‖f‖ = ‖y‖. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Seminar Topics 4.
1. Let H be a Hilbert space and P : H → H be a projection. Show that I − P is also

a projection.
2. Consider the standard basis B1 = {e1, e2, . . .} of c00. Let B be a basis of `2 such

that B1 ⊂ B. Show that there is a unique projection P : `2 → `2 such that

P (x) =
0, if x ∈ B1

1, ifx ∈ B rB1.

3. Find the zero space of above projection, and hence, show that it is discontinuous.
4. Define orthogonal projections R3 → R3 with the following zero spaces.

(i) {(x(1), x(2), x(3)) ∈ R3 : x(1) + x(2) = 0}
(ii) {(x(1), x(2), x(3)) ∈ R3 : x(1) + x(2) + x(3) = 0}

(iii) {(x(1), x(2), x(3)) ∈ R3 : x(1) = x(2) + x(3) = 0}
5. Show that every orthogonal projection is continuous.
6. Show that there is a unique nonzero orthogonal projection P : R3 → R3 such that

P (x) = 0 for every x ∈ {(x(1), x(2), x(3)) ∈ R3 : x(1) + x(2) = 1, x(3) = 0}.
7. For normed linear spaces X, Y , show that (BL(X, Y ), ‖ · ‖) is a normed linear space.
8. For normed linear spaces X, Y and T ∈ BL(X, Y ), show that

‖T‖ = inf β > 0 : ‖Tx‖ ≤ β‖x‖textforallx ∈ X.

9. Let X be a normed linear space and λ ∈ K. Define T : X → X by T (x) = λx,
(x ∈ X). Show that T ∈ BL(X).

10. Show that composition of two bounded linear transformations, if exists, is a bounded
linear transformation.

11. Let X be a normed linear space and {Sn} and {Tn} be sequences in BL(X) such
that Sn → S and Tn → T . Show that

(i) Sn + Tn → S + T .
(ii) SnTn → ST and αSn → αS, α ∈ K.

2.3 Riesz-Representation Theorem

Theorem 2.3.1 (Riesz-representation theorem). Let H be a Hilbert space and f ∈ H ′
(i.e. f is (continuous) bounded linear functional). Then there is a unique y ∈ H such

PS02CMTH24 2018-19
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that f(x) = 〈x, y〉, x ∈ H. In fact,

y = f(z) z
‖z‖2

for some z ∈ (ker f)⊥.

Proof. Let Y = ker f . Since f is continuous and linear, clearly Y is a closed subspace of
H (since {0} is closed, Y = f−1({0}) is closed). If f = 0 then take y = 0. So, we assume
that f 6= 0 and so Y 6= H. Then by the projection theorem,

H = Y ⊕ Y ⊥.

As Y 6= H, we have Y ⊥ 6= {0}. Consider an element z ∈ Y ⊥ such that z 6= 0. Let x ∈ H.
Take w = f(x)z − f(z)x. Then since f is linear,

f(w) = f(x)f(z)− f(z)f(x) = 0,

i.e. w ∈ ker f and therefore 〈w, z〉 = 0 (∵ w ∈ Y, z ∈ Y ⊥). Therefore,

〈f(x)z − f(z)x, z〉 = 0
⇒ f(x)〈z, z〉 − f(z)〈x, z〉 = 0.

Therefore,

f(x) = f(z)
‖z‖ 〈x, z〉 =

〈
x,
f(z) z
‖z‖2

〉
.

Take y = f(z) z
‖z‖2 , then f(x) = 〈x, y〉 for x ∈ H.

Now, we show uniqueness of y. Suppose there exists y1 ∈ H such that f(x) = 〈x, y1〉
for x ∈ H. Then

〈y − y1, y〉 = f(y − y1) = 〈y − y1, y1〉.
Therefore, 〈y − y1, y − y1〉 = 0 and hence y = y1. Thus, y is unique. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Notation: The unique y (in the above theorem) corresponding to f ∈ H ′ is called the
representor of f and it is denoted by yf .

Proposition 2.3.2. Let H be a Hilbert space and f ∈ H ′. Let yf be the representor of
f . Then ‖f‖ = ‖yf‖.

Proof. For x ∈ H,

|f(x)| = |〈x, yf〉|
≤ ‖x‖‖yf‖.

Hence,

‖f‖ ≤ ‖yf‖.
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On the other hand

f( yf
‖yf‖

) = 1
‖yf‖

〈yf , yf〉

= ‖yf‖.

Thus,

‖yf‖ ≤ ‖f‖.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Example 2.3.3. Let H = (Kn, ‖ · ‖2). If f ∈ H ′ (i.e. f : H → K is continuous linear
functional) then by the Riesz representaion theorem there exists y = (y1, y2, . . . , yn) ∈ Kn

such that for x = (x1, x2, . . . , xn) ∈ H,

f(x) = 〈x, y〉 = x1y1 + x2y2 + · · ·+ xnyn

= α1x1 + α2x2 + · · ·+ αnxn,

where αi = yi.

Example 2.3.4. Completeness of the space is essential in the Projection theorem.

Solution. Consider the space X = c00, the space of all sequence in K having finitely many
non-zero terms. For x, y ∈ c00, define

〈x, y〉 =
∞∑
n=1

xny(n).

Then 〈· , ·〉 is an inner product on X.
Note that the sequence (1, 1

2 , . . . ,
1
n
, 0, 0, . . .) is a Cauchy sequence but it is not convergent.

Therefore, the space X = c00 is not complete. Define f : X → K by

f(x) =
∞∑
n=1

1
n
xn x = (xn) ∈ c00.

Then f is a linear functional on X. Also,

|f(x)|2 =
∣∣∣∣∣
∞∑
n=1

1
n
xn

∣∣∣∣∣
2

=
( ∞∑
n=1

1
n
|xn|

)2

=
( ∞∑
n=1

1
n2

)( ∞∑
n=1
|xn|2

)
(by Hölder’s inequality)

= π2

6 ‖x‖
2
2.

Therefore, |f(x)| ≤ π√
6‖x‖2 for all x ∈ X = c00 and hence f is a bounded linear functional

on X. Therefore, Y = ker f is a closed subspace of X = c00. Since f(e1) = 1, f 6= 0, where
e1 = (1, 0, 0, . . .). Therefore Y (= ker f) 6= X.
Claim: Y ⊥ = {0}.
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Let z = (z(1), z(2), . . .) ∈ Y ⊥ ⊂ c00. Then there exists m ∈ N such that z(j) = 0 for
all j > m, i.e. z = (z(1), z(2), . . . , z(m), 0, 0, . . .). For 1 ≤ n ≤ m, take

xn(j) =


1 if j = n

− (m+1)
n

if j = m+ 1
0 otherwise,

i.e. xn =
(
0, . . . , 0, 1︸︷︷︸

nth place

, 0, . . . , 0︸︷︷︸
mthplace

,− (m+1)
n

, 0, 0, . . .
)
. Therefore,

f(xn) = 1
n

+
− (m+1)

n

(m+ 1) = 1
n
− 1
n

= 0.

Therefore, xn ∈ ker f = Y and since z ∈ Y ⊥, we have 〈z, xn〉 = 0. But

〈z, xn〉 = z(n).

Therefore z(n) = 0 ∀ n ⇒ z = 0. Thus, Y ⊥ = {0}. Since Y 6= X, Y ⊕ Y ⊥ 6= X. Thus,
completeness of the space X is necessary for the projection theorem to hold. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Example 2.3.5. Completeness of the space is necessary in the Reisz-representation
theorem.

Solution. Consider X = c00 and f as in the last example, then f is a bounded linear
functional on X. Suppose, if possible, there exists y ∈ X = c00 such that for every x ∈ X,

f(x) = 〈x, y〉.

For m = 1, 2, . . ., take em = (0, 0, . . . , 0, 1︸︷︷︸
mthplace

, 0, 0, . . .), then f(em) = 1
m

and clearly

〈em, y〉 = y(m). Now,
1
m

= f(em) = 〈em, y〉 = y(m),

i.e. y = (1, 1
2 , . . . ,

1
m
, 1
m+1 , . . .) 6∈ c00 = X. Thus, Riesz-representation theorem does not

hold without completeness of X. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 2.3.6 (Unique Hahn-Banach extension theorem). Let H be a Hilbert space
and X be a subspace of H. Let g ∈ X ′, i.e. g : X → K is bounded (continuous) linear
functional on X. Then there exists a unique f ∈ H ′ such that f

∣∣∣
X

= g and ‖f‖ = ‖g‖.

Proof. Let g ∈ X ′ and Y = X. Then Y is a closed subspace of H. Let x ∈ Y = X. Then
there is a sequence {xn} in X such that xn → x. Since g is bounded, |g(x)| ≤ ‖g‖‖x‖ for
every x ∈ X. Therefore,

|g(xn)− g(xm)| = |g(xn − xm)| (since g is linear)
≤ ‖g‖‖xn − xm‖.

Since {xn} is Cauchy, {g(xn)} is Cauchy and since K is complete, {g(xn)} is convergent.
Let

α = lim
n→∞ g(xn).

Dr. Jay Mehta jay mehta@spuvvn.edujay mehta@spuvvn.edu
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Now, suppose {zn} is a sequence in X such that zn → x. Then

|g(xn)− g(zn)| = |g(xn − zn)| (since g is bounded linear)
≤ ‖g‖‖xn − zn‖
= ‖g‖‖xn − x− zn + x‖
≤ ‖g‖

(
‖xn − x‖+ ‖zn − x‖

)
→ 0 as n→∞.

Therefore,
lim
n→∞ g(xn) = lim

n→∞ g(zn) = α.

Define g(x) = α = limn→∞ g(xn). Then ḡ : Y → K and ḡ is clearly bounded linear
(functional) and satisfies ‖g‖ = ‖ḡ‖. Thus, ḡ ∈ Y ′. Since Y is a closed subspace of a
Hilbert space, Y is Hilbert space.

Then by Riesz-representation theorem there is y ∈ Y such that

ḡ(x) = 〈x, y〉 ∀ x ∈ Y

and
‖g‖ = ‖y‖.

Define f : H → K by f(x) = 〈x, y〉 for x ∈ H. Then f ∈ H ′, ‖f‖ = ‖y‖ and f
∣∣∣
X

= ḡ and
f
∣∣∣
X

= ḡ
∣∣∣
X

= g. Therefore,
‖f‖ = ‖y‖ = ‖ḡ‖ = ‖g‖.

Hence, ‖f‖ = ‖g‖.
To prove the uniqueness of extension f of g, consider h ∈ H ′ such that h

∣∣∣
X

= g and
‖h‖ = ‖g‖. Since h is continuous and X is closed in Y .

‖h‖ = ‖ḡ‖ and h
∣∣∣
Y

= ḡ.

As h ∈ H ′, there exists z ∈ H such that h(x) = 〈x, z〉, x ∈ H and ‖h‖ = ‖z‖. Therefore

〈y, z〉 = h(y) = ḡ(y) = 〈y, y〉 = ‖y‖2.

Now,

‖y − z‖2 = ‖y‖2 − 2 Re〈y, z〉+ ‖z‖2

= ‖y‖2 − 2‖y‖2 + ‖y‖2

= 0 (∵ ‖z‖ = ‖h‖ = ‖ḡ‖ = ‖y‖).

Therefore, z = y and hence h = f . �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Definition 2.3.7. Let H be a Hilbert space. We say that a sequence {xn} in H is
weakly convergent or converges weakly to x in H if

〈xn, y〉 → 〈x, y〉 ∀ y ∈ H.

In this case, we write, xn → x weakly or xn w−→ x.
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Remark 2.3.8. Is every weakly convergent sequence, convergent? The answer is not true
in general. Consider the following example, where we show that a weakly convergent
sequence may not be convergent.

Example 2.3.9. Let H be an infinite dimensional Hilbert space and {u1, u2, . . .} be
orthonormal basis of H. Then by Bessel’s inequality, for each y ∈ H,

∞∑
n=1
|〈y, un〉|2 ≤ ‖y‖2.

Therefore,
〈y, un〉 → 0 ∀ y ∈ H.

∴ 〈un, y〉 → 〈0, y〉 ∀ y ∈ H.

Thus, un → 0 weakly. But for m 6= n,

‖um − un‖2 = 〈um − un, um − un〉
= ‖um‖2 + ‖un‖2

= 1 + 1 = 2,

i.e. ‖um − un‖ =
√

2. Therefore, {un} is not Cauchy and hence it is not convergent.

Theorem 2.3.10. Let H be a Hilbert space and {xn} be a sequence in H. Then xn → x
if and only if xn → x weakly and ‖xn‖ → ‖x‖.

Proof. Suppose xn → x, i.e. ‖xn − x‖ → 0. Therefore, for each y ∈ H,

|〈xn, y〉 − 〈x, y〉| = |〈xn − x, y〉|
≤ ‖xn − x‖‖y‖ → 0.

∴ 〈xn, y〉 → 〈x, y〉 for each y ∈ H.

Therefore xn → x weakly. Also since xn → x, clearly ‖xn‖ → ‖x‖.
Conversely, suppose that xn → x weakly and ‖xn‖ → ‖x‖. Then

‖xn − x‖2 = ‖xn‖2 + ‖x‖2 − 2 Re〈xn, x〉
→ ‖x‖2 + ‖x‖2 − 2‖x‖2 (∵ 〈xn, y〉 → 〈x, y〉)
= 0.

Therefore xn → x. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 2.3.11. Let H be a Hilbert space and {xn} be a bounded sequence in H. Then
{xn} has a weakly convergent subsequence.
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Proof. Since {xn} is a bounded sequence in H, there exists α > 0 such that ‖xn‖ ≤ α for
all n. Then by Schwarz’s inequality,

|〈xn, x1〉| ≤ ‖xn‖‖x1‖ ≤ α2 ∀ n.

