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Syllabus

PS02CMTH24: Functional Analysis - I

Unit I: Inner product spaces, normed linear spaces, Banach spaces, examples of in-
ner product spaces, Polarization identity, Schwarz inequality, parallelogram
law, uniform convexity of the norm induced by inner product, orthonor-
mal sets, Pythagoras theorem, Gram-Schmidt othonormalization, Bessel’s
inequality, Riesz-Fischer theorem. Hilbert spaces, orthonormal basis, char-
acterization of orthonormal basis, separable Hilbert spaces.

Unit II: Uniqueness of best approximation from a convex subset of inner product
space to a point, orthogonality and best approximation, Gram matrix and
its applications, existence and uniqueness of best approximation from a
convex subset of a Hilbert space to a point, continuity of a linear mapping,
projection theorem and Riesz representation theorem, reflexivity of a Hilbert
space. Unique Hahn-Banach extension theorem, weak convergence and weak
boundedness.

Unit III: Bounded operators, equivalence of boundedness and continuity of an opera-
tor, boundedness of the operator associated to an infinite matrix, adjoint of
a bounded operator, properties of adjoint, relations between zero space and
the range of operators, normal, unitary and self-adjoint operators, exam-
ples, characterizations and results pertaining to these operators, positive
operators and generalized Schwarz inequality.

Unit IV: Spectrum, eigenspectrum, approximate eigenspectrum, definition and char-
acterization, spectrum of a normal operator, numerical range, relations of
numerical range and different spectra, spectral theorem for a normal/self-
adjoint operator on a finite dimensional Hilbert space, compact operators,
properties of compact operators, Hilbert-Schmidt operator and its prop-
erties, spectrum of a compact operator, spectral theorem for a compact
self-adjoint operator.

Text Book

1. Limaye B.V., Functional Analysis, New Age International Publ. Ltd., New Delhi,
1996.
Chapter 6: Sections 21, 22, 23, 24, Chapter 7: Sections 25, 26, 27, 28.

Reference Book

1. Simmons, G.F., Introduction to Topology and Modern Analysis, McGraw-Hill Co.,
Tokyo, 1963.

2. Thumban Nair, Functional Analysis: A First Course, Prentice-Hall of India, New
Delhi, 2002.






CHAPTER

Hilbert Spaces

In this unit, we shall learn Inner product spaces, normed linear spaces, Banach spaces,
examples of inner product spaces, Polarization identity, Schwarz inequality, parallelogram
law, uniform convexity of the norm induced by inner product, orthonormal sets, Pythagoras
theorem, Gram-Schmidt othonormalization, Bessel’s inequality, Riesz-Fischer theorem.
Hilbert spaces, orthonormal basis, characterization of orthonormal basis, separable Hilbert
spaces.

1.1 Inner Product Spaces

1.1.1 Normed Linear Space

[Deﬁnition 1.1.1. Let X be a linear (vector) space over K (where K = R or C). A\
function || - || : X — R is called a norm on X if it satisfies the following properties.

1. ||z|]| > 0 for all z € X and ||z|| = 0 if and only if z = 0.

2. |lz+yll < [lzf + fly|| for all z,y € X.

3. || Az]| = [M|||z]| for all z € X, X\ € K.

(X, ]| - ||) is called a normed linear space or a normed space. If K =R, then X is also
called a real normed linear space. If K = C, then X is also called a complex normed
\Jinear space. )

Examples 1.1.2. 1. Let X = K", where K =R or C. Define

(g]umﬂp 1< p<oc
=1

sup [z(i)]  if p = oo,

1<i<n

1l =

where z = (2(1),2(2),...,2(n)) € X =K". Then (X, ||-||,) is a normed linear space
for 1 <p < .
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2. Let X = (# = {z = (2(1),2(2),...) s 2(i) € K and 3 [2(i)]? < oo} if 1 < p < o0
i=1

and (> = {x = (z(1),2(2),...) : z(i) € K and sup |z(i)] < co}. Define

1

(Srer) it1<p<os

], =
sup | (1))| if p = oo,
i>1
where z = (2(1),2(2),...) € . Then (X,| - ||,) is a normed linear space for
1 <p< oo
3. Let Cla,b] denote the collection of all continuous f : [a,b] — K for 1 < p < oc.
Define )
b P
i = ([ ropa)
and
[flloo = sup{[f(t)] : € [a, b]}.
Then || - ||, is a norm on Cla,b] for 1 < p < co.

Note: A complete normed linear space is called a Banach space. In the above example
Cla, b] is a Banach space with the || - [[c norm but not a Banach space with || - ||, norm.

Definition 1.1.3. Let (X, || - ||) be a normed linear space. Define d(z,y) = ||z — y]|
for all z,y € X, then d(-,-) is a metric on (X, || - ||). This metric is called the metric
induced by the norm || - ||.

Remark 1.1.4. Whenever we have a normed linear space (X, |.|]), we get a metric
(induced by the norm) which makes (X, d) a metric space. Thus, every normed linear space
is a metric space. The converse is not true as X may not have a vector space structure at
all, i.e. x +y may not be defined for z,y € X. For example, any non-empty set X with a
discrete metric.

1.1.2 Inner Product Space

( )
Definition 1.1.5. Let X be a linear space over the field K, where K = R or C. A
function (-,-) : X x X — K is called an inner product on X if it satisfies following
properties.
1. (Positive-definiteness) (z,z) > 0 for all x € X and (z,z) = 0 if and only if
z=0.
2. (Linearity in the first variable): (z +y,z) = (z,2) + (y,2) and (az,y) =
alz,y) for every x,y,z € X and o € K.

3. (Conjugate symmetry) (y,z) = (z,y) for every z,y € X.
A linear (vector) space together with an inner product is called an inner product
\space. )

Remark 1.1.6. From the conjugate symmetry, it follows that an inner product is conjugate
linear in the second variable. That is,

(x,y+2)=(y+z,2) = (y,x) + (z,2) = (z,y) + (z, 2) for all z,y,z € X

PS02CMTH24 2018-19
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and

(x,0y) = (ay, ) =a(y,z) = alz,y) forall z,y € X, a € K.

Examples 1.1.7. 1. Let X = K™ Forz = (z(1),z(2),...,2(n)), y = (y(1),y(2),...,y(n)) €
K", define

n

(y) =>_x(i)y(0).

i=1
Then (-,-) is an inner product on X = K".

2. Let X = c¢gy be the linear space of all real (or complex) sequences each with
only finitely many non-zero terms. For z = (z(1),2(2),...,2(n),0,0,...) and
y=(y(1),y(2),...,y(n),0,0,...) in X = cqo, define

(a.9) = 3. a0,

Then it is easy to see that (-,-) is an inner product on cg.
3. Let X = /(2. For z = (x(1),2(2),...), y = (y(1),y(2),...) € X, define

) = 3 2(n)y(n).

n=1

Then (-,-) is an inner product on £2.
4. Let X = Cla,b]. For f,g € X, define

(f.9) = [ @ dt.

Then (-,-) is an inner product on X = C|a, b].

Proposition 1.1.8. Let (-,-) be an inner product on a vector space X .
1. (Polarization identity) For all z,y € X,

Kz,y) = (x+y,z+y) — (x—y,z—y) + iz +iy,z +iy) — i{z — iy, z — iy).

2. Let v € X. Then (x,y) =0 for ally € X if and only if x = 0.
3. (Schwarz inequality) For all z,y € X,

(2, y)? < {z,2)(y,y), (1.1)

and the equality holds if and only if x and y are linearly dependent.

Proof. (1) Due to linearity of (-,-) in the first variable and conjugate-linearity in the
second variable, the right hand side can be reduced to left hand side as follows.

(x+y,x+y) —(r—y,xz—y) +ile +iy,x +iy) —ilx —iy,x — iy)

= (2, 2) + (2, y) + (Y, 2) + (Y, v) — (2, 2) + (2, 9) + (¥, 2) — (¥, y) +i(z,2)
—i}x,y) + %y, x) — Py, y) — il x) — () + Py, 1)+ (y,y)

= 4(z,y).

Dr. Jay Mehta jay_mehta@spuvvn.edu
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(2) If z =0, then
(0,) = (0+0,4) = (0,9) + (0, 9).
Therefore, (0,y) = 0.

Conversely, assume that (z,y) = 0 for all y € X. In particular, taking y = =, we get
(x,x) = 0. Hence, by the positive-definiteness of inner product (Definition 1.1.5), z = 0.
(3) For z,y € X, consider z = (y,y)x — (z,y)y. Then

0<(z,2) = (¥, v)7 — (2, 9)y, (¥, v)x — (2, 9)y)
= (v, 9)*(w, 2) — (v, v) (@, )z, 9) — (=, 9) (Y, 9) (Y, 2) + (z,9) (2, 9){y,y)
(v, )*(x, ) — (2, 9)(y, ) {y, x)
= (y,u)*(x, ) — (z,9)(y, y)(z,v)
= (y,u)((z, 2)(y, v) — [z, v) ")

Now, if (y,y) > 0, then (z,z){y,y) — [{(z,y)|* > 0 and the Schwarz inequality follows.

If (y,y) =0, then by the definition of inner product, y = 0 and hence by (2) above, we
have (z,y) = 0. Hence, |(z,y)[* = 0 = (z,z)(y, ).

Now assume that equality holds in the Schwarz inequality (1.1). Then (z, z) = 0 implies
z = 0. Hence,

(y.y)r — (&, y)y=2=0.
Thus, x and y are linearly dependent.

Conversely if x and y are linearly dependent, then y = ax for some o € K. Then

and

[z, 9) P = |af*(z, 2)? = (z,2)(y, ).
Hence the equality holds in the Schwarz Inequality 1.1. E
. )

Theorem 1.1.9. Let (-,-) be an inner product on a linear space X. For v € X, define
||| = \/{x,x), the non-negative square root of (x,z). Then

(=, 9)| < [lzlllly|l for all 2,y € X

\and | - || s @ norm on X, i.e. the function ||| : X — K is a norm function. )
Proof. By the Schwarz inequality, we have, for x,y € X,
[, p)* < =l lyl* (1.2)
and therefore |(z,y)| < ||z||||ly||. Now, we verify that || - || is a norm on X.
o ||z|| = /{(z,x) >0 for all z € X since (x,z) > 0 for all z. Also,

|z]| =0 < (z,2) =0 < 2 =0.

PS02CMTH24 2018-19



§1.1. Inner Product Spaces 13

o Forall x,y € X, we have,

lz +yll” = (z+y,2+y)
= (z,z) +(y,2) + (z,9) + (¥, y)
= [l=l* + (z, ) + (z, ) + [lyl?
= ||z + 2Re(z, y) + [lylI*
< l=l* + 2/¢z, »)| + Il
< =l + 2l (llyll + [ylI* = (=l + y)*  (by 1.2).

Therefore, ||z + y|| < ||z]| + ||ly|| for all z,y € X.
e Forall x € X and o € K, we have

laz|® = (ax,az) = adle,z) = |a*(z,2) = |o| ||

Therefore, ||azx| = |a|||z| for all z € X and a € K.
E

The norm || - || defined above is called the the norm induced by the inner product or the
norm defined by the inner product or norm generated by the inner product.

Remark 1.1.10. From the above theorem, we can say that, “every inner product space is
a normed linear space.” However, the converse is not true. We will address to the converse
very soon but first we recall the law of parallelogram.

Law of Parallelogram

Recall that the parallelogram law states
that the sum of the squares of the lengths
of four sides of a parallelogram is equal to
the sum of the squares of its diagonals.

We have the following theorem:

Theorem 1.1.11 (Parallelogram law). Let X be an inner product space. Then || - ||
induced by the inner product satisfies

lz + yll* + llz — yll* = 2([l2|* + [lyl|*) for all =,y € X.

Proof. Let x,y € X. Then

lz+yl> +llz =y’ = (@ +y, 2 +y) + (z -y, 2 —y)
= (z,2) + (2, 9) + (y,2) + (y,9)
+(z,2) — (2, y) — (Y, ) + (¥, y)
= 2(z,z) + 2(y,y)
=2(J|z[1* + llylI*)-

Dr. Jay Mehta jay_mehta@spuvvn.edu
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Theorem 1.1.12 (Polarization identity). Suppose X is an inner product space. Then
forx,ye X,

Iz + I + e = yl” + ille + ayll* — illz — iy -

A~ =

(z,y) =

Proof. Exercise. E

Question 1.1.13. Is it true that every normed linear space is an inner product space?
The answer to this question is given by the following theorem.

f )
Theorem 1.1.14 (Jordan and von Neumann). Let || - || be a norm on a linear space X
which satisfies the parallelogram law. Define (-,-) : X x X — K by

1 . ) . .
(.9 = 7 (2 + 91 + llz = I + illz + iyl — illz — iyl

for all z,y € X. Then (-,-) is the unique inner product on X satisfying \/(x,x) = ||z||
\for allz € X.

/

Proof. Seminar. 0

Remark 1.1.15. By the above result, we can say that a normed linear space is an inner
product space if the norm satisfies the parallelogram law. The following proposition makes
it more clear.

Proposition 1.1.16. The normed linear space (P, || - ||,) is an inner product space if
and only if p = 2.

Proof. Define the inner product on ¢ by

(@,y) =D w(n)y(n), (v = (x(1),2(2),...), y = (y(1),y(2),...) € £).

i=1

o0

Then clearly, (verify!) (-,-) is an inner product on ¢* making ¢? an inner product space.
Also, the norm is defined as

ol = yffma) = (f: () " el

Conversely, assume that (€2, || - ||,) is an inner product space. Then the norm || - ||,
satisfies the parallelogram law, i.e. for x,y € /7,

2+ yl5 + [l = ylI5 = 2]|=[5 + [|yll;) (1.3)
must hold. Now, take z = (1,0,0,...) and y = (0,1,0,...) in ¢?. Then

r+y=(1,10,...)

PS02CMTH24 2018-19



§1.1. Inner Product Spaces 15

r—y=(1,-1,0,...).
Therefore, |z + y||, = 27, ||lv — Yyl = 25, |z|l, =1 and ||y||, = 1. Thus by (1.3), we get

2 2
27 +27 =2(1+1)
=95 = 2

~p=2]

Proposition 1.1.17. Let X be an inner product space. If {x,} and {y,} are sequences
in X such that ||z, — z|| = 0 and ||y, —y|| = 0 in X. Then

1. {Zn,yn) = (x,y) i.e. inner product is jointly continuous.
2. (xp,2) = (x,2) forall z € X.

Proof. L. [z, yn) — (2, 9)| = Zn, Yn) — (Tn, ¥) + (20, y) — (z,9)]

< [(@n, Y = )| + (20 — 2,)]
< MNzallllyn — yll + |zn — |||yl (by the Schwarz inequality)
— 0.
2. [(n, 2) — (2, 2)| = [(&n — 2, 2)]|
< |z — z||||2]] (by the Schwarz inequality)
— 0.
E

(- )
Definition 1.1.18. Let V' be a vector space over K. A subset C' of V is said to be
convex if for each x,y € C'and 0 <t < 1,

tr+ (1 —t)y e C.

\That is, the line segment joining x and y is also in C. )

Example 1.1.19. Every subspace of a vector space is convex.

(Deﬁnition 1.1.20. Let X be a normed linear space. Then b
51(0) = {z e X : [|lz| <1}
is called the open unit ball of X and
Si(0) = {zr e X : o] < 1)
\Us called the closed unit ball of X. )

Example 1.1.21. The open unit ball in X, S;(0) is convex.

Dr. Jay Mehta jay_mehta@spuvvn.edu
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Solution. Let z,y € S1(0). Then ||z|| < 1 and ||y|| < 1. Now,

[tz + (1 =Dyl < ] + [[(1 =)yl
=tz + @ =tlyll  (since t € [0,1])
<t(1)+ (1 —-1)(1)
= 1.

So, the (open) unit ball in X is convex. Similarly, the closed unit ball in X is also
convex. El

Definition 1.1.22. A normed linear space X is called uniformly convex if for every

€ > 0 there exists § > 0 such that for each z,y € X with ||z < 1, |ly|]] < 1 and

lz —yll = €,

T+y
2

Hgl—d
/

~
Theorem 1.1.23. Let X be an inner product space. Then the normed linear space X

with the induced norm is uniformly convex.

/

Proof. Let € > 0 be given and let x,y € X such that ||z|| <1, |ly|| <1 and ||z —y|| > e.
By parallelogram law,

Iz +ylI* + llz = l* = 2(ll=]* + [ly]1*).

Therefore,
lz +yll* = 20121 + lyl1*) — ll= =yl

<2(1+41)—¢€

=4 — .
Therefore,

2 2 2
tryFdze x+yng1—€.
2 4 2 4

Take 6 =1—4/1 — % Then ‘”—;Z’H <4/1-— % =1—9. Thus, X with the norm induced
from the inner product is uniformly convex. E

Seminar Topics 1.
1. Let X be a nonzero vector space and B = {v; : i € I} be a basis. Forv =Y a;v; € X,

i€l
define ||z|| = X |ay|. Show that || - || is a norm on X.
i€l
1
Z]%rx-(xﬂ%x@%”.ﬂﬁﬂ)EKWandpE[Laﬂ,btMﬂp—( u@wﬁp.amw
i=1

that || - Hp is a norm on K™.

3. For z = (z(1),2(2),...,2(n)) € K™ and p € [1,00), let ||z||, = sup |z(i)|. Show
1<i<n

that || - ||, is a norm on K".
4. Show that for 1 <p < oo, (7, - [,) is a normed linear space.
5. Show that (7, ]| - ||,)) is complete for 1 < p < co.

PS02CMTH24 2018-19
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&

For 1 < p; < py < o0, show that ¢P* C (P2,
7. Let g = {x = (x(1),2(2),...) : (i) € K and ngglox(n) = 0}. For x € ¢y define

z||,, = Sup |(n)|. Show that || - ||, is a norm on c.

Qo

. Show that (co, |- l.) is complete.
9. Let P[0, 1] denote the set of all polynomials with complex coefficients. For p(z) =
ap + a1x + - - - aa™ € P|0, 1], define

Ip(@)lc = sup [p() (14
1Py = 500 o (15

n

1P g = 2 |t (1.6)

=0

Show that all these define norms on PJ0, 1].
10. Let B[0,1] = {f : [0,1] — K : f is bounded }. For f € B0, 1], define | f]|, =

sup |f(t)|. Show that || - ||, is a complete norm on B0, 1].
0<t<1

11. Let C[0,1] = {f : [0,1] — K : f is continuous}. For 1 < p < oo, show that || - || is
a norm on C10,1]. Show that || - ||, is a complete norm on C0, 1].

12. Show that the sequence {f,} in C[0,1] defined by f,(t) = t*, (t € [0,1],n € N),
converges pointwise but does not converge in the supnorm || - ||, on C[0,1].

13. Let (X, {-,-)) be an inner product space. For a scalar A, define (z,y)y = Az, y),
(z,y € X). Show that (-,-), is an inner product if and only if A > 0.

14. Prove the Polarization identity (Theorem 1.1.12).

15. Prove Jordan and von Neumann identity.

16. On ¢? define

= ix(n)y(n), (z=(z(1),2(2),--.), y = (y(1),y(2),...) € ).

Show that (-,-) is an inner product on ¢2.
17. Show that the open unit ball in X, S;(0) is convex.
18. Let (X, || - ||) be a normed linear space, zo € X and r > 0. Show that

Se(zo) ={z € X : ||z — x| <1}

Is convex.
19. Show that (C[0,1], || - ||..) is not uniformly convex.

1.2 Orthonormal sets

Definition 1.2.1. Let X be a normed linear space. Two elements x,y € X are said
to be orthogonal if (x,y) = 0. In this case, we write x L y (read = perp y) i.e. x is
orthogonal to y or = is perpendicular to y.