Therefore {〈xn, x1〉} is a bounded sequence in K and hence by Bolzano-Weierstrass theorem
for K, the sequence {〈xn, x1〉} has a convergent subsequence, say {〈xn,1, x1〉}. Observe
that the sequence {〈xn,1, x2〉} is bounded because

|〈xn,1, x2〉| ≤ ‖xn,1‖‖x2‖ ≤ α2 ∀ n.

Again, therefore, the bounded sequence {〈xn,1, x2〉} has a convergent subsequence {〈xn,2, x2〉}
and so on. Thus, for each m we get a convergent subsequence {〈xn,m, xm〉} such that
{〈xn,m, xj〉} converges for each j = 1, 2, . . . ,m.

Consider the convergent subsequence {〈xn,n, xi〉} for i = 1, 2, . . . (∵ for n > m
{〈xn,n, xm〉} is a subsequence of the convergent subsequence {〈xn,m, xm〉}).

If y ∈ {x1, x2, . . .} then {〈xn,n, y〉} converges. As a result, if y ∈ L({x1, x2, . . .}), then
{〈xn,n, y〉} converges in K. Let Y = L({x1, x2, . . .}). If y ∈ Y , then there is a sequence
{yk} in L({x1, x2, . . .}) such that yk → y. Fix k0 ∈ N such that ‖yk − y‖ < ε

4α . Fix
k > k0. Since {〈xn,n, yk〉} converges, it is Cauchy. Consequently, there is n0 ∈ N such that
|〈xn,n − xm,m, yk〉| = |〈xn,n, yk〉 − 〈xn,n − xm,m, yk〉| ≤ ε

2 . As a conclusion to all this, for all
n,m ≥ n0,

|〈xn,n, y〉 − 〈xm,m, y〉| = |〈xn,n − xm,m, y〉|
≤ |〈xn,n − xm,m, y − yk〉|+ |〈xn,n − xm,m, yk〉|
≤ ‖xn,n − xm,m‖‖y − yk‖+ |〈xn,n − xm,m, yk〉|
≤ (‖xn,n‖+ ‖xm,m‖)‖y − yk‖+ |〈xn,n − xm,m, yk〉|
≤ 2α‖yk − y‖+ |〈xn,n − xm,m, yk〉|
<2α ε

4α + ε

2
= ε.

Therefore, {〈xn,n, y〉} is a Cauchy sequence in K and hence, it converges in K for all y ∈ Y .
Since Y is a closed subspace of H, by the projection theorem, we have

H = Y ⊕ Y ⊥.

Therefore every x ∈ H can be written as x = y + z with y ∈ Y and z ∈ Y ⊥. Then

〈xn,n, x〉 = 〈xn,n, y〉+ 〈xn,n, z〉
= 〈xn,n, y〉 (∵ xn,n ∈ Y, z ∈ Y ⊥ ⇒ 〈xn,n, z〉 = 0).

Therefore {〈xn,n, x〉} converges in K for each x ∈ H. Now, for x ∈ H, take

f(x) = lim
n→∞〈x, xn,n〉.

Then f : H → K is a linear functional on H. Also, since

|f(x)| = lim
n→∞ |〈x, xn,n〉| ≤ α‖x‖, x ∈ H
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we see that f is a bounded (continuous) linear functional on H. By Riesz representation
theorem there exists y ∈ H such that f(x) = 〈x, y〉, for all x ∈ H. Therefore

lim
n→∞〈x, xn,n〉 = f(x) = 〈x, y〉, ∀ x ∈ H,

i.e. 〈xn,n, x〉 → 〈y, x〉 ∀ x ∈ H.
Thus, xn,n → y weakly, where {xn,n} is a subsequence of {xn}. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Definition 2.3.12. Let H be a Hilbert space and E ⊂ H. We say that E is weakly
bounded if for each y ∈ H such that αy ≥ 0 such that

|〈x, y〉| ≤ αy ∀ x ∈ E.

Remark 2.3.13. Let E ⊂ H and f ∈ H ′. Then there is y ∈ H, let f = fy, where fy
denotes the bounded linear functional on H defined by fy(x) = 〈x, y〉, (x ∈ H). Clearly,
f(E) = {〈x, y〉 : x ∈ E}. Consequently, E is weakly bounded if and only if f(E) is
bounded for all f ∈ H ′.

Lemma 2.3.14. Let H be a Hilbert space and Y be a finite dimensional subspace of H.
Let PY denote the orthogonal projection of H on Y . If E is weakly bounded subset of H
then the set {PY (x) : x ∈ E} is bounded.

Proof. Let B = {y1, y2, . . . , yn} be an orthonormal basis of Y . Define PY : H → Y by

PY (x) = 〈x, y1〉y1 + 〈x, y2〉y2 + · · ·+ 〈x, yn〉yn, (x ∈ H). (2.5)

Clearly,

PY
2 = PY (PY (x)) = PY (〈x, y1〉y1 + 〈x, y2〉y2 + · · ·+ 〈x, yn〉yn)

= 〈x, y1〉PY (y1) + 〈x, y2〉PY (y2) + · · ·+ 〈x, yn〉PY (yn)
= 〈x, y1〉y1 + 〈x, y2〉y2 + · · ·+ 〈x, yn〉yn. (∵ by (2.52.5), PY (yi) = yi)
= PY (x).

Therefore P 2
Y = PY , i.e. PY is idempotent (projection). Also, the range of PY is R(PY ) = Y .

Also,
H = Y ⊕ Y ⊥.

Then, since P is a projection, R(I − P ) = kerP = Y ⊥.
Since E is weakly bounded, there exist αy1 , αy2 , . . . , αyn ≥ 0 such that

|〈x, yj〉| ≤ αyj
∀ x ∈ E, ∀ j = 1, 2, . . . , n.

Therefore for x ∈ E,

‖PY x‖2 = |〈x, y1〉|2 + |〈x, y2〉|2 + · · ·+ |〈x, yn〉|2 (by Pythagoras theorem applied to (2.52.5))
= α2

y1 + α2
y2 + · · ·+ α2

yn
.

Hence for all x ∈ E, ‖PY x‖ ≤ N , where N =
√
α2
y1 + α2

y2 + · · ·+ α2
yn

. Thus, the set
{PY x : x ∈ E} is bounded. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Theorem 2.3.15. Let H be a Hilbert space and E be a subset of H then E is bounded
if and only if E is weakly bounded.

Proof. Suppose E is bounded. Then there exists an M ≥ 0 such that ‖x‖ ≤ M for all
x ∈ E. Then for each y ∈ H,

|〈x, y〉| ≤ ‖x‖‖y‖ ≤M‖y‖, x ∈ E.

Therefore E is weakly bounded.
Conversely, assume that E is weakly bounded, i.e. for each y ∈ H there is αy ≥ 0 such

that |〈x, y〉| ≤ αy for all x ∈ E.
Suppose, if possible, E is unbounded. Then there exists x1 ∈ E such that ‖x1‖ ≥ 1. Let

z1 = x1 and Y1 = L({z1}). Take P1 = PY1 . Since, dim Y1 <∞, i.e. Y1 is finite dimensional,
the set {P1(x) : x ∈ E} is bounded. Hence the set {x − P1(x) : x ∈ E} is unbounded
(otherwise E is bounded).

Since 2
(
2 + αz1

‖αz1‖

)
> 0, there exists x2 ∈ E such that ‖x2 − P1(x2)‖ > 2

(
2 + αz1

‖αz1‖

)
.

Let z2 = x2 − P1(x2). Then ‖z2‖ > 2
(
2 + αz1

‖αz1‖

)
and z2 ⊥ Y1. Therefore,

z1 ⊥ z2.

Let Y2 = L({z1, x2, z2}). So dim Y2 < ∞. Let P2 = PY2 . Then the set {P2(x) :
x ∈ E} is bounded. Therefore the set {x − P2(x) : x ∈ E} is unbounded. Since
3
(
3 + αz1

‖αz1‖
+ αz2
‖αz2‖

)
> 0, there exists x3 ∈ E such that

‖x3 − P2(x3)‖ > 3
(

3 + αz1

‖αz1‖
+ αz2

‖αz2‖

)
.

Take z3 = x3 − P2(x3). Thus, ‖z3‖ > 3
(
3 + αz1

‖αz1‖
+ αz2
‖αz2‖

)
and z3 ⊥ Y2. So, z1, z2, z3 are

orthogonal. Continuing this way, suppose that z1, x2, z2, . . . , xm, zm are chosen such that
z1, z2, . . . , zm are orthogonal. Take

Ym = L({z1, x2, z2, . . . , xm, zm}.

Then dim Ym <∞. Take Pm = PYm . Then the set {Pm(x) : x ∈ E} is bounded and hence
the set {x − Pm(x) : x ∈ E} is not bounded. Since (m + 1)

(
m+ 1 +∑m

j=1
αzj

‖αzj }

)
> 0,

there exists xm+1 ∈ E such that

‖xm+1 − Pm(xm+1)‖ > (m+ 1)
m+ 1 +

m∑
j=1

αzj

‖αzj
‖

 .
Take zm+1 = xm+1 − Pm(xm+1). Then

‖zm+1‖ > (m+ 1)
m+ 1 +

m∑
j=1

αzj

‖αzj
‖

 (2.6)

and zm+1 ⊥ Ym. Therefore z1, z2, . . . , zm, zm+1 are orthogonal such that none of them is 0.
Then

‖zm+1‖2 = 〈zm+1, zm+1〉
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= 〈xm+1, zm+1〉 − 〈Pm(xm+1), zm+1〉
= 〈xm+1, zm+1〉 (∵ Pm(xm+1) ∈ Ym, zm+1 ⊥ Ym). (2.7)

Now,
〈xm+1, zn〉 = 0 ∀ n ≥ m+ 2 (∵ zn ⊥ Ym+1, xm+1 ∈ Ym+1). (2.8)

Take uj = zj

‖zj‖ , j = 1, 2, . . .. Therefore u1, u2, . . . are orthonormal. Since, ∑∞n=1
1
n2 <∞,

by Riesz-Fischer theorem,
∞∑
n=1

1
n
un converges in H.

Suppose y = ∑∞
n=1

1
n
un. Then

|〈xm+1, y〉| =
∣∣∣∣∣
〈
xm+1,

∞∑
n=1

1
n
un

〉∣∣∣∣∣
=
∣∣∣∣∣
〈
xm+1,

m+1∑
n=1

1
n
un

〉∣∣∣∣∣ (by (2.82.8))

≥
∣∣∣∣〈xm+1,

um+1

m+ 1

〉∣∣∣∣−
∣∣∣∣∣
〈
xm+1,

m∑
n=1

1
n
un

〉∣∣∣∣∣ (∵ |α + β| ≥ |α| − |β|)

≥
∣∣∣∣∣
〈
xm+1,

zm+1

(m+ 1)‖zm+1‖

〉∣∣∣∣∣−
m∑
n=1

αzn

‖zn‖

= ‖zm+1‖2

(m+ 1)‖zm+1‖
−
∞∑
n=1

αzn

‖zn‖
(by (2.72.7)).

Therefore

|〈xm+1, y〉| ≥
‖zm+1‖
m+ 1 −

m∑
n=1

αzn

‖zn‖

> (m+ 1) +
m∑
n=1

αzn

‖zn‖
−

m∑
m=1

αzn

‖zn‖
(by (2.62.6))

= m+ 1

which is not possible since |〈x, y〉| ≤ αy, ∀ x ∈ E. Therefore E must be bounded. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Seminar Topics 5. In these exercises, H will denote a Hilbert space.
1. Let E,F be subsets of H. If E,F are bounded, then show that E + F,E ∪ F are

also bounded.
2. Let Y be a subspace of H. Show that Y is bounded if and only if Y = {0}.
3. E ⊂ H and P be an orthogonal projection on H. Show that E is bounded if and

only if P (E) as well as (I − P )(E) is bounded.
4. Let E ⊂ H be convex. Show that E is also convex.
5. Show that a subspace of H is convex.

Dr. Jay Mehta jay mehta@spuvvn.edujay mehta@spuvvn.edu

mailto:jay_mehta@spuvvn.edu




3

C
h

a
p

t
e

r

Bounded Operators on Hilbert spaces

3.1 Adjoints of Bounded Operators

In this section we discuss the adjoint of a bounded linear operator (i.e. bounded linear
map). Before we define it formally, consider the following example:

Example 3.1.1. Let H = `2 be the Hilbert space of square summable sequences. Let
S : H → H and T : H → H be the left-shift and the right-shift operators respectively, i.e.
for x = (x(1), x(2), . . .), y = (y(1), y(2), . . .) ∈ `2,

S(y) = (y(2), y(3), . . .) and T (x) = (0, x(1), x(2), . . .).

Clearly, S and T are linear maps. It is also easy to see that S and T are bounded, as

‖Sy‖ =
( ∞∑
i=1
|(Sy)(i)|2

) 1
2

=
( ∞∑
i=2
|y(i)|2

) 1
2

≤
( ∞∑
i=1
|y(i)|2

) 1
2

= ‖y‖

and

‖Tx‖ =
( ∞∑
i=1
|(Tx)(i)|2

) 1
2

=
( ∞∑
i=1
|x(i)|2

) 1
2

= ‖x‖ (∵ (Tx)(1) = 0).

Thus, S, T ∈ BL(H). Also, observe that

〈Tx, y〉 = 〈(0, x(1), x(2), . . .), (y(1), y(2), y(3), . . .)〉
= x(1)y(2) + x(2)y(3) + · · ·
= 〈(x(1), x(2), . . .), (y(2), y(3), . . .)〉
= 〈x, Sy〉.