Examples 1.2.2. 1. In X = R?, the elements x = (1,0) and y = (0,0) are orthogonal
as (x,y) = 0. In fact, 0 is orthogonal to every element.
2. Take X = R? and = = (2,0), y = (0, —7). Then z L y.

Dr. Jay Mehta jay_mehta@spuvvn.edu
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18 §1.2. Orthonormal sets

Two nonzero vectors in R? or R3, are orthogonal if and only if they are perpendicular
in the usual sense.

Definition 1.2.3. A non-empty subset E of X is said to be orthogonal subset if for
every z,y € F such that x # y, then (z,y) = 0.

Examples 1.2.4. 1. In X = R? the set £ = {(1,0),(0,8),(0,0)} is an orthogonal
subset of X.
2. Take X =R? and E = {(4,18),(9, —2)}. Then F is orthogonal.

Definition 1.2.5. An orthogonal subset E of X is said to be orthonormal if ||z| = 1
for all z € F.

Examples 1.2.6. 1. In X = R3, theset F = {(1,0,0),(0,1,0), (0,0,1)} is an orthonor-
mal subset of X.

2. Take X = C2 and E = {(%,%3), (%2, 1)}. Then E is an orthonormal subset of C2.

i
272
Remark 1.2.7. An orthonormal set F will never contain the zero element since ||z|| =1
forall z € E. So 0 ¢ E. Also, every orthonormal set is an orthogonal set.

4 )
Theorem 1.2.8 (Pythagoras theorem). Let X be an inner product space and xy, zs, . . ., x,
X be orthogonal. Then

@1 + T2 + -+« + T||? = |2l + |22l + - - + ||lzal*-

i.e.
2

n

2

= [l
j=1

n
Z Ty
j=1

. /

Proof. Since x1, s, ...,x, € X are orthogonal, if j # ¢, then (z;,z;) = 0 and if j = 1,
then (x;, ;) = ||lz;]|*. So, we have,

2

n
Z Ly
j=1

g

Theorem 1.2.9. Let X be an inner product space and E C X be orthogonal such that
0¢ E. Then E is a linearly independent set. In particular, if E is orthonormal, then E
is linearly independent. In fact, if E has more than one element, then the diameter of

E is /2.
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Proof. Let x1,25,...,2, € F and ay, s, ..., q, € K such that
T + oy + -+ a4+ apr, = 0.
Then for 7 =1,2,...,n, we have

0= <0>$j>
= <061.Z’1 + Qoxog + - - - "‘Oéjxj + -+ Oénl’n,l'j>
= a1 (T, 5) + (T2, 15) + - + Ty, T5) + 0+ (T, T5)

= ayllz;]* (o (s ) = 0if 0 7 j).

Since 0 € E, ||z;]| # 0 and hence, a; = 0 for all j = 1,2,...,n. Therefore, E is linearly
independent.

Clearly, if F is orthonormal, then FE is orthogonal and 0 ¢ E. Hence, F is linearly
independent by the same argument as above.

Now, suppose F is an orthonormal set and it has more than one element. Then for any
v,yeE, x#y

le =yl = (@ =y, 2 —y) = (x,2) + (y,) = l2]* + [ly]* = 2.
Therefore, the diameter of E is diam(E) = sup{||z — y|| : z,y € E} = v/2. O

Remark 1.2.10. Thus, we have seen that (by the above result), every orthogonal set
which does not contain 0 and so, every orthonormal set is a linearly independent set. Then
we have the following question asking about its converse.

Question 1.2.11. Is the converse of above true? That is, if £ C X is linearly independent,
then is it true that E is orthogonal or orthonormal. The answer is NO in general. Consider
the following example.

Example 1.2.12. Let X = K? and F = {(1,0),(1,1)}. Then clearly, (Check!) F is a
linearly independent set but E is not orthogonal (or orthonormal).

Remark 1.2.13. We have seen so far that an orthogonal set not containing 0 or an
orthonormal set is always linearly independent but the converse is not true. However,
given any linearly independent set, we can always find an orthonormal set such that
they span the same set. This result (given below) is well-known as the Gram-Schmidt
orthonormalization theorem and the process by which we obtain the required orthonormal
set is called the Gram-Schmidt orthonormalization process. More precisely, we have the
following theorem.

4 )
Theorem 1.2.14 (Gram-Schmidt orthonormalization). Let X be an inner product space

and {x1, 9, ...} be a linearly independent subset of X. Then there exists an orthonormal

subset {uy,us,...} of X such that for each k =1,2,.. .,

L({uy,us,...,ux}t) = L({x1, 22, ..., 21 }).

In fact, the above set can be obtained as follows:
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20 §1.2. Orthonormal sets

Define y, = x1, uy = % and for j =2,3,..., define

Yj
;]

yj = x; — (@5, u)ur — (x5, up)ug — -+ - — (&5, uj-1)u;-1, uj =

Proof. We prove this result by the principle of mathematical induction on j.
Case: j = 1. Since {z1} = {y1} is linearly independent as z; # 0 and since u; =

o |ui|| = 1, and hence clearly {u;} is an orthonormal set and L({u;}) = L({xl})

For understanding only, not required to prove

Case: j = 2. Note that yo = 9 — (¥, us)uy. If yo = 0, then 25 = (z2.11) 0. € L({z1}),

[ER

which is not possible as the {xq,x2} is a linearly independent set. Now,

<?/2,U1> = <$2 - <I2,u1>u17u1>
= (@g,u1) — (T2, u1) (U1, u1)
=0 (v (ur, ) = [Ju | = 1).

Also, ug = Then ||uz]| =1 and from the above, we have (ug, u;) =

[v2ll <y2,U1> Oa

Hy I
i.e. {uy,us} is orthonormal. Also since uy € L({z1,x2}), we have

L({uy,us}) = L({1,us}) C L({w1, 22}).

Since dimension of both the spaces L({uy,us}) and L({z1,25}) is 2 (same), we have

L({uy,us}) = L({w1, z2}).

Induction Hypothesis: j = k. Assume that the result holds for 7 = k, i.e. y; and wuy
defined above are such that {uy,us, ..., ux} is an orthonormal set and

L({Ul,UQ,...,Uk}) - L({l’l,l'g,...,xk})-
Case: j =k + 1. Now,

Yk+1 = T+1 — <$k+17U1>U1 - <x/€+17 u2>u2 - <$k+1,uk>uk-

If ypo1 = 0, then x4 € L({uy,ug,...,ux}) = L({x1,29,...,2,}), which is not possible

since {1, xa,..., Tk, Tpy1} is a linearly independent set. Hence, y11 # 0. Now, for i < k
(o1, wi) = (T — (Tppr, u)uy — - — (Tpgr, Up) Uk, Ui)
= <xk+17ui> - <$k+17u1><ulaui> - <$k+1,uk><uk,ui>
= (Trg1, Us) — (Tpg1, Us) (o (uj,ui) =0, j # 4 and (us,u;) = 1)
= 0.
Take ugyq = Hz’:rl”, Then |lugy1]| = 1 and for < i@ < k, (upyq,w;) = m(ykﬂ,ui) = 0.
Hence, {uy,us, ..., uxs1} is an orthonormal set. Also,

L({ur, s, g }) = L2, wn i }) = L 20, 2ps ).

(since dimension of the above spaces is same).
This completes the proof. O

PS02CMTH24 2018-19



§1.2. Orthonormal sets 21

Example 1.2.15. Let X = (2. Forn =1,2,..., let , = (1,...,1,0,0,...) i.e. 1 occurs
———

n times

only in the first n entries. It can be easily seen that by Gram-Schmidt orthonormalization
process, we get an orthonormal set {uy, us, ...}, where

Yo = (0,...,0, 1,,0,0,...) = u,,

nth

where 1 occurs only in the n'® entry.

Lemma 1.2.16 (Bessel’s inequality). Let X be an inner product space and {uy,us, ...}
be a countable orthonormal subset of X. Then for each x € X

o)
> W un)? < l)f?,
n=1

where the equality holds if and only if v = Z(x, U YUy -
n=1
Proof. Let x € X and for m =1,2,..., let
Ty = Z(x,un>un
n=1

Then,

(Tm,z) =

/\

fjl<x,un>un,x>

m
- [L’ un un7

m
=zxun

Since the above entity is a real number, we have

m
(T, ) = (T, T (x, u)]
n:l

Also,
<xm7 $m> -

(o) f; () >
i<x,un><x,uk><un,uk>

1 k=1

3
Il

/M\s

I
NE

3
Il

() up)(x, upy) (. {uy, ug, ...} is orthonormal)

Il
NE

1

3
Il

’<xvun>|2'

I
Mz

3
Il
—
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22 §1.2. Orthonormal sets

Thus,
(T, ) = (T, ) = (T, ) = z_:l [z, u,) . (1.7)

Now,

0< ||:1c—xm||2 = (T — Ty, T — Tpy)

- <ZL’,Z‘> - <ZE,JIm> - (xm,x> + <l’m,l’m>
= (v, 7) — ; [(z,un)* (by (1.7)). (1.8)

Thus, for each m=1,2, ...

m

>z un)* < (2, 2) = ||z]*.

n=1

Taking limit as m — oo, we get

S
>z un) P <l
n=1

“Il

(Sm = XM, |z, u,)|* increasing and bounded above by ||z2||. So, it is convergent). By

n=1

equation (1.8), the equality holds if and only if
lim ||z — 2,/ =0 if and only if
m—0o0

nliinoo Ty, = if and only if

o0

> (z, up)u, =

n=1

Example 1.2.17. Derive Schwarz inequality using Bessel’s inequality.

Solution. We know that the Schwarz inequality is trivially true if y = 0. So, we assume

that y # 0. Take u = ﬁ, then {u} is orthonormal subset and by the Bessel’s inequality,
we have ) )
(@ w < el
. 2
= K:‘ ) , S el
= Dl P < el
= [zl <lzlPllyl
Therefore, | [{z,y)|* < (z,2)(y,y) | Hence, we have deduced the Schwarz inequality from
the Bessel’s inequality. 0

Seminar Topics 2.
1. Let X = K3, where K =R or C. Let z; = (1,0,0), x5 = (1,1,0) and x3 = (1,1,1).
Orthonormalize the set {z1, z2, 23}
2. Let a = (1+2i,4,7) € C. Show that

al{zr=(x(1),2(2),23)eC:a Lz}

is a subspace of C3. Find the dimension of a™.
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3. Let {uq,us, us} be an orthonormal set in an inner product space X over C. Show
that {aquy, agus, azus} is orthonormal iff |y = 1.
4. Orthonormalize the following set in respective inner product spaces.
(i) {(1,0,1),(1,0,2),(1,1,1)} in R3.
(i) {(1,0,2),(1,0,1),(1,1,1)} in R3,
(iii) {(1,0,0),(1,1,0),(1,1,1)} in R3.

1.3 Hilbert spaces

(Deﬁnition 1.3.1. A complete inner product space is called a Hilbert space. )

f )
Theorem 1.3.2 (Riesz-Fischer theorem). Let H be a Hilbert space and {uy,us, ...} be
a countable orthonormal subset of a Hilbert space H. Suppose {an} is a sequence in

K. Then Z anuy, converges to some x € H if and only if Z lon|? < 0o. In this case,
= n=1

(o = (x, un) for all n.

/

Proof. Suppose Z antu, =2 € H. Then form=1,2,...,

n=1

o0
<.I', um) = <Z OpUp, um>
n=1
= > ap(tn, Up) (since inner product is a continuous function)
= Q.

Therefore, by the Bessel’s inequality,
Dol = Ko u) | < [l
n=1 n=1

Next suppose that Z lon | < 00. Let S, = Z oy, for m =1,2,.... Then for £ < m,

n=1 n=1

— S = Z Uy, and so

k+1

2

m
||Sm - Sk||2 = Z Apln
n=k+1
m m
= < >ty Y Oézuz>
n=k+1 I=k+1
m m
= > > asaun,w)
n=k+11=k+1
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24 §1.3. Hilbert spaces

m
= ) oy,
n=k+1
m

= > > = 0asn,m— 0. (1.9)
n=k+1

Therefore, {S,,} is a Cauchy sequence in H. Since H is complete, {S,,} converges to some
re H, ie.

(o)
Zanun:xEH.

n=1

E

Definition 1.3.3. An orthonormal subset E of a Hilbert space H is called a mazimal
orthonormal set if for every orthonormal set ' C H, E C F = E = F. A maximal
orthonormal subset of a Hilbert space H is called an orthonormal basis for H.

Examples 1.3.4. 1. Let H be finite dimensional, i.e. dim H < oco. If 1,29,...,2, €
H are linearly independent such that L({z1,xs,...,2,}) = H, then Gram-Schmidt
orthonormalization yields an orthonormal set {uy,us, ..., u,} such that

L({uy,ug,...,un}) = L{z1, 29,...,2,}) = H.

Note that there no linearly independent superset of {uy, ug, ..., u,}. Thus, {ug, ug, ..., u,}
is an orthonormal basis for H.

2. H=10={{z,}| 3%, |za]® < 0o}. In this case, {e1,eq,...} is orthonormal, where
er = (1,0,0,...), e = (0,1,0,...), ...

. )
Theorem 1.3.5. Let X be an inner product space and E be an orthonormal subset of
X. Then for each x € X the set

E,={u€E: (x,u) #0}

is countable. Suppose E, = {uy, us, ...} (countable) and X is complete. Then > (x,u,)u,

n=1

converges to y Y _(x,un)u, in X such thatz —y L E.
n=1
- J

Proof. Let v € X. If x = 0, then E, = ). So assume that x # 0. For j = 1,2, ..., consider
the set
Fy={ue E: |z <jl(z,u)]}.

Fix j. Let uy,ug, ..., u, € F}, then
]| < jl(z, us) 1=1,2,...,m.

Therefore, by Bessel’s inequality, we have

m m
Dl ll* <5 30 oy ua| < 52l
i=1 i=1
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Therefore, m < j2. Thus, F; has at most j* elements (i.e., it is a finite set).

Claim: F, = U F;.
j=1
If u € F} for some j, then
0 < llell < i, u)].

Therefore, (r,u) # 0 and so u € E,. Thus,

U F; C E..

j=1
Now suppose u € E,. Then (x,u) # 0. So, there exists jo € N such that
lz]| < jol{z,w)l, i.e.

u € Fj,.
Therefore, £, C Uj2; F; and so
= U I
j=1
Hence, E, is countable.

Take E, = {uy,us,...}. Now, by Bessel’s inequality, since X is complete,
Z z,un)|? < |lz|)* < oo.

Therefore, by Riesz-Fischer theorem, Z (x, uy)u, converges in X. Suppose y = > (x, uy,)uy,
n=1 n=1

Now for u € F,

(y,u) = <§<x, Up ) U, u>

I
3

M8
H

£
3
=

5

= ( ) (if u # wu,, then (u,u,) = 0 otherwise it is 1).

Therefore, (x — y,u) = 0. That is, (r —y) L E. O

. )
Theorem 1.3.6. Le H be a Hilbert space and E C H be an orthonormal set. Then the
following are equivalent:

1. E is an orthonormal basis for H.
2. (Fourier expansion): For each x € H,

o
= (@, un)up,
n=1

where E, = {uy,us,...}.
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26 §1.3. Hilbert spaces

3. (Parseval’s identity): For each x € H,

00
2l = > K, un)
n=1

where E, = {uy,us,...}.

4. L(E) = H.
5. If for x € H such that (x,u) =0 for all u € E, then x = 0.

. /

Proof. (1) = (2) Suppose E is an orthonormal basis for H, i.e. E is a maximal or-
thonormal set in H. Let x € H and F = {uy,us,...} then by the previous theorem

o (&, up)u, converges to some y in H. Let

o

Y= Z(x,un>un € H.

n=1

If y = z, then the required equality holds. If y # x, then by the last theorem (x —y) L E.
Take
_r—y

lz =yl
Then v L E and so v ¢ E. Take Ey = E'U{v}. Then Ej is an orthonormal subset of
H and E C Ej, which contradicts our assumption that £ is a maximal orthonormal set.
Therefore,

v

rT=y= Z(m, U ) Uy -
n=1

(2) « (3) This is the proved in the equality case of Bessel’s inequality.

(2) = (4) Assume that for every x € H, we have = = § (x,up)u,, where E, =
n=1

{uy,ug,...} = {u: (r,u) # 0}. Take

m

Ty = Z(x,unmn

n=1

Then x,, € E and clearly by our assumption, x,, — . Hence

L(E) = H.

(4) = (5) L(E) = H. Let z € H such that (x,u) = 0 for all u € E. Consider a sequence
{z;,m} in L(F) such that z,, - x (" L(E) = H). Since z,,, € L(E), it is of the form

Ty = Oy + Qoo + - - - + QpmUn,
where uy, us, ..., u, € E and aym,, Qop, - - -, 0y € K. Then by our assumption
(T, ) = 0.

We know that z,, = = (x,,z) — (x,x). Therefore, (z,z) = 0 and hence z =0

(5) = (1) Assume that (5) holds, then we have to prove that F is a maximal orthonormal
subset of H. Suppose F is not maximal, then there exists an orthonormal subset Fy of H
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such that £ C Ey. Let x € Ejy such that = ¢ E. Since Fj is orthonormal and =z ¢ E, we
have
(r,uy=0 Yuek.

Then by (5), x = 0 which is contradiction to our assumption that = € Ej since Ej is
orthonormal and an orthonormal set does not contain 0. Therefore, £ must be a maximal
orthonormal subset of H, i.e. E is an orthonormal basis for H. O

Theorem 1.3.7. Let H be an n-dimensional Hilbert space. Then H is isometrically
isomorphic to (K™, || - ||2)-

Proof. Since dim H = n, consider a basis {x, za,...,z,} of H, i.e. the set {z1,z2,...,T,}
is linearly independent and it spans H. By Gram-Schmidt orthonormalization, there exists
an orthonormal subset {uy,us,...,u,} of H such that

L({uy,ug,...,un}) = L{z1, 29,...,2,}) = H.

Then by the previous theorem, {u,us,...,u,} is an orthonormal basis for H. Define
T:H — K" by
T(x) = ((z,w1), (x,u2),...,{(z,uy))  x € H.

Then T is homomorphism (i.e. linear). Now, since uy, us, . .., u, is an orthonormal basis,
by Parseval’s identity, we have

9 n
1T @)l5 =D [{a,u)? = |||
=1
Therefore, T is isometry. Now, let y = (y1,¥2,...,yn) € K™. Take

T =Y1uy + YoUs + -+ + YplUy = Zyjuj-
j=1

Then
= (S
j=1
= Z Yj <uj7 u1>
j=1
=y (. (ujyug) =0, j # i and (us, u) = 1).
Therefore,
T(x) = ({x,u1), (x,ug), ..., (z,u,)) = v.
Thus T' is an onto linear isometry. U

Definition 1.3.8. A metric space, in particular a normed linear space H, is said to be
separable if it has a countable dense subset.

Exercise 1.3.9. Show that P is separable for 1 < p < oo but ¢* is not separable.

Solution. Seminar exercise. ]

Dr. Jay Mehta jay_mehta@spuvvn.edu


mailto:jay_mehta@spuvvn.edu

28 §1.3. Hilbert spaces

. )
Theorem 1.3.10. Let H be an infinite dimensional Hilbert space Then the following
are equivalent:

1. H has a countable orthonormal basis.

2. H is isometrically isomorphic to (2.
3. H is separable (i.e. H has a countable dense subset).

. /

Proof. (1) = (2) Suppose H has a countable orthonormal basis, say {u;,us,...}. Define
T:H — (? by
T(x) = ({x,u1), (x,us),...) for v € H.