Thus, S, T ∈ BL(H) are opposite of each other in the sense that for every x, y ∈ H = `2,

〈Tx, y〉 = 〈x, Sy〉.
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Remark 3.1.2. Now, we may have two questions here. First question is: given a bounded
linear map T on a Hilbert space H, i.e. T ∈ BL(H), does there always exists another
bounded linear operator S ∈ BL(H) such that 〈Tx, y〉 = 〈x, Sy〉 for all x, y ∈ H? Secondly,
if such operator (map) S exists, then is it unique?

The answer to both the questions posed above is affirmative in case of Hilbert space but
not true for every inner product space (which are not complete). First we prove the following
theorem which affirms the existence of unique operator S such that 〈Tx, y〉 = 〈x, Sy〉 for
all x, y ∈ H. After proving the theorem, we give a counter example which shows that it
need not be true in an inner product space which is not complete.

Theorem 3.1.3. Let H be a Hilbert space and T ∈ BL(H). There there is a unique
S ∈ BL(H) such that 〈Tx, y〉 = 〈x, Sy〉 for every x, y ∈ H and ‖S‖ ≤ ‖T‖.

Proof. For y ∈ H, define fy : H → K by

fy(x) = 〈Tx, y〉 for all x ∈ H.

Then fy is a linear functional on H (Verify!). Also,

|fy(x)| = |〈Tx, y〉|
≤ ‖Tx‖‖y‖ (Schwarz inequality)
≤ ‖T‖‖x‖‖y‖ (∵ T is bounded)
= (‖T‖‖y‖)‖x‖

Therefore, fy is bounded and ‖fy‖ ≤ ‖T‖‖y‖. Then by the Riesz-representation theorem
there is a unique z ∈ H such that

fy(x) = 〈x, z〉 x ∈ H

and
‖fy‖ = ‖z‖.

Define S : H → H by Sy = z, (y ∈ H). Then

〈Tx, y〉 = fy(x) = 〈x, z〉 = 〈x, Sy〉, x ∈ H.

Then S : H → H is linear for if y1, y2 ∈ H then for all x ∈ H,

〈x, S(y1 + y2)〉 = 〈Tx, y1 + y2〉
= 〈Tx, y1〉+ 〈Tx, y2〉
= fy1(x) + fy2(x)
= 〈x, Sy1〉+ 〈x, Sy2〉
= 〈x, S(y1 + y2)〉.

Therefore
S(y1 + y2) = Sy1 + Sy2 ∀ y1, y2 ∈ H.

Similarly, (Check!)
S(αy) = αSy ∀ y ∈ H, α ∈ K.

PS02CMTH24 2018-19



§3.1. Adjoints of Bounded Operators 57

Thus, S is a linear map. Now, for y ∈ H

‖Sy‖ = ‖z‖ = ‖fy‖ ≤ ‖T‖‖y‖.

Therefore S is bounded and taking supremum over all y with ‖y‖ ≤ 1, we have

‖S‖ ≤ ‖T‖.

Now to show the uniqueness of S, suppose S ′ ∈ BL(H) such that for all x, y ∈ H,

〈x, Sy〉 = 〈Tx, y〉 = 〈x, S ′y〉.

Then, 〈x, (S − S ′)(y)〉 = 0 for all x, y ∈ H and hence S = S ′. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Definition 3.1.4. Let H be a Hilbert space and T ∈ BL(H). The (unique) operator
S ∈ BL(H) such that 〈Tx, y〉 = 〈x, Sy〉 for all x, y ∈ H is known as the adjoint of T
and it is denoted by T ∗. Thus,

〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ H.

In Example 3.1.13.1.1, we saw that the right-shift operator on `2 is the adjoint of the left-shift
operator on `2. Let us give one more example of adjoint of a bounded linear operator.

Example 3.1.5. Consider the Hilbert space H = C2. Let T ∈ BL(H) by defined as
T (x, y) = (x + iy, iy) for (x, y) ∈ C2. Then one can see that its adjoint T ∗ ∈ BL(H) is
given by T ∗(x, y) = (x,−ix− iy) for all (x, y) ∈ H = C2 as for (z1, w1), (z2, w2) ∈ C2,

〈T (z1, w1), (z2, w2)〉 = 〈(z1 + iw1, iw1), (z2, w2)〉
= (z1 + iw1)z̄2 + iw1w̄2

= z1z̄2 + iw1(z̄2 + w̄2)
= 〈(z1, w1), (z2,−iz2 − iw2)〉
= 〈(z1, w1), T ∗(z2, w2)〉.

Thus, for all x, y ∈ C2 we have
〈Tx, y〉 = 〈x, Ty〉.

Exercise 3.1.6. Show by an example that the completion of the space is necessary for
the existence of the adjoint of a bounded operator.

Solution. Let X = c00. We have already seen how inner product is defined on c00 and that
it is not a complete space. Define T : X → X by

Tx =
( ∞∑
n=1

x(n)
n

, 0, 0, . . .
)

for x = (x(1), x(2), . . .) ∈ X. (3.1)

Then T : X → X is a linear map (Verify!). Now, for all x ∈ H

‖Tx‖ =
∣∣∣∣∣
∞∑
n=1

x(n)
n

∣∣∣∣∣
≤

∞∑
n=1

1
n
|x(n)|
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≤
( ∞∑
n=1

1
n2

) 1
2
( ∞∑
n=1
|x(n)|2

) 1
2

(Holder’s inequality)

= π2

6 ‖x‖.

Therefore T : X → X is a bounded linear operator, i.e. T ∈ BL(X).
Suppose there exists S ∈ BL(X) such that 〈Tx, y〉 = 〈x, Sy〉 for all x, y ∈ X = c00.

Take un = (0, 0, . . . , 0, 1︸︷︷︸
nthplace

, 0, . . .). Then

(Su1)(n) = 〈un, Su1〉
= 〈Tun, u1〉 (by (3.13.1))

= 1
n

Therefore (Su1)(n) = 1
n

for n = 1, 2, . . .. Hence, Su1 6∈ X = c00 which is a contradiction
as S ∈ BL(X). �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Proposition 3.1.7. Let H be a Hilbert space and S, T ∈ BL(H), α ∈ K. Then
1. (S + T )∗ = S∗ + T ∗

2. (αS)∗ = ᾱS∗

3. (ST )∗ = T ∗S∗

4. (S∗)∗ = S

Proof. 1. For y ∈ H,

〈x, (S + T )∗y〉 = 〈(S + T )x, y〉
= 〈Sx, y〉+ 〈Tx, y〉
= 〈x, S∗y〉+ 〈x, T ∗y〉
= 〈x, (S∗ + T ∗)y〉 x ∈ H.

Therefore,
(S + T )∗ = S∗ + T ∗.

2. For y ∈ H,

〈x, (αS)∗y〉 = 〈(αS)x, y〉
= α〈Sx, y〉
= α〈x, S∗y〉
= 〈x, ᾱS∗y〉 x ∈ H.

Therefore,
(αS)∗ = ᾱS∗.

3. For y ∈ H,

〈x, (ST )∗y〉 = 〈(ST )x, y〉
= 〈Tx, S∗y〉
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= 〈x, T ∗S∗y〉 x ∈ H.

Therefore,
(ST )∗ = T ∗S∗.

4. For y ∈ H,

〈x, (S∗)∗y〉 = 〈S∗x, y〉
= 〈y, S∗x〉
= 〈Sy, x〉
= 〈x, Sy〉 x ∈ H.

Therefore,
(S∗)∗ = S.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Corollary 3.1.8. Let H be a Hilbert space and S ∈ BL(H) be invertible in BL(H).
Then S∗ is invertible in BL(H) and (S∗)−1 = (S−1)∗.

Proof. Since S is invertible in BL(H), there exists S−1 ∈ BL(H) such that

SS−1 = S−1S = I.

Taking adjoint, we get
(SS−1)∗ = (S−1S)∗ = I∗ = I.

Therefore,
(S−1)∗S∗ = S∗(S−1)∗ = I.

Hence, S∗ is invertible in BL(H) and (S∗)−1 = (S−1)∗. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Proposition 3.1.9. Let H be a Hilbert space and T ∈ BL(H). Then ‖T ∗‖ = ‖T‖ and
‖T ∗T‖ = ‖T‖2.

Proof. We have seen (in Proposition 2.2.152.2.15) that in a Hilbert space H, norm of T ∈ BL(H)
is defined by

‖T‖ = sup{|〈Tx, y〉| : x, y ∈ X, ‖x‖ ≤ 1, ‖y‖ ≤ 1}.
Now, for x, y ∈ H,

|〈Tx, y〉| = |〈y, Tx〉| = |〈T ∗y, x〉|.
By taking supremum over x, y ∈ H with ‖x‖ ≤ 1, ‖y‖ ≤ 1, we get

‖T‖ = ‖T ∗‖.

We also know (by Remark 2.2.132.2.13) that ‖T ∗T‖ ≤ ‖T ∗‖‖T‖ = ‖T‖2.
Now for x ∈ H,

‖Tx‖2 = 〈Tx, Tx〉
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= 〈x, T ∗Tx〉
≤ ‖x‖‖T ∗Tx‖.

Taking supremum over x ∈ H with ‖x‖ ≤ 1, we get ‖T‖2 ≤ ‖T ∗T‖. Therefore

‖T‖2 = ‖T ∗T‖.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Remark 3.1.10. Suppose H is a separable Hilbert space with orthonormal basis u1, u2, . . .
and T ∈ BL(H). If the matrix of T with respect to this orthonormal basis is

m(T ) = (αij).

Then
αij = 〈Tuj, ui〉.

Now if m(T ∗) = (βij) with respect to orthonormal basis, then βij = 〈T ∗uj, ui〉. Then

βij = 〈T ∗uj, ui〉
= 〈uj, Tui〉
= 〈Tui, uj〉 = ᾱij.

Thus, m(T ∗) is the complex conjugate of the transpose of the matrix m(T ).

Remark 3.1.11. Note that this is the case in Example 3.1.53.1.5. The bounded linear operator
T is defined by the matrix

m(T ) =
[
1 i
0 i

]
and its adjoint T ∗ ∈ BL(C2) as defined in Example 3.1.53.1.5 is given by the adjoint (conjugate
transpose) of the matrix of T as follows:

m(T ∗) =
[

1 0
−i −i

]
.

Thus, for all (x, y) ∈ C2,

T (x, y) = (x+ iy, iy) and T ∗(x, y) = (x,−ix− iy)

are adjoints of each other as bounded linear operators.

Example 3.1.12. Let H = `2. As seen in Example 3.1.13.1.1, let T be the right-shift operator
on `2, i.e. define for x = (x(1), x(2), . . .), T : `2 → `2 by

T (x(1), x(2), . . .) = (0, x(1), x(2), . . .).

Then ‖Tx‖2 = ‖x‖2 for all x ∈ `2, i.e. T is isometry. Therefore T is bounded and ‖T‖ = 1.
Consider the orthonormal basis {en : n ∈ N} of `2, where en = (0, 0, . . . , 0, 1︸︷︷︸

nth place

, 0, . . .).

So, by definition, T (en) = en+1 for all n = 1, 2, . . .. If

m(T ) = (αij)
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is the matrix of T with respect to this orthonormal basis then

αij = 〈Tej, ei〉 = 〈ej+1, ei〉 = δ(j+1)(i).

Therefore,

m(T ) =



0 0 0 0 · · ·
1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
... ... ... ... . . .

 and m(T ∗) =



0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
0 0 0 0 · · ·
... ... ... ... . . .


Then T ∗(x(1), x(2), x(3), . . .) = (x(2), x(3), . . .).

Note: The operator T on `2 defined in the above example is known as unilateral right-shift
and T ∗ is known as unilateral left-shift.

Theorem 3.1.13. Let H be a Hilbert space and T ∈ BL(H). Then
(a) ker(T ) = R(T ∗)⊥ and ker(T ∗) = R(T )⊥.
(b) ker(T )⊥ = R(T ∗) and ker(T ∗)⊥ = R(T ).

Proof. (a) First we show that ker(T ) = R(T ∗)⊥.

x ∈ ker(T )⇔ Tx = 0
⇔ 〈Tx, y〉 = 0 ∀ y ∈ H
⇔ 〈x, T ∗y〉 = 0 ∀ y ∈ H
⇔ x ∈ R(T ∗)⊥.

By replacing T by T ∗ and using (T ∗)∗ = T , we get ker(T ∗) = R(T )⊥.
(b) Taking ⊥ (complement) on both sides of (a) and also using the result that if Y is a

subspace (not necessarily closed) of H then Y ⊥⊥ = Y , we get

(kerT )⊥ = R(T ∗)⊥⊥ = R(T ).

By replacing T by T ∗ and using (T ∗)∗ = T , we get

ker(T ∗)⊥ = R(T ) (∵ T ∗∗ = T ).

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Corollary 3.1.14. Let H be Hilbert space and T ∈ BL(H). Then
(a) T is injective i.e. T is one-one if and only if R(T ∗) is dense in H.
(b) T ∗ is one-one if and only if R(T ) is dense in H.

Proof. We know that T is one-one if and only if kerT = {0} if and only if

H = {0}⊥ = (kerT )⊥ = R(T ∗),

i.e. if and only if R(T ∗) is dense in H.
For (b) part, replace T by T ∗. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Definition 3.1.15. Let H be a Hilbert space and T ∈ BL(H). T is called bounded
below if there exists β > 0 such that ‖Tx‖ ≥ β‖x‖ for all x ∈ H.

Remarks 3.1.16. 1. If T ∈ BL(H) is isometry then T is bounded below.
If T is isometry then ‖Tx‖ = ‖x‖, so in this case taking β = 1, we conclude that T
is bounded below

2. If T ∈ BL(H) is bounded below then T is one-one.
Let x ∈ H such that Tx = 0 then because T is bounded below, there exits β > 0
such that

0 = ‖Tx‖ ≥ β‖x‖ ⇒ ‖x‖ ≤ 0⇒ x = 0.
Therefore, T is one-one.

Proposition 3.1.17. Let H be a Hilbert space and T ∈ BL(H) be bounded below. Then
R(T ) is closed in H.

Proof. Let y ∈ R(T ). Then there is a sequence {xn} in H such that Txn → y. Therefore,
{Txn} is Cauchy. Since T is bounded below, there exists β > 0 such that

‖Tx‖ ≥ β‖x‖ ∀ x ∈ H.

Now, for m,n ∈ N,
β‖xn − xm‖ ≤ ‖Txn − Txm‖.

Since {Txn} is Cauchy, we get that {xn} is a Cauchy sequence in H. Since H is complete,
xn → x in H. As T is continuous, Txn → Tx. But we have Txn → y and hence by
uniqueness of limit, we have y = Tx ∈ R(T ). Therefore, R(T ) is closed. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 3.1.18. Let H be a Hilbert space and T ∈ BL(H). Then R(T ) = H (i.e.
T is onto) if and only if T ∗ is bounded below. Hence, R(T ∗) = H if and only if T is
bounded below.

Proof. Suppose R(T ) = H (i.e. T is onto) then we have to show that T ∗ is bounded below.
Suppose T ∗ is not bounded below. Then for each n, there exists xn ∈ H such that

1
n
‖xn‖ > ‖T ∗xn‖. (3.2)

Take yn = n xn

‖xn‖ . Then ‖yn‖ = n. Now,

‖T ∗yn‖ = n

‖xn‖
‖T ∗xn‖

<
n

‖xn‖
‖xn‖
n

(by (3.23.2))

< 1 ∀ n.

Let y ∈ H = R(T ). Then there exists x ∈ H such that y = Tx. Now,

|〈yn, y〉| = |〈yn, Tx〉|
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= |〈T ∗yn, x〉|
≤ ‖T ∗yn‖‖x‖
< ‖x‖ (∵ ‖T ∗yn‖ < 1).

Therefore the set {yn : n ∈ N} is weakly bounded (taking αy = ‖x‖) and hence it is
bounded as we know (by Theorem 2.3.152.3.15) that a set E is weakly bounded if and only if it
is bounded. But ‖yn‖ = n which is a contradiction. Hence, T ∗ must be bounded below.

Conversely, assume that T ∗ is bounded below. Then there exists β > 0 such that

‖T ∗x‖ ≥ β‖x‖ ∀ x ∈ H.

Then by the last proposition, R(T ∗) is a closed subspace of a Hilbert space. Hence, R(T ∗)
is a Hilbert space.

Now, since T ∗ is bounded below (by Remark 3.1.163.1.16), T ∗ is one-one. Hence, for each
z ∈ R(T ∗) there is a unique w ∈ H such that T ∗w = z. Let y ∈ H. Define g : R(T ∗)→ K
by

g(z) = g(T ∗w) = 〈w, y〉, w ∈ H. (3.3)
Then, clearly g is well-defined linear functional on R(T ∗). Now, for all z ∈ R(T ∗)

|g(z)| =‖〈w, y〉|
= ‖w‖‖y‖

≤ 1
β
‖T ∗w‖‖y‖ (since T ∗ is bounded below)

= 1
β
‖z‖‖y‖ =

(
1
β
‖y‖

)
‖z‖.

Thus, g : R(T ∗)→ K is a bounded-linear functional on the Hilbert space R(T ∗). So, by
Riesz-representation theorem, there exists x ∈ R(T ∗) such that g(z) = 〈z, x〉, z ∈ R(T ∗).
Now, for all w ∈ H, we have

g(T ∗w) = 〈T ∗w, x〉 = 〈w, Tx〉.

But by (3.33.3), we have g(T ∗w) = 〈w, y〉, ∀ w ∈ H. Thus,

〈w, Tx〉 = 〈w, y〉, ∀ w ∈ H.

Therefore y = Tx and hence R(T ) = H. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Remark 3.1.19. Summing up the above remarks and results, we observed here that
1. T is bounded below ⇒ T is one-one (by Remark 3.1.163.1.16).
2. T is bounded below ⇒ R(T ) is closed subspace of H (by above Proposition).
3. T ∗ is bounded below ⇔ R(T ) = H, i.e. T is onto (by above Theorem).

Also, T is bounded below ⇔ T ∗ is onto, i.e. R(T ∗) = H.

3.2 Normal, Unitary and Self-adjoint operators
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Definition 3.2.1. Let H be a Hilbert space and T ∈ BL(H). Then
1. T is said to be a normal operator if T ∗T = TT ∗.
2. T is said to be unitary if T ∗T = I = TT ∗.
3. T is said to be self-adjoint if T ∗ = T .

Remarks 3.2.2. 1. T is normal if and only if

〈T ∗x, T ∗y〉 = 〈Tx, Ty〉, ∀ x, y ∈ H.

2. T is unitary if and only if

〈T ∗x, T ∗y〉 = 〈x, y〉 = 〈Tx, Ty〉, ∀ x, y ∈ H.

3. T is self-adjoint if and only if

〈Tx, y〉 = 〈x, Ty〉, ∀ x, y ∈ H.

Note that remark (2) above implies that unitary operator preserves the inner product,
i.e. it preserves the geometric structure. It is clear that every unitary operator is normal
and very self-adjoint operator is also normal.

Now, we give an example of a normal operator. We show that the diagonal operator is
normal.

Example 3.2.3. Let H be a separable Hilbert space. Then (by Theorem 1.3.101.3.10) H has a
countable orthonormal basis. Let u1, u2, . . . be orthonormal basis for H. Let {αn} be a
bounded sequence in K. Define T : H → H by

Tx =
∞∑
n=1

αn〈x, un〉un, x ∈ H.

Then for j = 1, 2, . . .,

Tuj = αjuj

=0u1 + 0u2 + · · ·+ 0uj−1 + αjuj + 0uj+1 + · · · .

This operator T is thus called a diagonal operator. Since, {αn} is a bounded sequence,
the operator T is bounded. Also,

T ∗x =
∞∑
n=1

ᾱn〈x, un〉un, x ∈ H.

Thus, T ∗ is also diagonal and

T ∗(Tx) =
∞∑
n=1

ᾱn〈Tx, un〉un

=
∞∑
n=1

ᾱn

〈 ∞∑
m=1

αm〈x, um〉um
〉
un

=
∞∑
n=1

∞∑
m=1

ᾱnαm〈x, um〉〈um, un〉un
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=
∞∑
n=1
|αn|2〈x, un〉un x ∈ H.

Similarly, (Show!) we have

TT ∗x =
∞∑
n=1
|αn|2〈x, un〉un, x ∈ H.

Therefore TT ∗ = T ∗T , i.e. the diagonal operator is a normal operator.

Note: From above example, it follows that, unitary diagonal operator is self-adjoint if
and only if all the diagonal entries are ±1.

Now, we shall derive the condition on a matrix of an operator T for T to be normal,
unitary and self-adjoint. Consider the following example.

Example 3.2.4. Let H be a separable of Hilbert space and u1, u2, . . . be orthonormal
basis for H. Let T ∈ BL(H) and M = (αij) be the matrix of T with respect to this
orthonormal basis, i.e.

αij = 〈Tuj, ui〉 ∀ i, j
and

Tuj =
∞∑
i=1

αijui.

So, T ∗uk = ∑∞
m=1 βmkum, where βmk = ᾱkm. Now,

〈T ∗Tuj, ui〉 = 〈Tuj, Tui〉

=
〈 ∞∑
n=1

αnjun,
∞∑
m=1

αmium

〉

=
∞∑
n=1

∞∑
m=1

αnjᾱmi〈un, um〉

=
∞∑
n=1

αnjᾱni.

Similarly, 〈TT ∗ujui〉 = ∑∞
n=1 ᾱjnαin. Thus,

1. T is normal if and only if for each i, j

∞∑
n=1

ᾱjnαin =
∞∑
n=1

αnjᾱni.

2. T is unitary if and only if for each i, j

∞∑
n=1

ᾱjnαin = δij =
∞∑
n=1

αnjᾱni,

where δij =
{

1 if i = j
0 if i 6= j.

3. An operator T is self-adjoint if and only if the matrix of T is conjugate symmetry
(i.e. matrix of T is same as the conjugate of its transpose).
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Theorem 3.2.5. Let H be a Hilbert space and T ∈ BL(H) be self-adjoint. Then

‖T‖ = sup{|〈Tx, x〉| : x ∈ H, ‖x‖ ≤ 1}.

Proof. Let α = sup{|〈Tx, x〉| : x ∈ H, ‖x‖ ≤ 1}. Then clearly α ≤ ‖T‖ as

α = sup{|〈Tx, x〉| : x ∈ H, ‖x‖ ≤ 1}
≤ sup{|〈Tx, y〉| : x, y ∈ H, ‖x‖ ≤ 1, ‖y‖ ≤ 1} = ‖T‖.

Now, we show that ‖T‖ ≤ α. For x ∈ H, x 6= 0, take y = x
‖x‖ . Then ‖y‖ = 1 and by

definition of α, we have

|〈Ty, y〉| =
∣∣∣∣∣
〈
Tx

‖x‖ ,
x

‖x‖

〉∣∣∣∣∣ ≤ α.

Therefore, for all x ∈ H, we have

|〈Tx, x〉| ≤ α‖x‖2. (3.4)

Now, for x, y ∈ H,

〈T (x+ y), x+ y〉 − 〈T (x− y), x− y〉 = 〈Tx, x〉+ 〈Tx, y〉+ 〈Ty, x〉+ 〈Ty, y〉
− [〈Tx, x〉 − 〈Tx, y〉 − 〈Ty, x〉+ 〈Ty, y〉]

= 2[〈Tx, y〉+ 〈Ty, x〉]
= 2[〈Tx, y〉+ 〈y, Tx〉] (∵ T is self-adjoint)
= 2[〈Tx, y〉+ 〈Tx, y〉]
= 4 Re〈Tx, y〉.

Now,

4 Re〈Tx, y〉 ≤ |〈T (x+ y), x+ y〉|+ |〈T (x− y), x− y〉|
≤ α(‖x+ y‖2 + ‖x− y‖2) (by (3.43.4))
= 2α(‖x‖2 + ‖y‖2) ∀ x, y ∈ H (by Parellogram law).

Thus, if x, y ∈ H with ‖x‖ ≤ 1, ‖y‖ ≤ 1, then 4 Re〈Tx, y〉 ≤ 4α or

Re〈Tx, y〉 ≤ α (3.5)

for all x, y ∈ H with ‖x‖ ≤ 1 and ‖y‖ ≤ 1. Take x, y ∈ H with ‖x‖ ≤ 1, ‖y‖ ≤ 1 and
〈Tx, y〉 = reiθ, where r = |〈Tx, y〉|. Take x0 = e−iθx. Then ‖x0‖ = ‖x‖ ≤ 1 and

〈Tx0, y〉 = e−iθ〈Tx, y〉 = r = |〈Tx, y〉|.
Therefore, by equation (3.53.5), since ‖x0‖ ≤ 1 and ‖y‖ ≤ 1, we have

|〈Tx, y〉| = 〈Tx0, y〉 = Re〈x0, y〉 ≤ α.

Taking supremum over all x, y ∈ H with ‖x‖ ≤ 1, ‖y‖ ≤ 1, we obtain

‖T‖ ≤ α.

∴ ‖T‖ = sup{|〈Tx, x〉| : x ∈ H, ‖x‖ ≤ 1}.
�

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Corollary 3.2.6. Let H be a Hilbert space and T ∈ BL(H) be self-adjoint. Then
〈Tx, x〉 = 0 for all x = 0 if and only if T = 0.

Proof. By above theorem, we have

‖T‖ = 0
⇔ sup{|〈Tx, x〉| : x ∈ H, ‖x‖ ≤ 1} = 0
⇔ 〈Tx, x〉 = 0, ∀ x ∈ H.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Consider the following example in which 〈Tx, x〉 = 0 for all x ∈ H but T 6= 0. Then we
show that T is not self-adjoint.

Example 3.2.7. Take H = R2 and define T : H → H by T (x(1), x(2)) = (−x(2), x(1))
for all x = (x(1), x(2)) ∈ R2 = H. Then

〈Tx, x〉 = 〈(−x(2), x(1)), (x(1), x(2))〉
=− x(2)x(1) + x(1)x(2) = 0.

Thus, 〈Tx, x〉 = 0 for all x ∈ H. But notice that T 6= 0 as

T (1, 0) = (0, 1) 6= (0, 0).

Then by above corollary, T cannot be self-adjoint. Consider the matrix of T given by

m(T ) =
[
0 −1
1 0

]
.

Then the matrix of T ∗ is
m(T ∗) =

[
0 1
−1 0

]
.

Thus, T 6= T ∗ and so T is not self-adjoint.

Proposition 3.2.8. Let H be a Hilbert space and T ∈ BL(H). Then
1. T is isometry if and only if T ∗T = I.
2. T is unitary if and only if T is an onto isometry. In that case, ‖T−1(x)‖ = ‖x‖

for all x ∈ H.
3. T is normal if and only if ‖Tx‖ = ‖T ∗x‖ for all x ∈ H.