Note that, by Bessel’s inequality 3% |[(z,u,)|* < oo and hence T'(z) € ¢*. Also, T is
(clearly) a homomorphism (i.e. T is linear). Then by the Parseval’s identity, we have

IT(x)ll; = i_ojl (@, un)[* = [|z]]*.

Therefore, T is isometry. Now, let y = (y1,¥s,...) € €2, ie. 35, |yn|* < co. Then by
Riesz-Fischer theorem,

(oo}
> Ynln
n=1

converges in H. Suppose £ = > y,u,. Then for eachi=1,2...,

n=1

(us) = <zy>
n=1
= > yn(un, u;)
n=1

:y’I’L

T(x) = ((z,u1), (z,u2),...) = (Y1,Y2,...) = Y.
Thus, T : H — ¢? is an onto linear isometry. In other words, H is isometrically isomorphic
to (2.
(2) = (3): Let T : H — (* be a linear onto isometry. Since ¢? is separable, ? has a dense
subset D. Then T—!(D) is a countable dense subset of H and therefore H is separable.

(3) = (1): Assume that H is separable. So it has a countable dense subset. Suppose
D = {z1, 25, ...} is a countable dense subset of H. Let i; be the first integer such that
zi, # 0. Let xy = {2;,}. Clearly,

L({z1,20,...,2,}) = L({x1}).

Let iy be the first integer such that z; and z;, are linearly independent. Take zo = z;,.
Then

L({xl,l’g}) = L({ZI,ZQ, ey Ry 7Zi2})~

Continuing this way, inductively we can choose a linearly independent subset {1, s, ..., 2, }
of H such that for each n = 1,2, ..., we have

L{z1,@9,...;xn}) = L{Z1, oy Zigs ooy Zigy oo oy Zin 1) (1.10)
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Then by Gram-Schmidt orthonormalization, there exists an orthonormal subset {u, ug, ...}
of H such that
L({Il, o, .. }) = L({ul, Uug, . . })

Also, since D = H, L(D) = H. But then

L({ur vz, ) = L({r 02 )

= L(D) (by (1.10))
= H.

Thus, L({uy,us,...}) is dense in H and hence {uj,us, ...} is a countable orthonormal
basis for H. 0

Seminar Topics 3.
1. Prove that every non-zero Hilbert space has an orthonormal basis.
2. Show that /P is separable for 1 < p < oo but £*° is not separable.
3. Show that {e, : n € N} is an orthonormal basis of ¢? but it is not a basis of 2.
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CHAPTER

Approximations and Riesz representation theo-
rem

2.1 Approximation and Optimization

("~ )
Definition 2.1.1. Let X be an inner product space, E # (), E C X and x € X. An
element y € F is said to be a best approximation from FE to x if

le =yl <llz =2 VzeFE

i.e.

.

| — || = dist(z, F). )

Naturally, there are three questions, one may ask here.

1. Does best approximation always exist?

2. If it does, is it unique?

3. How does one find a best approximation?
The following remark answers the first two questions. For the answer to the third question,
in what follows, we prove certain results.

Remarks 2.1.2. 1. In general, best approximation may not exist. For example, take

X =Rand E = (0,1) N Q. Then best approximation does not exist for say = = 2.

2. In general, best approximation may not be unique. For example, take X = R?,

E={2z¢ X :|z]|] =1} and z = (0,0). Then all the points of the set E are best
approximations from F to x = 0.

Proposition 2.1.3. Let X be an inner product space. If E C X and x € E, then there
is a best approximation from E to x if and only if x € E.

31
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Proof. If x € E then y = x (i.e. x itself) is a best approximation from E to x. In fact,
dist(z, F) = ||z — y|| = 0.
Conversely, let € E and suppose that y € F is a best approximation from F to z. Then

|z —y|| = dist(z, E) =0 (.- z€E)

i.e., x =y and hence z € FE. 0

Proposition 2.1.4. Let X be an inner product space. If E C X is convex and v € X,
then there exists at most one best approximation from E to x.

Proof. Suppose y; € FE and y, € E are two best approximations from F to z, i.e.
2 = wll = llz — ga = dist(z, E) = d.
Now, by Parallelogram law,

Iz = y1) + (= = y)I* + (@ — 91) = (& = w2)I” = 2}l (z — yo)II” + 2] (& — 2) |
= 122 = (1 + ) I* + v — w2ll* = 2l — y) I* + 2/ (2 — o) |I”

Therefore

Y1+ Y2
Ior — gl = 20— )P + 2o — ) 4 o~ (D122

< 2d% 4+ 2d% — 4d? ( E is convex and y,,y2 € £ = — Hx — < < —d

% —l-yz)H
2
= 0.

Therefore, . E

Proposition 2.1.5. Let X be an inner product space, Y be a subspace of X and x € X.
Then y € Y is a best approximation from Y to x if and only if (x —y) LY.

Proof. Suppose y € Y such that (z —y) L Y. Then for any z € Y,
(x—y) Lz ie. (x—y,z)=0.
Also, since Y is a subspace and y,z € Y, y — z € Y and so
(r —y,y—2) =0.
Therefore by Pythagoras theorem,
lz = ylI* +lly = 2| = [z —y) + (y = 2)|* = [l= — |]*.

Therefore, ||z — y|| < ||z — z|| for all z € Y. Hence, y is a best approximation from Y to .
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Conversely, assume that y € Y is a best approximation from Y to x. Let z € Y be such
that ||z]] = 1. Consider w =y + (z — y, z)z. Then w € Y. Therefore,

r—w=(x—y)—(r—y,2)z.
Now,
2 =yl < ||z —wl (".y is best approx. and w € Y))
= (r—w,x—w)
= (& —y) = (w -y 2)2 (@ —-y) = (r—y,2)2)
=l =yl = ((z = y), (z =y, 2)2) = (g =y, 2)2, (z = ) + [{& — 4, 2)[*(2, 2)
=llz—yll* =@ —y, 2}z —y,2) — (@ =y, 2){z,z — ) + [(z =y, 2)

(o (z2)=1)

< llz—yl* =z -y, 2).

Therefore, (x —y,z) =0 and hence (zr —y) L z for all z € Y, ie.

(x—y) LY]
B
[ s . . )
Definition 2.1.6 (Gram matrix). Let X be an inner product space and z1, z, ..., &, €
X. The matrix
(x1,21) (T2,21) o+ {(Tn,Z1)
Ty, T2 T, T2) - (Tn, T2
G<$1,$2,...,$n): < . > < . > < . >
<J,’1, xn) <ZL‘2, an) e <xn; xn)
\is known as the Gram matriz of x1,2,...,z,. )
Remarks 2.1.7. 1. xy,x,,...,x, are orthogonal if and only if the Gram matrix is a
diagonal matrix.

2. x1,%9,...,T, are orthonormal if and only if the Gram matrix is the identity matrix.
Lemma 2.1.8. Let X be an inner product space and xi,xs,...,x, € X be linearly
independent. Then the Gram matriz of x1,xs, ..., T, is reqular.

Proof. The Gram matrix of x1, 2o, ..., x, is
<I1,$1> <$2, $1> T <$n, $1>
L1, X2 T2, T2) -+ (Tp, T2
e () ()
<$1, $n> <372, xn> e <$n7 $n>

Claim: Column rank of M is n.
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Let ay,as,...,a, € K be such that

(w1, 1) (g, x1) (@, 1)
ax <x1’x2> + as <:C2, x2> + - Fay (:r;n,x2> =0.
<3’}17.Tn> <x27xn> <xnaxn>

Then for each i =1,2,...,n,

iaj(xj,xg} = 0. (2.1)

Now,
n 2 n n
> a;zs| = <Z a;Tj, ) am>
j=1 j=1 i=1
= ZCTZ' <Z ajxj, xl>
i=1 j=1
S (foinn)
i=1 j=1
=0 (by (2.1))
Therefore,
Z ajxj = 0.
j=1
Since x1, s, ..., x, are linearly independent, a; = ay = --- = a,, = 0. Therefore, the
columns of M are linearly independent which means that the column rank of M is n.
Hence, M is regular. =
f )
Theorem 2.1.9. Let X be an inner product space and x1,xs,...,x, € X be linearly
independent and x € X. Let Y = L({x1,%2,...,2,}), then y = a1z + s+ - -+ anxy,
is a best approximation from 'Y to x, where ay, s, ..., o, form the unique solution of

the normal equations.

ap (1, 1) + ao(Ta, 1) + -+ + (T, 1) = (x,27)

a1 (1, Ta) + a(Ta, Ta) + - -+ + A (Tp, xa) = (T, x2)

(2.2)

L Q1(T1, Tp) + @22, Tp) + -+ - + (T, Tn) = (T, Ty) )

Proof. Consider the normal equations (2.2). Now if y = aqz1 + agxe + -+ + @z, € Y is
a best approximation from Y to z, then by Proposition 2.1.5 (x —y) L Y. That is,

(zr—y),z;) =0 for j=1,2,...,n.

That is,
(y,z;) — (x,z;) =0 for j =1,2,...,n.
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That is,
ar (@1, ;) + 022, 75) + -+ + an(Tn, 15) = (2, 75).
That is, ay, o, . ..,y are solutions of the normal equations (by (2.2)). The solution is
unique (since the Gram matrix M is regular). E
4 )
Theorem 2.1.10. Let X be an inner product space, xy,xs,...,T, € X be linearly

independent, ¢1,¢o,...,c, € K and v € X. Consider the set
E={ye X :{yx;)=c¢;, i=1,2,...,n}.