Proof. 1. For every x ∈ H,

‖Tx‖2 = ‖x‖2

⇔ 〈Tx, x〉 = 〈x, x〉
⇔ 〈T ∗Tx, x〉 = 〈x, x〉
⇔ 〈(T ∗T − I)x, x〉 = 0
⇔ T ∗T − I = 0 (∵ T ∗T − I is self-adjoint, by Corollary 3.2.63.2.6)
⇔ T ∗T = I.
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2. If T is unitary, then T ∗T = I = TT ∗. As T ∗T = I by (1) above, T is an isometry.
Let y ∈ H and let x = T ∗y. Then

Tx = T (T ∗y) = Iy = y.

Thus, T is onto. Since, T is unitary, T−1 = T ∗. Then,

‖x‖ = ‖TT ∗(x)‖ = ‖T (T ∗x)‖ = ‖T ∗x‖ = ‖T−1x‖ (∵ T ∗ is isometry).

Conversely, assume that T is an onto isometry. Since, T is an isometry, clearly T
is one-one. Thus, T : H → H is one-one and onto and hence T is invertible. Also,
since T is isometry by (1) above, T ∗T = I. Now,

TT ∗ = (TT ∗)(TT−1)
= T (T ∗T )T−1

= TIT−1 = I.

Therefore, TT ∗ = I = T ∗T , i.e. T is unitary.
3. For every x ∈ H,

‖Tx‖2 = ‖T ∗x‖2

⇔ 〈Tx, Tx〉 = 〈T ∗x, T ∗x〉
⇔ 〈T ∗Tx, x〉 = 〈TT ∗x, x〉
⇔ 〈(T ∗T − TT ∗)x, x〉 = 0
⇔ T ∗T − TT ∗ = 0 (∵ T ∗T − TT ∗ is self-adjoint, by Corollary 3.2.63.2.6)
⇔ T ∗T = TT ∗.

Therefore, T is normal if and only if ‖Tx‖ = ‖T ∗x‖ for all x ∈ H.
�

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Corollary 3.2.9. Let H be a Hilbert space and T ∈ BL(H) be normal. Then

‖T 2‖ = ‖T ∗T‖ = ‖T‖2 = ‖T ∗‖2 = ‖(T ∗)2‖.

Proof. Since T is normal, by above theorem, for x ∈ H

‖T 2x‖ = ‖T (Tx)‖ = ‖T ∗(Tx)‖.

Taking supremum over all x ∈ H with ‖x‖ ≤ 1, we get

‖T 2‖ = ‖T ∗T‖ = ‖T‖2 (the last equality by Proposition 3.1.93.1.9).

Replacing T by T ∗, since T is normal, we get

‖(T ∗)2‖ = ‖T ∗T‖ = ‖TT ∗‖ = ‖T ∗‖2.

Hence, the result. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Now, we investigate whether and under what conditions sums, products (compositions)
and limits of self-adjoint, normal and unitary operators are self-adjoint, normal and unitary
respectively.
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Theorem 3.2.10. Let H be a Hilbert space.
(a) Let S and T be self-adjoint. Then S + T is self-adjoint. Also, ST is self-adjoint

if and only if S and T commutes.
(b) Let S and T be unitary. Then ST is unitary. Also, S + T is unitary if and only

if it is surjective and Re〈Sx, Tx〉 = −1
2 for every x ∈ H with ‖x‖ = 1.

(c) Let S and T be normal. If S commutes with T ∗ and (hence) T commutes with S∗
then S + T and ST are normal.

Proof. (a) Suppose S and T are self-adjoint, i.e. S = S∗ and T = T ∗. Then

(S + T )∗ = S∗ + T ∗ = S + T.

Thus, S + T is self-adjoint. Also, ST is self-adjoint if and only if

(ST ) = (ST )∗ = T ∗S∗ = TS.

Thus, ST is self-adjoint if and only if S and T commutes.
(b) S and T are unitary. Therefore,

SS∗ = I = S∗S and TT ∗ = I = T ∗T.

Then
(ST )∗(ST ) = (T ∗S∗)ST = T ∗(S∗S)T = T ∗T = I

and
ST (ST )∗ = ST (T ∗S∗) = S(TT ∗)S∗ = SS∗ = I.

Thus, ST is unitary. Since S and T are unitary, by (2) of Proposition 3.2.83.2.8, S and
T are surjective isometry. Then,

‖(S + T )x‖2 = 〈(S + T )x, (S + T )x〉
= 〈Sx, Sx〉+ 〈Tx, Tx〉+ 〈Sx, Tx〉+ 〈Tx, Sx〉
= ‖x‖2 + ‖x‖2 + 2 Re〈Sx, Tx〉 (∵ S, T are isometry).

Thus, by (2) of Proposition 3.2.83.2.8, S + T is unitary if and only if S + T is surjective
and it is isometry, i.e. ‖(S + T )x‖ = ‖x‖. That is, S + T is unitary if and only
if S + T is surjective and ‖x‖2 = ‖(S + T )x‖2 = ‖x‖2 + ‖x‖2 + 2 Re〈Sx, Tx〉 or
‖x‖2 + 2 Re〈Sx, Tx〉 = 0. Thus, if x ∈ H with ‖x‖ = 1 then Re〈Sx, Tx〉 = −1

2 .
(c) Suppose S, T are normal and S commutes with T ∗, i.e. ST ∗ = T ∗S and T commutes

with S∗, i.e. TS∗ = S∗T . Then,

(S + T )∗(S + T ) = (S∗ + T ∗)(S + T )
= S∗S + T ∗S + S∗T + T ∗T

= SS∗ + ST ∗ + TS∗ + TT ∗

= S(S∗ + T ∗) + T (S∗ + T ∗)
= (S + T )(S∗ + T ∗).

Thus, S + T is normal. Also, ST is normal, as

(ST )∗(ST ) = (T ∗S∗)(ST )
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= T ∗(S∗S)T
= T ∗(SS∗)T (∵ S is normal)
= (T ∗S)(S∗T )
= (ST ∗)(TS∗) (by assumption)
= S(TT ∗)S∗ (∵ T is normal)
= (ST )(ST )∗.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 3.2.11. Let H be a Hilbert space. Then the set of all normal operators, the
set of all unitary operators and the set of all self-adjoint operators in BL(H) are closed
in BL(H).

Proof. Let H be a Hilbert space and consider a sequence of operators {Sn} in BL(H)
such that Sn → S, i.e. ‖Sn − S‖ → 0. Then S∗n → S∗.

• If {Sn} is a sequence of normal operators, then

SS∗ = limSnS
∗
n = limS∗nSn = S∗S.

Thus, S is normal.
• If {Sn} is a sequence of unitary operators, then

SS∗ = limSnS
∗
n = I = limS∗nSn = S∗S.

Thus, S is unitary.
• If {Sn} is a sequence of self-adjoint operators, then

S∗ = limS∗n = I = limSn = S.

Thus, S is self-adjoint.
�

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 3.2.12. Let H be a Hilbert space over K = C and S ∈ BL(H). Then there
are unique self-adjoint operators A and B in BL(H) such that S = A+ iB.

Proof. Let
A = S + S∗

2 and B = S − S∗
2i .

Then,
A+ iB =

(
S + S∗

2

)
+ i

(
S − S∗

2i

)
= S.

It is easy to see that (Check!) A and B are self-adjoint. Now to prove uniqueness, let A1
and B1 be self-adjoint operators in BL(H) such that S = A1 + iB1. Then S∗ = A1 − iB1
and

A = S + S∗

2 = (A1 + iB1) + (A1 − iB1)
2 = A1.
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Similarly,
B = S − S∗

2i = (A1 + iB1)− (A1 − iB1)
2i = B1.

Thus, there are unique self-adjoint operators A and B in BL(H) such that S = A+iB. �Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Exercise 3.2.13. In the above theorem, show that
1. S is normal if and only if AB = BA.
2. S is unitary if and only if AB = BA and A2 +B2 = I.
3. S is self-adjoint if and only if B = 0.

Solution. Seminar exercise. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

3.3 Positive Operators

Definition 3.3.1. Let H be a Hilbert space. An operator S ∈ BL(H) is called positive
if S is self-adjoint and 〈Sx, x〉 ≥ 0 for all x ∈ H. In this case, we write S ≥ 0.

Note: If S, T ∈ BL(H) are self-adjoint then S − T and T − S are self-adjoint. Further, if
S − T ≥ 0 then we may write S ≥ T or T ≤ S.

Exercise 3.3.2. What is a partial order? Show that the above relation “≥” on the set of
self-adjoint operators on H is a partial order.

Next, we give couple of examples of positive operators.

Example 3.3.3. Let H be a separable Hilbert space and u1, u2, . . . be orthonormal basis
for H. For n = 1, 2, . . ., define

Pn(x) =
n∑
j=1
〈x, uj〉uj, x ∈ H.

Then for x, y ∈ H,

〈Pn(x), y〉 =
〈

n∑
j=1
〈x, uj〉uj,

∞∑
i=1
〈y, ui〉ui

〉

=
n∑
j=1

∞∑
i=1
〈x, uj〉〈y, ui〉〈uj, ui〉

=
n∑
j=1
〈x, uj〉〈y, uj〉,

where y = ∑∞
i=1〈y, ui〉ui is the Fourier expansion of y. Similarly,

〈x, Pn(y)〉 =
n∑
j=1
〈x, uj〉〈y, uj〉.

Hence, for all x, y ∈ H
〈Pn(x), y〉 = 〈x, Pn(y)〉.
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Thus, Pn is self-adjoint. Also,

〈Pn(x), x〉 =
n∑
j=1
|〈x, uj〉|2 ≥ 0, ∀ x ∈ H.

Therefore, Pn is a positive operator, i.e. Pn ≥ 0.

Example 3.3.4. Let {αn} be a sequence of real numbers. Define S : H → H by

Sx =
∞∑
n=1

αn〈x, un〉un, x ∈ H.

Then S is bounded and self-adjoint (as seen before). Also, for all x ∈ H,

〈Sx, x〉 =
〈 ∞∑
n=1

αn〈x, un〉un, x
〉

=
∞∑
n=1

αn〈x, un〉〈un, x〉

=
∞∑
n=1

αn|〈x, un〉|2.

If αn ≥ 0 for all n then 〈Sx, x〉 ≥ 0 for all x ∈ H, i.e. S ≥ 0. Conversely, if S ≥ 0 then
〈Sx, x〉 ≥ 0 for all x ∈ H and hence αn = 〈Sun, un〉 ≥ 0 for all n.

Theorem 3.3.5 (Generalized Schwarz inequality). Let H be a Hilbert space and S ∈
BL(H). Then S or −S is positive if and only if

|〈Sx, y〉|2 ≤ 〈Sx, x〉〈Sy, y〉, ∀ x, y ∈ H.

Proof. Suppose S is a positive operator, i.e. 〈Sx, x〉 ≥ 0 for all x ∈ H. For x, y ∈ H,
define

〈x, y〉S = 〈Sx, y〉.
Then (Show that)

• 〈x, x〉S ≥ 0 for all x ∈ H.
• The function 〈· , ·〉S from H ×H to K is linear in first variable.
• The function 〈· , ·〉S is conjugate symmetry (∵ S is self-adjoint).

We have to prove that for all x, y ∈ H,

|〈x, y〉S|2 ≤ 〈x, x〉S〈y, y〉S.

The proof of the above follows exactly as in Schwarz inequality provided that 〈y, y〉S 6= 0.
If 〈y, y〉S = 0 but 〈x, x〉S 6= 0 then we can interchange the role of x and y to have the above
inequality. Now, it remains to show that above inequality is true for 〈x, x〉S = 0 = 〈y, y〉S.
Then, in this case

〈x+ y, x+ y〉S + 〈x− y, x− y〉S = 2〈x, x〉S + 〈y, y〉S = 0.
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Therefore, 〈x+y, x+y〉S = 0 = 〈x−y, x−y〉S. Replacing y by iy, we get 〈x+iy, x+iy〉S =
0 = 〈x− iy, x− iy〉S. Hence,

4〈x, y〉S = 〈x+ y, x+ y〉S − 〈x− y, x− y〉S
+ i〈x+ iy, x+ iy〉S − i〈x− iy, x− iy〉S

= 0.

Thus, in any case, for all x, y ∈ H, we have

|〈x, y〉S|2 ≤ 〈x, x〉S〈y, y〉S,
provided that S is a positive operator. If, in case, −S is positive, then by the above case
(as proved earlier)

|〈Sx, y〉|2 = |〈(−S)x, y〉|2
≤ 〈(−S)x, x〉〈(−S)y, y〉
= 〈Sx, x〉〈Sy, y〉

for all x, y ∈ H.
Conversely, assume that

|〈Sx, y〉|2 ≤ 〈Sx, x〉〈Sy, y〉, ∀ x, y ∈ H.
Then either 〈Sx, x〉 ≥ 0 for all x ∈ H or 〈Sx, x〉 ≤ 0 for all x ∈ H, i.e. either S is positive
or −S is a positive operator. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Definition 3.3.6. A self-adjoint operator S on a Hilbert space H is said to be positive-
definite if 〈Sx, x〉 > 0 for every non-zero x ∈ H.

Note: If S is a positive-definite operator on H, then equality holds in the generalized
Schwarz inequality, in above theorem, if and only if x and y are linearly dependent. This
follows by observing that

〈x, y〉S = 〈Sx, y〉, ∀ x, y ∈ H,
defines an inner product on H in this case.

Proposition 3.3.7. Let H be a Hilbert space and T ∈ BL(H). Then T is not bounded
below if and only if there is a sequence {xn} in H such that ‖xn‖ = 1 and Txn → 0.

Proof. Suppose T is not bounded below. Then for each n ∈ N there exists xn ∈ H such
that

‖Txn‖ <
1
n
.

Thus, Txn → 0.
Conversely, assume that there is a sequence {xn} in H such that ‖xn‖ = 1 and Txn → 0.

Suppose, if possible, T is bounded below. Then there exists β > 0 such that β‖x‖ ≤ ‖Tx‖
for all x ∈ H. Then

0 < β = β‖xn‖ ≤ lim ‖Txn‖ = 0
which is a contradiction and hence no such β > 0 exists. Therefore, T is not bounded
below. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Spectrum and Numerical Range

4.1 Spectrum of a bounded operator

Definition 4.1.1. Let H be a Hilbert space over K and T ∈ BL(H). The set

σ(T ) = {λ ∈ K : T − λI is not invertible in BL(H)}

is called the spectrum of T .
Elements of σ(T ) are known as spectral values of T .

Definition 4.1.2. Let H be a Hilbert space over K and T ∈ BL(H). The set

σe(T ) = {λ ∈ K : T − λI is not one-one}
= {λ ∈ K : ∃ x ∈ H, ‖x‖ = 1 and (T − λI)x = 0}.

is known as the eigen spectrum of T .
Elements of σe(T ) are known as eigenvalues (or characteristic roots) of T .

Definition 4.1.3. Let H be a Hilbert space over K and T ∈ BL(H). The set

σa(T ) = {λ ∈ K : T − λI is not bounded below}

is known as the approximate eigen spectrum of T and the elements of σa(T ) are known
as approximate eigenvalues of T .

By the last Proposition 3.3.73.3.7, we have

σa(T ) = {λ ∈ K : ∃ a sequence {xn} ∈ H such that ‖xn‖ = 1 and (T − λI)xn → 0}.

75
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Proposition 4.1.4. Let H be a Hilbert space and T ∈ BL(H). Then λ ∈ σ(T ) if and
only if λ̄ ∈ σ(T ∗), i.e.

σ(T ) = {µ̄ : µ ∈ σ(T ∗)}.

Proof. For T ∈ BL(H),

λ ∈ σ(T )⇔ (T − λI) is not invertible in BL(H)
⇔ (T − λI)∗ is not invertible in BL(H)
⇔ (T ∗ − λ̄I) is not invertible in BL(H)
⇔ λ̄ ∈ σ(T ∗).

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 4.1.5. Let H be a Hilbert space and T ∈ BL(H). Then
1. σe(T ) ⊂ σa(T ).
2. σ(T ) = σa(T ) ∪ {µ̄ : µ ∈ σe(T ∗)}.

Proof. 1. Let λ ∈ σe(T ). Then there exists x ∈ H with ‖x‖ = 1 such that (T−λI)x = 0.
Take xn = x for all n, then

0 = (T − λI)xn → 0⇒ λ ∈ σa(T ).

Thus, σe(T ) ⊂ σa(T ).
2. Let λ 6∈ σa(T ) ∪ {µ̄ : µ ∈ σe(T ∗)}. Then λ 6∈ σa(T ) and λ 6 {µ̄ : µ ∈ σe(T ∗)}.

Therefore, (T − λI) is bounded below and T ∗ − λ̄I is one-one. Therefore (by
Proposition 3.1.173.1.17) R(T − λI) is closed in H and (by Theorem 3.1.133.1.13)

R(T − λI) = ker(T ∗ − λ̄I)⊥ = {0}⊥ = H.

Therefore R(T − λI) = H, i.e. T − λI is onto.
Since, (T − λI) is bounded below it is one-one. Thus, (T − λI) is one-one and onto
and hence it is invertible, i.e. (T − λI)−1 exists and it is linear.
Now, since T−λI is bounded below, there exists β > 0 such that ‖(T−λI)x‖ ≥ β‖x‖
for all x inH. Let y ∈ H. Take x = (T − λI)−1y. Then

‖(T − λI)−1y‖ = ‖x‖

= 1
β
‖(T − λI)x‖

= 1
β
‖y‖.

Therefore, (T − λI)−1 ∈ BL(H) which implies λ 6∈ σ(T ). Hence

σ(T ) ⊂ σa(T ) ∪ {µ̄ : µ ∈ σe(T ∗)}.

Now, consider λ 6∈ σ(T ). Then (T − λI)−1 ∈ BL(H). Therefore for x ∈ H

‖x‖ = ‖(T − λI)−1(T − λI)x‖
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= ‖(T − λI)−1‖‖(T − λI)x‖
β‖x‖ = ‖(T − λI)x‖,

where β = 1
‖(T−λI)−1‖ . Therefore, T − λI is bounded below, i.e. λ 6∈ σa(T ) and hence

σa(T ) ⊂ σ(T ). (4.1)

Now, let λ ∈ {µ̄ : µ ∈ σe(T ∗)}. Then

λ̄ ∈ σe(T ∗) ⊂ σa(T ∗) ⊂ σ(T ∗).

Therefore λ̄ ∈ σ(T ∗)⇒ λ ∈ σ(T ). Therefore, {µ̄ : µ ∈ σe(T ∗)} ⊂ σ(T ). Hence,

σ(T ) = σa(T ) ∪ {µ̄ : µ ∈ σe(T ∗)}.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Remark 4.1.6. From the above theorem and from equation (4.14.1), we have

σe(T ) ⊂ σa(T ) ⊂ σ(T ).

If H is finite dimensional, i.e. dimH <∞ then

σe(T ) = σa(T ) = σ(T ).

However, in general, it is possible that

σe(T ) ( σa(T ) ( σ(T ).

Consider the following examples.

Example 4.1.7. Define T : `2 → `2 by

T (x(1), x(2), . . .) =
(
x(1), x(2)

2 ,
x(3)

3 , . . .

)
.

Then observe that Tx = 0⇒ x = 0, i.e. there does not exists a x 6= 0, x ∈ `2 such that
Tx = 0. In other words, T = T − 0I is one-one. Therefore

0 6∈ σe(T ).

Now, Ten = 1
n
en for all n, where en = (0, 0, . . . , 0, 1︸︷︷︸

nth place

, 0, . . .).

Since ‖en‖ = 1 and Ten → 0, by definition we have 0 ∈ σa(T ). Thus,

σe(T ) ( σa(T ).

Example 4.1.8. Consider the right shift operator on `2, T : `2 → `2 defined by

T (x(1), x(2), . . .) = (0, x(1), x(2), . . .).

Then, ‖Tx‖ = ‖x‖. Therefore, there does not exist a sequence {xn} such that ‖xn‖ = 1
and Txn → 0 and hence 0 6∈ σa(T ).

On the other hand, observe that e1 6∈ R(T ), i.e. T is not onto. Hence, T is not invertible.
Therefore 0 ∈ σ(T ). Thus,

σa(T ) ( σ(T ).
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Proposition 4.1.9. Let H be a Hilbert space and T ∈ BL(H) be normal. Then

λ ∈ σe(T ) if and only if λ̄ ∈ σe(T ∗).

In fact, if x ∈ H, ‖x‖ = 1 such that (T − λI)x = 0 if and only if (T ∗ − λ̄I)x = 0.

Proof. Since T is normal, T − λI is normal. So, by a previous result (Proposition 3.2.83.2.8)
‖(T − λI)x‖ = ‖(T ∗ − λ̄I)x‖ ∀ x ∈ H.

Thus, λ ∈ σe(T ) if and only if there exists x ∈ H with ‖x‖ = 1 such that (T − λI)x = 0
if and only if (by above) (T ∗ − λ̄I)x = (T − λI)∗x = 0
if and only if λ̄ ∈ σe(T ∗). �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Corollary 4.1.10. Let H be a Hilbert space and T ∈ BL(H) be normal. Then

σ(T ) = σa(T ).

Proof. By previous theorem, we know that
σ(T ) = σa(T ) ∪ {µ̄ : µ ∈ σe(T ∗)}.

Now, we show that if T is normal then {µ̄ : µ ∈ σe(T ∗)} ⊂ σa(T ). Then we are done (as
this will give σ(T ) = σa(T ) from above theorem).

Let λ ∈ {µ̄ : µ ∈ σe(T ∗)}, i.e. λ̄ ∈ σe(T ∗). Then, since T is normal, by previous
proposition

λ ∈ σe(T ) ⊂ σa(T ).
Thus, {µ̄ : µ ∈ σe(T ∗)} ⊂ σa(T ) and hence σ(T ) = σa(T ) by above theorem. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Example 4.1.11. In this example we show that above proposition is not true if T is not
normal, i.e. λ ∈ σe(T ) ; λ̄ ∈ σe(T ∗) in general (if T is not normal).

Define T : K2 → K2 by T (x(1), x(2)) = (ix(1) + x(2), ix(2)). Then

m(T ) =
[
i 1
0 i

]
with respect to the orthonormal basis {e1, e2} and

m(T ∗) =
[
−i 0
0 −i

]
Therefore, T ∗(x(1), x(2)) = (−ix(1), x(1)− ix(2)).

Now, T (x(1), x(2)) = i(x(1), x(2)) if and only if (ix(1) + x(2), ix(2)) = i(x(1), x(2)) if
and only if x(2) = 0. Thus,

T (1, 0) = i(1, 0) i.e. T e1 = ie1.

On the other hand, T ∗ (x(1), x(2)) = −i(x(1), x(2)) if and only if (−ix(1), x(1)− ix(2)) =
−i(x(1), x(2)) if and only if x(1) = 0. Thus,

T (1, 0) = i(1, 0) but T ∗(1, 0) 6= ī(1, 0).
Thus, i ∈ σe(T ) but ī = −i 6∈ σe(T ∗). Note that here T ∗(0, 1) = ī(0, 1).
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Consider one more example of the same, i.e. λ ∈ σe(T ) ; λ̄ ∈ σe(T ∗) in general (when
T is not normal).

Example 4.1.12. Consider the left-shift operator on `2, S : `2 → `2 defined by

S(x(1), x(2), . . .) = (x(2), x(3), . . .).

Then, Se1 = 0, where e1 = (1, 0, 0, . . .) 6= 0. Thus, S = S − 0I is not one-one, i.e.

0 ∈ σe(T ).

As seen in Example 3.1.13.1.1, S∗ is the right-shift operator defined by

S∗(x(1), x(2), . . . = (0, x(1), x(2), . . .).

Then S∗e1 = e2 6= 0. Observe that S∗ = S∗ − 0I is one-one, i.e. λ̄ = 0 6∈ σe(S∗) but
λ = 0 ∈ σe(S).

Proposition 4.1.13. Let H be a Hilbert space and T ∈ BL(H) be normal. If x ∈ H
such that (T − λI)2x = 0 then (T − λI)x = 0.

Proof. Suppose x ∈ H such that (T − λI)2x = 0. Then

‖(T − λI)x‖2 = 〈(T − λI)x, (T − λI)x〉
= 〈(T − λI)∗(T − λI)x, x〉
≤ ‖(T − λI)∗(T − λI)x‖‖x‖ (by Schwarz inequality)
= ‖(T − λI)(T − λI)x‖‖x‖ (∵ T − λI is normal)
= ‖(T − λI)2x‖ = 0.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

In the following example, we show that the above result is not true if T is not normal.

Example 4.1.14. We show that T 2x = 0 then Tx = 0 is not true in general, i.e. if T is
not normal. Define T : K2 → K2 by

T (x(1), x(2)) = (0, x(1)).

Then T 2(x(1), x(2)) = T (0, x(1)) = 0 for all (x(1), x(2)) ∈ K2. But

T (1, 0) = (0, 1) 6= 0.

Proposition 4.1.15. Let H be a Hilbert space and T ∈ BL(H) be normal. Then the
eigenvectors corresponding to distinct eigenvalues of T are orthogonal i.e. if λ, µ ∈
σe(T ), λ 6= µ and x 6= 0, y 6= 0 are such that Tx = λx and Ty = µy then 〈x, y〉 = 0.
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Proof. Suppose λ, µ ∈ σe(T ), λ 6= µ and x 6= 0, y 6= 0 are such that Tx = λx and Ty = µy
then 〈x, y〉 = 0. then

λ〈x, y〉 = 〈λx, y〉
= 〈Tx, y〉
= 〈x, T ∗y〉
= 〈x, µ̄y〉 (by Proposition 4.1.94.1.9)
= µ〈x, y〉.

Thus,
(λ− µ)〈x, y〉 = λ〈x, y〉 = µ〈x, y〉 = 0.

Therefore, 〈x, y〉 = 0 as λ and µ are distinct eigenvalues, i.e. λ 6= µ. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

In the following example, we show that the above result is not true if T is not normal.

Example 4.1.16. We show that eigenvectors corresponding to distinct eigenvalues need
not be orthogonal in general, i.e. if T is not normal. Define T : K2 → K2 by

T (x(1), x(2)) = (x(1) + x(2), 2x(2)).

Then Te1 = T (1, 0) = (1, 0), i.e. 1 is eigenvalue of T and (1, 0) is the corresponding
eigenvector.

Also, T (1, 1) = (2, 2), i.e. (1, 1) is the eigenvector corresponding to eigenvalue 2 of T .
But the eigenvectors are not orthogonal as

〈(1, 0), (1, 1)〉 = 1 6= 0.

4.2 Numerical range of a bounded operator

Definition 4.2.1 (Numerical range). Let H be a Hilbert space and T ∈ BL(H). The
set

W (T ) = {〈Tx, x〉 : x ∈ H, ‖x‖ = 1}
is called numerical range of T .

Remark 4.2.2. For x ∈ H with ‖x‖ = 1,

|〈Tx, x〉| ≤ ‖Tx‖‖x‖ ≤ ‖T‖‖x‖2 = ‖T‖.

Thus, the numerical range W (T ) is bounded by ‖T‖.
However, it is not closed but it is convex.