Then the unique best approximation from E to x is given by

y=2x+a1x] + asxs + -+ + @, (2.3)
where a1, g, ..., a, € K form the unique solution of the equations
ar{xy, 1) + ag(xe, 1) + -+ + ap(Tp, 1) = ¢ — (z,21)
a1{x1, Ta) + ag(Te, T2) + -+ + (T, xa) = c2 — (z,29)
(2.4)
\ Oél<l‘1,l‘n>-|-042<"L‘2,£L‘n>+"'+04n<1'n,1'n> = Cp — <£L’,l‘n> )
Proof. Since x1,xo, ..., x, are linearly independent, the Gram matrix for x, s, ..., x, is
regular. So the system (2.4) has a unique solution, say oy, as, ..., ay,, e fori=1,2,...,n
1Ty, ;) + aoxe, 25) + - + apxy, ;) = ¢; — (T, ;).
Ify=x+ a2+ asxs+ -+ + apxy, then fori =1,2,... n

= (x+ oz + agZo + -+ -+ apTy, T;)
= (z,2;) + g (z1,25) + - - + (T, ;)
= (x,2;) + ¢ — (x,2) (. ai,...,aqy, is the solution of (2.4))

<y7 $Z>

= C;.
Therefore y € E.

Claim: E — y is a subspace of X.

Let z1,29 € E — vy, then there exists u;,us € E such that 2y = u; — vy, 20 = uy — y and
(ur,z;) = ¢; and (ug, z;) = ¢;, i = 1,2,...,n. S0, z1 + 29 = uy + uy — 2y. Therefore, for
1=1,2,...,n,

<21+22+y,l’i> = <U1+U2—y,l‘i>
= (u1, ;) + (ug, i) — (Y, ;)
:Ci—|—Ci—Ci
= .
Thus, 21 + 2o +y € Fandso 21 + 20 € E—y. Now,leta € K and z=u—y € E —y for
ve k. Fori=1,2,...,n,

<O(Z + Y, xz> = <CYU —ay + Y, xz>
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— (ou+ (1- o)y,
alu, z;) + (1 — a)(y, z;)
=ac;+ (1 —a)g

= C;.

Therefore, az +y € F, i.e. az € F —y and hence E' — y is a subspace of X.

Now, y is a best approximation from E to z if and only if 0 is a best approximation
form £ —y tox — y.

([l =yl = dist(E, z) = dist(E' — y, 2 —y) = [[(x —y) = Of}).

Now for z € F,

(z—y,x—y) = (2 —yY,—1T] — Q2T — -+ — ApTy) (by (2.3))
= <Zu —1T1 — Qg — -+ — anxn> - (y, —1T1 — Qg — -+ — OénIn>
= —QC] — QCy — +++ — QpCp + Q1 1C] + QaCy + -+ + ey, (Cy€EE)
=0,

i.e. (x—y) L E —y. Hence by Proposition 2.1.5, 0 is a best approximation from E —y to
x—1. Since, F—y is a subspace, it is convex and hence 0 is the unique best approximation
from F —y to x — y or y is the unique best approximation from E to x. 0

. )
Theorem 2.1.11. Let H be a Hilbert space, x1,xs,... € H be linearly independent and
x e H. Let

Y = L({z1, 7s,...})

and let {uy,us, ...} be orthonormal subset of H obtained by applying Gram-Schmidt
process to x1,Ts,.... Form =1,2,..., consider the subspace

Ym = L({l’l, dpe o o < ,l‘m})

and
m

Yn = > _{T, Up)Up.

n=1

Then vy, is a unique best approximation from Y,, to x. Suppose
(0.0)
Z T, Up ) U

Then y is a unique best approximation from Y to x. Also,

N|—=

dit(a,) = (Jel? = X It )

- /

Proof. For m =1,2,..., we have

Y = L({x1, 20, ..., xm}) = L({ug, ugy ..., xp}).
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Now, for k =1,2,...,m,

(@ = Y, wk) = (@, uk) = (Y, k)

m
= (x,u) Z T, Uy, un,uk>
n=1

3

= (x, ug) Z T, Up) (U, U )

n=1

(x ug) = (@, ur)

Therefore, (x — y,,) L Y, for m =1,2,.... Thus, y,, is a unique best approximation from
Y,, to x (since Y,, a subspace and hence it is convex). Also,

Y = L({z1,29,...}) = L{u1, ug,...}).

By Theorem 1.3.5 (using Bessel’s inequality and Riesz-Fischer theorem),
= (z,un)u
n=1

converges in H (since H is Hilbert space).
Now, for k =1,2,.. .,

Therefore, (z —y) L Y. This, y is a unique best approximation from Y to z (since Y is a
subspace). In fact,

dist(2,Y)* = [lz — y|”

=(z—y,r—y)

=(z,x—y)— (Y. —y)
= (z, 2 —y) (c(z—y)LY)
= <az,x — z:l(a:,un)un>

)
= [laf* = > [, un)l?
n=1
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38 §2.2. Projection

Theorem 2.1.12. Let H be a Hilbert space, E C H be a closed convex subset of H and
x € H. Then there is a unique best approzimation from E to x.

Proof. Since d = dist(z, F) = inf{|ly — z|| : y € E}, there is a sequence {y,} in E such
that ||y, — z|| = d. Now for n,m = 1,2,..., by the Parallelogram law

(@ = yn) + (@ = ) I + (@ = ) = (@ = y) [ = 2|2 = pl* + |2 — y*)-
Therefore,

5 = ymll* = 2012 = yall* + Iz = ym[I*) = 122 = (g + y) |

Yn + Ym
= 2w = gl + o = gl = 4 o = (252"

2

Since E is convex and y,,, yn, € E, ¥23¥2 € E (taking ¢ = 1) and so by the above equation,

2
() 2 e

2
Therefore,

1Y = ymll* < 2(ll2 = yal® + |2 = y|*) — 4d”
—2d? 4+ 2d* —4d* =0 as n,m — o0.

Hence, {y,} is a Cauchy sequence in E. Since E is a closed subset of a complete (Hilbert)
space H, E is complete. Then there is y € E such that y, — y in E. Therefore,

|lx —y|| = lim ||z — y,|| = d = dist(x, E).

n—oo

Therefore, y is a best approximation from F to x. Since E is convex, the best approximation
from E to x is unique. O

Corollary 2.1.13. Let H be a Hilbert space and E be a closed convexr subset of H.
Then E contains a unique vector y of minimum norm.

Proof. Take x = 0. Then by Theorem 2.1.12, there exists y € E which is the unique best
approximation from E to z, i.e.,
Iyl = lly — =l| = dist(z, E)
= inf{|jz — 2| : 2 € E}
= inf{||z|| : z € E} (- x=0).

2.2 Projection
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(" N
Definition 2.2.1. Let (X, || - ||), (y, || - ||) be two normed linear spaces and 7 : X — Y
be a linear transformation. The kernel or zero space of T is

ker(T)={zx € H : Tz =0}

and the range of T is
N R(T)={Tz:x € X}. )

(- )
Definition 2.2.2. Let H be a Hilbert space. A linear transformation 7' : H — H is
\said to be a projection (or idempotent) if T? =T. )

If T is a projection, then
R(T)=Rangeof T ={zx € H:Tx =z}
Indeed, for = € R(T), there exists y € H such that Ty = x. Therefore,
r=Ty=Ty=T(Ty) =Tz.
On the other hand if x = Tz, then clearly, x € R(T).

(- A
Definition 2.2.3. A projection on a Hilbert space H is called orthogonal projection if
R(T) L ker(T) i.e., if y € R(T) and z € ker(T) then (z,y) = 0.
For a subset E of a Hilbert space H, the set

Et={ycH:(z,y)=0Vz € E}

\Us called the orthogonal complement of E. )

Note that if £ = (), then B+ = H.

Proposition 2.2.4. Let H be a Hilbert space and E C H, then E* is a closed subspace
of H.

Proof. Since 0+ = H is closed, we assume that E # 0. Let 21,7, € E+. Then (z1,y) =0
and (z2,y) = 0 for all y € E. Therefore,

(11 4+ 22,y) = (71,9) + (22,9) =0 Vye kL
Also, for « € K and x € E+,
(ax,y) =alr,y) =0 Vy€eE.
Thus E* is a subspace of H.
Now, suppose {x,} is a sequence in E* such that z, — z in H. Then for all y € E,
0= (2,,9) = (x,9) = (2,9) = 0= 2 € E*.
Therefore, E* is closed in H. 0

Example 2.2.5. Consider the line £ : y =2x and m : y = %x. Now the map P : R? — R?
defined by P(z,y) = (2z + %y, 2z + $y) is a projection.
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v3

Figure 2.1: Projection on ¢ along m

Theorem 2.2.6 (Projection theorem). Let H be a Hilbert space and Y be a closed
subspace of H. Then
YeY'=H and Y=Y,

where Y4+ = (Y1),

Proof. Clearly, Ht = {0} and {0}* = H. So we take Y # {0}. Since Y is a closed
subspace of a Hilbert space H, Y is a non-zero Hilbert space. So, Y has an orthonormal
basis F.

Now let £ € H. Then the set
E,={ueE:(z,u) #0}

is countable, say E, = {uj,us,...}. Also, since H is a Hilbert space, Yo (x, u,)u,
converges to some y in Y and (x —y) L E. Since E is an orthonormal basis of Y, we have

ie.,z=(r—y) €Yt sothat z =y + 2 withy € Y and z € Y+. Therefore,
H=Y+Y"*

Now, suppose z € Y NYL. Then 2 € Y+ and hence (z,y) = 0 for all y € Y. Since
x € Y, in particular taking y = z, we get {(v,z) = 0= 2 =0. So, Y N Y+ = {0}. Thus,

H=YoY"t|

Now, we show that Y = Y1+, If x € YV, then (z,2) = 0 for all z € Y. Therefore,
x € (Yl)L, ie.
Y cYy*th
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Now, suppose € Y. Since H =Y @ Y+, there exists y € Y and z € Y+ such that
r=1y-+ z.
Since y € Y C Y+ and z € Y+, we have
(x—y)=z€Y*

Therefore,
zEYTNYH ={0}=2=0=2=y.

Thus, z =y € Y and so Y+ C Y. Hence,
Yyt =v]|
E

Proposition 2.2.7. Let H be a Hilbert space and 'Y be a closed subspace of H. Then
there is an orthogonal projection P on H such that R(P) =Y and ker(P) =Y.