Proposition 4.2.3. Let H be a Hilbert space and T ∈ BL(H). Then
1. λ ∈ W (T ) if and only if λ̄ ∈ W (T ∗).
2. σe(T ) ⊂ W (T ).
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Proof. 1. Let λ ∈ W (T ). Then there exists x ∈ H such that ‖x‖ = 1 and λ = 〈Tx, x〉.
Therefore

λ̄ = 〈Tx, x〉 = 〈x, T ∗x〉 = 〈T ∗x, x〉 ∈ W (T ∗).
Thus, λ ∈ W (T )⇒ λ̄ ∈ W (T ∗). For the converse part, replace λ by λ̄.

2. Let λ ∈ σe(T ). Then there exists x ∈ H, ‖x‖ = 1 such that (T − λI)x = 0, i.e.
Tx = λx. Then

λ = λ〈x, x〉 = 〈λx, x〉 = 〈Tx, x〉 ∈ W (T ).
Therefore, σe(T ) ⊂ W (T ).

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Proposition 4.2.4. Let H be a Hilbert space and T ∈ BL(H). Then σa(T ) ⊂ W (T ).

Proof. Let λ ∈ σa(T ). Then there exists a sequence {xn} in H with ‖xn‖ = 1 for all n
such that (T − λI)xn → 0. Therefore

|〈Txn, xn〉 − λ| = |〈Txn, xn〉 − λ〈xn, xn〉|
= |〈(T − λI)xn, xn〉|
≤ ‖(T − λI)xn‖ → 0.

Thus, 〈Txn, xn〉 → λ in K and hence λ ∈ W (T ) (∵ 〈Txn, xn〉 ∈ W (T ) for all n). �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Corollary 4.2.5. Let H be a Hilbert space. If T ∈ BL(H) then σ(T ) ⊂ W (T ).

Proof. We know that
σ(T ) ⊂ σa(T ) ∪ {µ̄ : µ ∈ σe(T ∗)}.

Let λ ∈ {µ̄ : µ ∈ σe(T ∗)}. Then λ̄ ∈ σe(T ∗). By previous result (2. of Proposition 4.2.34.2.3),
we have λ̄ ∈ W (T ∗) and hence λ ∈ W (T ). By above proposition, we already have
σa(T ) ⊂ W (T ) and hence we conclude that σ(T ) ⊂ W (T ). �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Example 4.2.6. By above corollary we have σ(T ) ⊂ W (T ). It is not true in general that
σ(T ) ⊂ W (T ). Consider the diagonal operator on `2 having diagonal entries 1, 1

2 ,
1
3 , . . .,

i.e. T : `2 → `2 defined by

T (x(1), x(2), x(3), . . .) =
(
x(1), x(2)

2 ,
x(3)

3 , . . .

)
.

Then Ten = en

n
for all n = 1, 2, . . .. Then ‖en‖ = 1 and Ten → 0 (∵ ‖Ten‖ = 1

n
→ 0).

Therefore,
0 ∈ σa(T ) ⊂ σ(T ).

But for x = (x(1), x(2), . . .) ∈ `2 with ‖x‖ = 1, we have

〈Tx, x〉 =
∞∑
n=1

x(n)
n

x̄(n) =
∞∑
n=1

|x(n)|2
n

6= 0.

Therefore 0 6∈ W (T ).
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Remark 4.2.7. Let H be a Hilbert spae and T ∈ BL(H) be self-adjoint. Then
1. W (T ) ⊂ R.

This is true, indeed if x ∈ H, ‖x‖ = 1 then

〈Tx, x〉 = 〈x, Tx〉 = 〈Tx, x〉.

Therefore, 〈Tx, x〉 ∈ R and hence W (T ) ⊂ R.
2. σ(T ) ⊂ R.

Indeed σ(T ) ⊂ W (T ) ⊂ R.

Notations: Let T ∈ BL(H) be self-adjoint. Consider

mT = inf{λ : λ ∈ W (T )}
MT = sup{λ : λ ∈ W (T )}

The inf and sup exists because W (T ) is a bounded subset of R.

Theorem 4.2.8. Let H be a Hilbert space (H 6= {0}) and T ∈ BL(H) be self-adjoint.
Then

{mT ,MT} ∈ σa(T ) = σ(T ) ⊂ [mT ,MT ].

Proof. By definition of mT there exists a sequence {xn} in H with ‖xn‖ = 1 for all n such
that

〈Txn, xn〉 → mT .

Now, since T is self-adjoint, T −mT I is self-adjoint. Also, for all x ∈ H with ‖x‖ = 1,

〈(T −mT I)x, x〉 = 〈Tx, x〉 −mT 〈x, x〉 = 〈Tx, x〉 −mT ≥ 0.

This is because, by definition of mT , 〈Tx, x〉 ≥ mT for all x ∈ H with ‖x‖ = 1. Thus,
T −mT I is a positive operator, i.e.

(T −mT I) ≥ 0.

Take S = T −mT I then by the generalized Schwarz inequality, we have

|〈Sx, y〉|2 ≤ 〈Sx, x〉〈Sy, y〉, ∀ x, y ∈ H.

Therefore, taking x = xn and y = Sxn in the above inequality, we get

‖Sxn‖4 = |〈Sxn, Sxn〉|2
≤ 〈Sxn, xn〉〈S2xn, Sxn〉
≤ 〈Sxn, xn〉‖S‖3 (∵ ‖xn‖ = 1).

Now,
〈Sxn, xn〉 = 〈(T −mT I)xn, xn〉 = 〈Txn, xn〉 −mT → 0.

Therefore from above, we get

‖Sxn‖ → 0, i.e. Sxn → 0.
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and hence (T −mT I)xn → 0, where ‖xn‖ = 1. Therefore,

mT ∈ σa(T ).

Similarly, one can prove that MT ∈ σa(T ) by taking S = T −MT I and observing that −S
is a positive operator.

Since, T is self-adjoint, it is normal and hence σa(T ) = σ(T ). Thus,

mT ,MT ∈ σa(T ) = σ(T ) ⊂ W (T ) ⊂ [mT ,MT ].

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Corollary 4.2.9. Let H be a Hilbert space and T ∈ BL(H) be self-adjoint. Then
1. ‖T‖ = max{|mT |, |MT |} = sup{|λ| : λ ∈ σ(T )}.
2. ‖T‖ = sup{|λ| 12 : λ ∈ σ(T ∗T )}.

Proof. 1. Since T is self-adjoint, by previous theorem, we have

mT ,MT ∈ σa(T ) = σ(T ) ⊂ W (T ) ⊂ [mT ,MT ].

We know that
‖T‖ = sup{|〈Tx, x〉| : x ∈ H, ‖x‖ ≤ 1}.

Therefore, ‖T‖ = max{|mT |, |MT |}. Also, from above theorem it follows that

‖T‖ = max{|mT |, |MT |} = sup{|λ| : λ ∈ σ(T )}.

2. Since T is self-adjoint, T ∗T is self-adjoint and ‖T‖2 = ‖T ∗T‖. Also, from above
theorem

‖T ∗T‖ = sup{λ : λ ∈ σ(T ∗T )}
and hence ‖T‖ = sup{

√
λ : λ ∈ σ(T ∗T )}.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 4.2.10 (Ritz Method). Let H be a Hilbert space (H 6= {0}) and T ∈ BL(H)
be self-adjoint. Consider x1, x2, . . . in H. For n = 1, 2, . . ., let

Yn = L({x1, x2, . . . , xn}).

Take
αn = inf{〈Tx, x〉 : x ∈ Yn, ‖x‖ = 1}

and
βn = sup{〈Tx, x〉 : x ∈ Yn, ‖x‖ = 1}.

Then
mT ≤ αn+1 ≤ αn ≤ · · · ≤ α1 ≤ β1 ≤ β2 ≤ · · · ≤ βn ≤ βn+1 ≤MT .

If L({x1, x2, . . .}) is dense in H, then

mT = lim
n→∞αn and MT = lim

n→∞ βn.
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Proof. Since Yn ⊂ Yn+1, it is clear that

mT ≤ αn+1 ≤ αn ≤ · · · ≤ βn ≤ βn+1 ≤MT .

Since {αn} is a non-increasing sequence which is bounded below, it converges. Suppose

m0 = lim
n→∞αn.

Then, clearly mT ≤ m0. Suppose if possible, mT < m0. Then there exists x ∈ H, ‖x‖ = 1
such that

mT < 〈Tx, x〉 < m0.

Now, since L({x1, x2, . . .}) is dense in H, there exists a sequence {yn} in L({x1, x2, . . .})
such that yn → x in H. Then

‖yn‖ → ‖x‖ = 1.
For sufficiently large n, take zn = yn

‖yn‖ then ‖zn‖ = 1 and zn → x (∵ ‖x‖ = 1).
Now, since yn ∈ L({x1, x2, . . .}), there exists an integer jn such that yn ∈ Yjn =

L({x1, x2, . . . , xjn}). Therefore, zn ∈ Yjn . Then letting n→∞, we have

m0 ≤ αjn ≤ 〈Tzn, zn〉 → 〈Tx, x〉 < m0

which is a contradiction and hence mT = m0 = lim
n→∞αn.

In the same way, it follows that {βn} is a non-decreasing sequence which is bounded
above and hence it converges. As above, one can show that MT = limn→∞ βn. Since,
αn ≤ βn for each n, the proof is complete. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

4.3 Compact Self-Adjoint Operators

Definition 4.3.1. Let H be a Hilbert space and T : H → H be a linear map. T is
said to be compact if for every bounded sequence {xn} in H, {Txn} has a convergent
subsequence.

Example 4.3.2. Every bounded linear operator T : K → K is compact. This is because
if {xn} is a bounded sequence in K then {Txn} is bounded sequence in K (∵ T ∈ BL(K)).
Therefore by Bolzano-Weiertrass theorem, {Txn} has a convergent subsequence. Due
to Bolzano-Weiertrass property, this is true for any bounded linear map on Kn. More
generally, we shall show that any bounded linear operator with finite-dimensional range is
compact.

Proposition 4.3.3. Let H be a Hilbert space and T : H → H be compact linear
transformation. Then T is bounded.

Proof. Suppose T is compact on H. To show that T is bounded it suffices to show that
there exists α > 0 such that

‖Tx‖ ≤ α ∀ x ∈ H, ‖x‖ ≤ 1.
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Suppose T is not bounded. Then for each β > 0 there exists xβ ∈ H, ‖xβ‖ ≤ 1 such that

‖Txβ‖ > β.

Therefore for β = there exists x1 ∈ H, ‖x1‖ ≤ 1 such that

‖Tx1‖ > 1.

Now, take β = 1 + ‖Tx1‖ then there exists x2 ∈ H, ‖x2‖ ≤ 1 such that

‖Tx2‖ > 1 + ‖Tx1‖.
Taking β = 1 + max{‖Tx1‖, ‖Tx2‖} then there exists x3 ∈ H, ‖x3‖ ≤ 1 such that

‖Tx3‖ > 1 + max{‖Tx1‖, ‖Tx2‖}.
Continuing this way, we get x1, x2, . . . , xn such that ‖xj‖ ≤ 1 for all j and

‖Txn‖ > 1 + max{‖Tx1‖, ‖Tx2‖, . . . , ‖Txn−1‖}.
Therefore for n < m, ‖Txm‖ > 1 + ‖Txn‖. Therefore,

‖Txm‖ − ‖Txn‖ > 1.

Hence,
‖Txm − Txn‖ ≥ ‖Txm‖ − ‖Txn‖ > 1.

Therefore {Txn} has no convergent subsequence and hence T is not compact, which is a
contradiction. Hence, T must be bounded. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

The converse of above result is not true, i.e. a bounded linear operator in general
need not be compact. Consider the following example of identity operator on an infinite
dimensional Hilbert space. It is bounded but not compact.
Example 4.3.4. Suppose H is an infinite dimensional Hilbert space. Let {u1, u2, . . .} be
infinite orthonormal subset of H. Then clearly {un} is bounded (∵ ‖un‖ = 1, ∀ n). Let I
be the identity operator on H. Then

‖Iun = Ium‖ = ‖um − un‖ =
√

2, m 6= n.

Therefore, {Iun} = {un} has no convergent subsequence and hence I is not compact.

Proposition 4.3.5. Let H be a Hilbert space and T ∈ BL(H) be such that R(T ) is
finite dimensional (i.e. rank of T is finite). Then T is compact.

Proof. Suppose dim(R(T )) = m. Let {u1, u2, . . . , um} be orthonormal basis of R(T ).
Define φ : R(T )→ (Km, ‖ · ‖2) by

φ(x) = (〈x, u1〉, 〈x, u2〉, · · · , 〈x, um〉), x ∈ R(T ).

Then φ is a linear onto isometry (Verify!).
Now, if {xn} is a bounded sequence in H, then since T is bounded, {Txn} is bounded.

Since φ is an isometry, {φ(Txn)} is bounded in Km. Then by Bolzano-Weierstrass
property of Km, {φ(Txn)} has a convergent subsequence, say {φ(Txn,1)}. Hence, {Txn,1}
is convergent subsequence of {Txn}. Therefore, T is compact. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Corollary 4.3.6. Let H be a finite dimensional Hilbert space and T ∈ BL(H). Then
T is compact.

Proof. As dimH <∞, dimR(T ) <∞. Therefore T is compact by above theorem. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Remark 4.3.7. The identity operator on a Hilbert space H is compact if and only if H
is finite dimensional.

Theorem 4.3.8. Let H be a Hilbert space and {Txn} be a sequence of compact operators
in BL(H) such that Tn → T in BL(H) (i.e., T ∈ BL(H) and ‖Tn − T‖ → 0). Then T
is compact.