Proof. Since, H =Y @Y™, for € H there are unique z; € Y and x5 € Y+ such that
xr =21 + 2. Define P: H — H by Px = x;. Since x; is uniquely associated with x, P is
well-defined.

Now, let z,2’ € H. Then there exist z1,2;’ € Y and x9.25’ € Y such that
r=x1+22 and ' =2z|+a.
Then, x + 2’ = (z1 + 2}) + (22 + 24). Therefore,
P(x +2') = 2+ 2} = Px + Pz’

Similarly, P(ax) = azy = aPz for o € K and x € H. Therefore, P : H — H is linear.

Now, let ¥ = 21 + 29 € H with 71 € Y and x5 € Y+. Observe that z; € (Y C)H. So,
x1 = o1 +0, where we consider 0 € Y+ and so by the definition of P, Pz, = ;. Therefore,
we have

P%’z = P(Pz) = P(x,) = x, = P,

i.e. P2 = P and hence P is a projection on H.

Now, clearly R(P) C Y. If ; € Y, then as before x; = 21 +0 and so Pzy = x; € R(P).
Therefore R(P) =Y. Also,

ker P={x € H: P(x) =0}
={ecH:x=a,+z9,5. €Y, 25€ Y+, 2, =0}
—{z€H : x=2y 2, €Y} =Y

g

Note: This P in the above proposition is called the orthogonal projection associated to a
closed subspace Y of a Hilbert space H.

2.2.1 Continuous linear functionals
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-
Definition 2.2.8. Let X and Y be normed linear spaces. A linear transformation
T : X — Y is called bounded if there exists § > 0 such that

1Tz < Bllzl]  Va2elX

The set of all bounded linear transformation from X to Y is denoted by BL(X,Y'). In
this case, we define,
1T = sup{[[Tz| : = € X, lz]| <1}.

BL(X, X) is denoted by BL(X). Also, BL(X,K) is denoted by X', called the dual of
\X. Elements of X' are called bounded linear functionals on X. )

Remark 2.2.9. Let X and Y be normed linear spaces. and T' € BL(X,Y). Let 0 #z € X
and y = ;7. Then lyll =1 and so, ||Ty|| < ||T||. This gives

Bl

[Tz < Tz} V= eH,

Proposition 2.2.10. Let X and Y be normed linear spaces and T : X — Y be a linear
map. Then T is bounded if and only if T is continuous at 0. (In fact, T is uniformly
continuous).

Proof. Suppose T is a bounded linear map. Then there exists § > 0 such that
[Tal) < Bllefl  VzelX

Therefore,
[ Te =Tyl = IT(z -yl < Bllz —yl| Va,yeX

(Take ||z — y[| < §. Then [[Tz — Ty|| < €). Therefore, T" is uniformly continuous. In

particular, T" is continuous at 0.

Next, suppose that T is continuous at 0. Then for € > 0, there exists § > 0 such that
|Tz|| < € whenever x € X and ||z|| < § (since T'(0) = 0). Now, let x € X, z # 0. Take

y = md then ||y|| = % < 9. Therefore,

[Ty[l <e.
2
T < ngH Ve X.

Thus ||Tz|| < S||z|| for all € X. Therefore, T' is a bounded linear map. O

Definition 2.2.11. Let X and Y be normed linear spaces. The collection of all bounded
linear transformations 7" : X — Y is denoted by BL(X,Y).

Exercise 2.2.12. (BL(X,Y), | - ||) is a normed linear space.

Solution. Seminar exercise. OJ

Remarks 2.2.13. 1. If Y = X, then we denote BL(X, X) by BL(X).
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2. For 8,T € BL(X),
ST (@) < ST < [ISHITH]]]-
Therefore, ST € BL(X) and ||ST|| < [|S|||T|-

Exercise 2.2.14. If {S,} and {7} are sequences in BL(X) such that S, — S and
T, — T then

1. S, +T1T, > S+T.
2. 5,1, — ST and oS, — a8, a € K.

Proposition 2.2.15. Let X be an inner product space and T' € BL(X). Then

1T = sup{|(Tz, )| : 2,y € X, [lzf| <1, [ly|| <1}.

Proof. Claim: ||Tz| = sup{|{Tx,y)| :y € X, |ly|| < 1}, for x € X.
For if y € X with ||y|| <1, then for all z € X,

(T, )| < [Tyl < Tz

Now if Tz # 0, take y = ”g—i”, then |ly|| =1 and

Tx

(t5.0) = (o o)

1

= —(Tzx.T
ey T
Tl

Tl

[T

Therefore,
[Tz]| = sup{|(Tz,y)| : y € X, |lyll < 1}.

Therefore,

1T = sup{||T] - v € X, ||z} < 1}
= sup{sup{|[(Tz,y)| :y € X, [yl <1} :z € X, |Jz[| <1}
= sup{[(Tz,y)| :z,y € X, flzf| <1, [lyll < 1.

O

Notation: Let X be a normed linear space. We denote BL(X, K) by X’ and is known
as the continuous dual of X, i.e. the elements of X’ are bounded (and hence continuous)
linear functional on X.

Proposition 2.2.16. Let X be an inner product space and y € X. Define f : X — K
by
fl@)=(z,y) zeX

Then f is a bounded linear functional on X and || f]| = ||yl
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Proof. Clearly, f: X — K is a linear functional on X. Also for all z € X,

[f (@) = [z, )] < llzllllyll = lyllll=]-

Therefore, f is bounded linear functional on X and || f|| < |ly||. If y # 0, then take x = o
Then ||z|| = 1 and

_ S T
)=t = (o) = ol
Therefore, || f]| = |ly]|- O

Seminar Topics 4.

1. Let H be a Hilbert space and P : H — H be a projection. Show that I — P is also
a projection.
2. Consider the standard basis B; = {ej, e, ...} of cgy. Let B be a basis of 2 such
that B; C B. Show that there is a unique projection P : ¢ — (? such that
0, ifxe B
1, ifr € B~ By.
3. Find the zero space of above projection, and hence, show that it is discontinuous.
Define orthogonal projections R3 — R3 with the following zero spaces.
(i) {(z(1),2(2),2(3)) € R?: z(1) + x(2) = 0}
(i) {(z(1),2(2),2(3)) € R : x(1) + 2(2) + x(3) = 0}
(iii) {(x(1),z(2),z(3)) € R®: z(1) = z(2) + 2(3) = 0}
Show that every orthogonal projection is continuous.
6. Show that there is a unique nonzero orthogonal projection P : R® — R3 such that
P(x) =0 for every x € {(z(1),2(2),2(3)) € R?: (1) + 2(2) = 1,2(3) = 0}.
For normed linear spaces X, Y, show that (BL(X,Y), | - ||) is a normed linear space.
For normed linear spaces X,Y and T' € BL(X,Y), show that

P(z) =

=

o

% N

|IT|| =inf 8 > 0:||Tz|| < S z|text forallz € X.

9. Let X be a normed linear space and A € K. Define T': X — X by T'(z) = Az,
(x € X). Show that T" € BL(X).
10. Show that composition of two bounded linear transformations, if exists, is a bounded
linear transformation.
11. Let X be a normed linear space and {S,,} and {T,} be sequences in BL(X) such
that S,, — S and 7,, — T". Show that
(i) Sp+T,— S+T.
(ii) ST, — ST and oS, — a8, a € K.

2.3 Riesz-Representation Theorem

Theorem 2.3.1 (Riesz-representation theorem). Let H be a Hilbert space and f € H'
(i.e. f is (continuous) bounded linear functional). Then there is a unique y € H such
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that f(x) = (x,y), v € H. In fact,

_f(®)z

y_
|12

L
\for some z € (ker f)=. )

Proof. Let Y = ker f. Since f is continuous and linear, clearly Y is a closed subspace of
H (since {0} is closed, Y = f~1({0}) is closed). If f = 0 then take y = 0. So, we assume
that f # 0 and so Y # H. Then by the projection theorem,

H=Y®Y".

AsY # H, we have Y+ = {0}. Consider an element z € Y+ such that z # 0. Let z € H.
Take w = f(x)z — f(2)z. Then since f is linear,

f(w) = f(x)f(2) = f(2)f(x) =0,

i.e. w € ker f and therefore (w,2) =0 (.- w € Y, z € Y*). Therefore,

Therefore,

1@, /. T
s = e = (o )

Take y = 292 then f(z) = (x,y) for x € H.

[ER

Now, we show uniqueness of y. Suppose there exists y; € H such that f(z) = (z,y1)
for x € H. Then

(y—yuy) =fly—wv) =y —yu)
Therefore, (y — y1,y — y1) = 0 and hence y = y;. Thus, y is unique. U

Notation: The unique y (in the above theorem) corresponding to f € H' is called the
representor of f and it is denoted by y;.

Proposition 2.3.2. Let H be a Hilbert space and f € H'. Let yy be the representor of
fo Then || fIl = [lysll-

Proof. For x € H,

[f(@)] = [z, yy)]
< ll=llllysll-

Hence,

LAIF< Tlyll-
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On the other hand

Yr 1
(=) = Wr yr)
lysll” Tyl 7
= Jlsll-
Thus,
lysll < £

E

Example 2.3.3. Let H = (K",|| - ||2). If f € H' (i.e. f: H — K is continuous linear

functional) then by the Riesz representaion theorem there exists y = (y1,v2,...,yn) € K"
such that for x = (21, 29,...,2,) € H,

f(z) = (z,y) = 2171 + 2P + - + T, U

= QT1 + T + -+ ATy,
where a; = 7;.
Example 2.3.4. Completeness of the space is essential in the Projection theorem.

Solution. Consider the space X = cg, the space of all sequence in K having finitely many
non-zero terms. For x,y € cq, define

(e,y) = i’i 2.

Then (-,-) is an inner product on X.

Note that the sequence (1,%,...,1,0,0,...)is a Cauchy sequence but it is not convergent.