Proof. Suppose {xn} is a bounded sequence in H. Then there exists α > 0 such that
‖xn‖ < α, ∀ n.

Since T1 is compact and {xn} is bounded, {T1xn} has a convergent subsequence, say
{T1xn,1}. Now, as {xn,1} is bounded (being subsequence of {xn}) and T2 is compact,
{T2xn,1} has a convergent subsequence, say {T2xn2}.

Note that here the sequence {xn,2} is a subsequence of {xn1} and {T1xn,1} is convergent.
Therefore, {T1xn,2} is also convergent.

Continuing this way, we get convergent sequence {Tkxn,k} such that {Tjxn,k} is conver-
gent for all j = 1, 2, . . . , k. Therefore {Tnxk,k} converges for each n. Now, for m, k ∈ N

‖Txk,k − Txm,m‖ ≤ ‖Txk,k − Tnxk,k‖+ ‖Tnxk,k − Tnxm,m‖+ ‖Tnxm,m − Txm,m‖
≤ ‖T − Tn‖‖xk,k‖+ ‖Tnxk,k − Tnxm,m‖+ ‖T − Tn‖‖xm,m‖
≤ 2α‖T − Tn‖+ ‖Tnxk,k − Tnxm,m‖
→ 0 as k,m→∞ and n→∞.

Therefore {Txk,k} is Cauchy in H and since H is a Hilbert space {Txk,k} converges in H
which is a subsequence of {Txn} where {xn} is bounded. Hence, T is compact. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 4.3.9. Let H be a Hilbert space and T ∈ BL(H) be compact. then T ∗ is
compact.

Proof. Suppose {xn} is a bounded sequence in H. Then there exists α > 0 such that
‖xn‖ ≤ α for all n. Since, T ∗ ∈ BL(H), i.e. since T ∗ is bounded, {T ∗xn} is a bounded
sequence in H.

Let yn = T ∗xn for n = 1, 2, . . .. Since T is compact, {Tyn} has a convergent subsequence,
say {Tynj

}. Then for j, k ∈ N,

‖T ∗xnj
− T ∗xnk

‖2 = 〈T ∗xnj
− T ∗xnk

, T ∗xnj
− T ∗xnk

〉
= 〈ynj

− ynk
, T ∗(xnj

− xnk
)〉

= 〈T (ynj
− ynk

), xnj
− xnk

〉
= 〈Tynj

− Tynk
, xnj

− xnk
〉

≤ ‖Tynj
− Tynk

‖‖xnj
− xnk

‖
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≤ 2α ‖Tynj
− Tynk

‖
→ 0 as j, k →∞.

Therefore, {T ∗xnj
} is a Cauchy sequence in H and since H is complete, {T ∗xnj

} converges
in H. Hence, T ∗ is compact. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Proposition 4.3.10. Let H be a Hilbert space. Then
1. If S, T are compact on H, then S + T is compact and αS is compact ∀ α ∈ K.
2. If S is compact on H and T ∈ BL(H), then ST and TS are compact.

Proof. 1. Let {xn} be a bounded sequence in H. Since S is compact {Sxn} has a
convergent subsequence {Sxnj

}. Since {xnj
} is bounded and T is compact, {Txnj

}
has a convergent subsequence {Txnjk

}.
Now, since {Sxnj

} converges and {Sxnjk
} is a subsequence of {Sxnj

}, then {Sxnjk
}

is convergent. Therefore {(S + T )xnjk
} is convergent. Hence, S + T is compact.

Let {xn} be a bounded sequence in H. Since S is compact {Sxn} has a convergent
subsequence {Sxnj

}. Therefore {αSxnj
} is convergent for all α ∈ K. Hence, αS is

compact
2. Let {xn} be a bounded sequence in H. Since T is bounded {Txn} is bounded. Since
S is compact, {S(Txn)} = {(ST )xn} has a convergent subsequence. Therefore, ST
is compact.
Next we show that TS is compact. Suppose {xn} is a bounded sequence in H. Since
S is compact, {Sxn} has a convergent subsequence {Sxnj

}. As T ∈ BL(H), i.e. T
is continuous linear functional, {TSxnj

} is convergent. Therefore TS is compact.
�

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Remark 4.3.11. Let H be a Hilbert space and K(H) be the set of all compact operators
on H. Then K(H) is a closed two-sided ideal in BL(H).

Remark 4.3.12. Let H be a Hilbert space and T ∈ BL(H) be compact. Then T−1 is
bounded, i.e. T−1 ∈ BL(H) (T is invertible) if and only if H is finite dimensional.

Indeed this is true because T is compact and T−1 ∈ BL(H) implies that I = TT−1 is
compact. Therefore, Hilbert space H must be finite dimensional.

4.3.1 Hilbert-Schmidt Operators

Definition 4.3.13. Let H be a separable Hilbert space. T ∈ BL(H) is said to be
Hilbert-Schmidt operator if

∞∑
n=1
‖Tun‖2 <∞,

where {u1, u2, . . .} is an orthonormal basis of H.

Theorem 4.3.14. Let H be a separable Hilbert space and T be a Hilbert-Schmidt
operator on H. Then

1. T is compact.
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2. T ∗ is Hilbert-Schmidt.

Proof. 1. Let {u1, u2, . . .} be orthonormal basis of H (∵ H is separable) such that
∞∑
n=1
‖Tun‖2 <∞.

Since {u1, u2, . . .} is orthonormal basis of H, each x ∈ H has a Fourier expansion
written as follows:

x =
∞∑
n=1
〈x, un〉un.

Therefore,
Tx =

∞∑
n=1
〈x, un〉Tun.

Now, for m = 1, 2, . . . define

Tm(x) =
m∑
n=1
〈x, un〉Tun.

Then dimR(Tm) ≤ m, i.e. Tm is a finite rank operator for all m. Therefore Tm is
compact. Now, for each x ∈ H,

‖(T − Tm)x‖2 = ‖Tx− Tmx‖2

=
∥∥∥∥∥
∞∑

n=m+1
〈x, un〉un

∥∥∥∥∥
2

≤
( ∞∑
n=m+1

|〈x, un〉|‖Tun‖
)2

≤
∞∑

n=m+1
|〈x, un〉|2

∞∑
n=m+1

‖Tun‖2 (by Holder’s inequality)

≤ ‖x‖2
∞∑

n=m+1
‖Tun‖2 (by Bessel’s inequality).

Therefore
‖T − Tm‖ ≤

∞∑
n=m+1

‖Tun‖2 → 0 as n→∞.

Hence, T is compact.
2. Suppose {u1, u2, . . .} is orthonormal basis of H such that

∞∑
n=1
‖Tun‖2 <∞.

Now,
∞∑
n=1
‖T ∗un‖2 =

∞∑
n=1

∞∑
m=1
|〈T ∗un, um〉|2 (by Parseval’s identity)

=
∞∑
m=1

∞∑
n=1
|〈un, Tum〉|2
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=
∞∑
m=1

∞∑
n=1
|〈Tum, un〉|2

=
∞∑
m=1
‖Tum‖2 <∞ (by Parseval’s identity).

Therefore T ∗ is Hilbert-Schmidt.
�

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Remark 4.3.15. Unlike the set of all compact operators, in general, the set of Hilbert-
Schmidt operators is not closed in BL(H), i.e. if {Tn} is a sequence of Hilbert-Schmidt
operators such that Tn → T , then T need not be Hilbert-Schmidt.

Next we show that there is no significance of the chosen orthonormal basis {u1, u2, . . .} in
the definition of Hilbert-Schmidt operator. In other words, the condition∑∞n=1 ‖Tun‖2 <∞
is independent of the choice of the orthonormal basis {u1, u2, . . .}.

Proposition 4.3.16. Let H be a separable Hilbert space and T ∈ BL(H) be Hilbert-
Schmidt. Suppose {u1, u2, . . .} and {v1, v2, . . .} be two orthonormal bases of H. Then

∞∑
n=1
‖Tun‖2 =

∞∑
n=1
‖Tvn‖2.

Proof.
∞∑
n=1
‖Tun‖2 =

∞∑
n=1

∞∑
m=1
|〈Tun, vm〉|2 (Parseval’s identity)

=
∞∑
m=1

∞∑
n=1
|〈un, T ∗vm〉|2

=
∞∑
m=1

∞∑
n=1
|〈T ∗vm, un〉|2

=
∞∑
m=1
‖T ∗vm‖2 (Parseval’s identity)

=
∞∑
m=1
‖Tvm‖2 (by above).

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Exercise 4.3.17. The set of all Hilbert-Schmidt operators on H is a linear space (vector
space).

Exercise 4.3.18. Let C2(H) denote the set of all Hilbert-Schmidt operators on H. For
T ∈ C2(H) define

‖T‖2 =
( ∞∑
n=1
‖Tun‖2

) 1
2

,

where {u1, u2, . . .} is orthonormal basis of H. Then ‖ · ‖2 is a norm on C2(H).

By above proposition, it is clear that ‖T‖2 is invariant of the choice of orthonormal
basis of H. Now, we give an example of a Hilbert-Schmidt operator.
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Example 4.3.19. Suppose (αij) is an infinite matrix such that
∞∑
i=1

∞∑
j=1
|αij|2 <∞.

Let T be a operator on `2 defined by (αij), i.e. Tej =
∞∑
i=1

αijej. Then

‖Tej‖2 =
∥∥∥∥∥
∞∑
i=1

αijej

∥∥∥∥∥
2

=
∞∑
i=1
|αij|2.

Therefore,
∞∑
j=1
‖Tej‖2 =

∞∑
j=1

∞∑
i=1
|αij|2 <∞.

Hence, T is a Hilbert-Schmidt operator on `2.

Theorem 4.3.20. Let H be Hilbert space and T ∈ BL(H) be compact. Then

σa(T ) \ {0} = σe(T ) \ {0},

i.e. non-zero approximate eigenvalue of T is eigenvalue of T .
If 0 6= λ ∈ σe(T ), then the corresponding eigenspace ker(T −λI) is finite dimensional.

Proof. Suppose 0 6= λ ∈ σa(T ). Then there exists a sequence {xn} such that ‖xn‖ = 1
for all n and (T − λI)xn → 0. Since {xn} is bounded and T is compact, {Txn} has a
convergent subsequence {Txnj

}.
Suppose limj→∞ Txnj

= x. Then limj→∞ λxnj
= x (∵ (T − λI)xn → 0). Therefore,

lim
j→∞
‖λxnj

‖ = ‖x‖.

Since ‖xnj
‖ = 1, |λ| = ‖x‖ and since λ 6= 0, x 6= 0. Now,

Tx = T
(

lim
j→∞

λxnj

)
= λ lim

j→∞
Txnj

(∵ T ∈ BL(H))

= λx.

Thus, we have x 6= 0 such that (T − λI)x = 0. Hence, λ ∈ σe(T ).
Next, suppose for 0 6= λ ∈ σe(T ), the corresponding eigen space ker(T −λI) is not finite

dimensional. Then by Gram-Schmidt orthonormalization, we have an infinite orthonormal
subset {u1, u2, . . .} of ker(T − λI). Therefore

Tun = λun ∀ n.
Therefore for n 6= m,

‖Tun − Tum‖2 = |λ|2‖un − um‖2 = 2|λ|2.
Thus, {un} is a bounded sequence for which {Tun} does not have a convergent subsequence.
This is contradiction since T is compact. Therefore

dim ker(T − λI) <∞.
�

Dr. Jay Mehta,
Department of
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Proposition 4.3.21. Let H be a Hilbert space and T ∈ BL(H) be compact self-adjoint.
Then ‖T‖ or −‖T‖ is eigenvalue of T .

Proof. Since T is self-adjoint, mT ,MT ∈ σa(T ) and (by Corollary 4.2.94.2.9)

‖T‖ = max{|mT |, |MT |}.

Now, if MT +mT ≥ 0, then MT ≥ 0 and MT ≥ |mT |. Therefore

‖T‖ = MT ∈ σa(T ).

If MT +mT < 0, then |mT | > |MT | and so |mT | = ‖T‖. Therefore

−‖T‖ = mT ∈ σa(T ).

As T is compact, ‖T‖ or −‖T‖ ∈ σa(T ) \ {0} = σe(T ) \ {0}. Therefore, ‖T‖ or −‖T‖ is
eigenvalue of T . �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Now, we state the following result (without proof) about the spectrum of a compact
self-adjoint operator which is known as Spectral theorem for compact self-adjoint operators.

Theorem 4.3.22 (Spectral theorem for compact self-adjoint operators). Let H be a
Hilbert space and T ∈ BL(H) be a non-zero compact self-adjoint operator. Then there
exists a finite or infinite sequence {sn} of real numbers with |s1| ≥ |s2| ≥ · · · and
orthonormal subset {u1, u2, . . .} of H such that and

Tx =
∞∑
n=1

sn〈x, un〉un. (4.2)

Further, if the set {un} is infinite, then sn → 0 as n→∞.

Corollary 4.3.23. Let T be a non-zero self-adjoint Hilbert-Schmidt operator on H.
If {sn} is a sequence of non-zero eigenvalues of T as given in the above theorem, i.e.
|s1| ≥ |s2| ≥ · · · , then

∞∑
n=1
|sn|2 <∞.

Proof. Since T is Hilbert-Schmidt operator, it is compact. Let

T (x) =
∞∑
n=1

sn〈x, un〉un, x ∈ H,

as in above theorem. Then T (un) = snun for n = 1, 2, . . .. Since T is Hilbert-Schmidt
operator, we have

∞∑
n=1
|sn|2 =

∞∑
n=1
‖T (un)‖2 <∞.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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