’ 9 ')

Therefore, the space X = ¢y is not complete. Define f: X — K by

f(x) = i Ty, r = (T,) € coo-

Then f is a linear functional on X. Also,

2 _ L _ L
F0F = |3 ] = (2 1ol
© 1\ (& o .
= (> — |2, (by Holder’s inequality)
n=1 n=1
W2 2
= T

Therefore, | f(z)| < Jz||z||2 for all z € X = coo and hence f is a bounded linear functional

on X. Therefore, Y = ker f is a closed subspace of X = ¢g. Since f(e;) =1, f # 0, where
er = (1,0,0,...). Therefore Y (= ker f) # X.
Claim: Y+ = {0}.
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Let z = (2(1), 2(2), . ) 6 Y+ C Coo Then there exists m € N such that z(j) = 0 for

all 7 >m, ie. z=(z(1) . For 1 <n < m, take
ifj=n
mH) ifj=m+1

otherwise,

ie. xn:(O,...,O, 1 ,0,..., 0 (m+1),0,0,...).Therefore,
~~ ~~ n
nth place mthplace
(R T
) T - —
/(@) n+(m+1) non

Therefore, x,, € ker f =Y and since z € Y+, we have (z,z,) = 0. But

(z,2,) = z(n).

Therefore z(n) =0V n = 2z = 0. Thus, Y+ = {0}. Since Y # X, Y &Y+ # X. Thus,
completeness of the space X is necessary for the projection theorem to hold. =

Example 2.3.5. Completeness of the space is necessary in the Reisz-representation
theorem.

Solution. Consider X = ¢op and f as in the last example, then f is a bounded linear
functional on X. Suppose, if possible, there exists y € X = ¢yo such that for every z € X,

f(x) = (z,y).
For m = 1,2,..., take e,, = (0,0,...,0, \1/ ,0,0,...), then f(e,) = % and clearly
mthplace

{(em,y) = y(m). Now, ,
m = flem) = (em,y) = m7
11 11

e y=(1,5...,5, R .) & coo = X. Thus, Riesz-representation theorem does not
hold without completeness of X. 0

Theorem 2.3.6 (Unique Hahn-Banach extension theorem). Let H be a Hilbert space
and X be a subspace of H. Let g € X', i.e. g: X — K is bounded (continuous) linear

functional on X. Then there exists a unique f € H' such that f‘X =g and || f|| = |lgll-

Proof. Let g € X" and Y = X. Then Y is a closed subspace of H. Let x € Y = X. Then
there is a sequence {x,} in X such that x,, — x. Since g is bounded, |g(z)| < ||g]|||z] for
every © € X. Therefore,

9(xn) — g(xm)| = [g(zn — 2m)|  (since g is linear)
< llglllzn — 2m|l-
Since {z,} is Cauchy, {g(x,)} is Cauchy and since K is complete, {g(x,)} is convergent.

Let

o = lim g(en).
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Now, suppose {z,} is a sequence in X such that z, — x. Then

lg(xn) — g(z0)| = |g(zn — 20)] (since g is bounded linear)
< llgllllan = znll
= llglllzn — & = 20 + ]
< lgll(lwn = 2| + [l2n — =)
—0 asn— oo.

Therefore,

Jim o) = Jim g(z1) = o

Define g(z) = a = lim, .o g(z,). Then g : Y — K and g is clearly bounded linear
(functional) and satisfies ||g|| = ||g||. Thus, g € Y’. Since Y is a closed subspace of a
Hilbert space, Y is Hilbert space.

Then by Riesz-representation theorem there is y € Y such that
g(x) =(z,y) VeeY
and
lgll = Nyl
Define f : H — K by f(z) = (z,y) for x € H. Then f € H', ||f|| = ||y|| and f‘X =g and

f‘X = Q‘X = g. Therefore,

1A= llyll = llgll = llgll-
Hence, |[f] = llgl-

To prove the uniqueness of extension f of g, consider h € H’ such that h’X = ¢ and
IRl = |lg||- Since h is continuous and X is closed in Y.

Inll =Nl and Al =g.
As h € H', there exists z € H such that h(x) = (z,2), x € H and ||h|| = ||z||. Therefore

(y,2) = h(y) = g(y) = (w,y) = |lylI*.

Now,
ly = 211 = lyll* — 2Rey, 2) + |2/
= [lyll* = 2[lylI* + Iyl
=0 Co A=zl = MRl = llgll = llyll)-
Therefore, z = y and hence h = f. B

(" )
Definition 2.3.7. Let H be a Hilbert space. We say that a sequence {z,} in H is
weakly convergent or converges weakly to x in H if

(Tn,y) = (z,y) VyeH.

. . w,
In this case, we write, z,, — x weakly or z,, — x.
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Remark 2.3.8. Is every weakly convergent sequence, convergent? The answer is not true
in general. Consider the following example, where we show that a weakly convergent
sequence may not be convergent.

Example 2.3.9. Let H be an infinite dimensional Hilbert space and {uj,us,...} be
orthonormal basis of H. Then by Bessel’s inequality, for each y € H,

> Wy un) P < lyll*.
n=1

Therefore,
(y,un) — 0 VyeH.

cAun,y) = (0,y) VyeH

Thus, u, — 0 weakly. But for m # n,

Hum - unH2 - <um — Unp, Um — un)
= [um |l + funll?
—141=2

i.e. ||ty — un|| = v/2. Therefore, {u,} is not Cauchy and hence it is not convergent.

Theorem 2.3.10. Let H be a Hilbert space and {x,} be a sequence in H. Then x, — x
if and only if x,, — x weakly and ||x,| — ||z

Proof. Suppose z,, — z, i.e. ||z, — x| = 0. Therefore, for each y € H,

) = (2,53 = LG — )
< Jzn = =[l[lyll = 0.
s Az, y) — (x,y) for each y € H.
Therefore z,, — x weakly. Also since z,, — x, clearly ||z,| — ||z||.

Conversely, suppose that z,, — = weakly and ||z,| — ||z||. Then

lzn = 2]1* = llzall* + 2]1* — 2Re{zn, 2)
= lll® +ll2l* =22l ¢ zny) = (2y)
= 0.

Therefore x,, — =. El

Theorem 2.3.11. Let H be a Hilbert space and {x,} be a bounded sequence in H. Then
{z,} has a weakly convergent subsequence.
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Proof. Since {x,} is a bounded sequence in H, there exists o > 0 such that ||z, || < « for
all n. Then by Schwarz’s inequality,

(@, 20)| < zallllzall <0 V.

Therefore {(x,,x1)} is a bounded sequence in K and hence by Bolzano-Weierstrass theorem
for K, the sequence {(z,,z1)} has a convergent subsequence, say {(z,1,x1)}. Observe
that the sequence {(z,1,%2)} is bounded because

[{n1, 22)] < [lznallllzzl <o Vo

Again, therefore, the bounded sequence {(z, 1, z2) } has a convergent subsequence { (2,2, x2) }
and so on. Thus, for each m we get a convergent subsequence {(z ., xm)} such that
{{%nm,x;)} converges for each j =1,2,... ,m.

Consider the convergent subsequence {(,,,x;)} for i = 1,2,... (" for n > m
{(Znn, Tm)} is a subsequence of the convergent subsequence {(z, m,Zm)}).

If y € {z1,29,...} then {(z,,,,,y)} converges. As a result, if y € L({z1,22,...}), then
{{xpn,y)} converges in K. Let Y = L({z1,22,...}). If y € Y, then there is a sequence

{yr} in L({x1,29,...}) such that y, — y. Fix kg € N such that |y, —y| < ;5. Fix

k > ko. Since {(x, ., yx)} converges, it is Cauchy. Consequently, there is ny € N such that
(Znm = Zonms Y)| = (o Yk) = (Tnm — Tmm, Yk)| < 5. As a conclusion to all this, for all
n,m Z no,

|<xn,m y) - <xm,m7 y>| <xn,n — Tm,m, y>|

S ’<xn,n - xm,may - yk)’ + ’<xn,n - xm,ma yk)’
S ||xn,n - xm,m”Hy - yk” + |<5L'n,n - xm,m7yk>|
< (lznnll + lzmm DIy — vl + (Znn — Tmms Ui
<2 € i €
ai J—
4o 2
= €.

Therefore, {(x,..,y)} is a Cauchy sequence in K and hence, it converges in K for all y € Y.
Since Y is a closed subspace of H, by the projection theorem, we have

H=Y®Y"
Therefore every x € H can be written as x =y + z with y € Y and z € Y*. Then

<xn,n> x> = <xn,nay> + <xn,n7 Z)
= <xn,n7y> ( Tpn € Y, zZ € YL = <xn,n7z> = 0)

Therefore {(z,, ., x)} converges in K for each x € H. Now, for z € H, take

f(z) = lim (x, x, ).

n—oo

Then f: H — K is a linear functional on H. Also, since

@) = lim (@20 <allz],  zeH
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we see that f is a bounded (continuous) linear functional on H. By Riesz representation
theorem there exists y € H such that f(x) = (z,y), for all x € H. Therefore

lim (x, x,,) = f(z) = (z,y), VaoeH,

n—oo

ie. (Tpn,x) — (y,x) Ve H.
Thus, z,,, — y weakly, where {x,,} is a subsequence of {x,}. O

Definition 2.3.12. Let H be a Hilbert space and £ C H. We say that E is weakly
bounded if for each y € H such that o, > 0 such that

z, )| <oy Vze€kE.

Remark 2.3.13. Let £ C H and f € H'. Then there is y € H, let f = f,, where f,
denotes the bounded linear functional on H defined by f,(z) = (z,y), (x € H). Clearly,
f(E) = {{z,y) : x € E}. Consequently, E is weakly bounded if and only if f(F) is
bounded for all f € H'.

Lemma 2.3.14. Let H be a Hilbert space and 'Y be a finite dimensional subspace of H.
Let Py denote the orthogonal projection of H on Y. If E is weakly bounded subset of H
then the set {Py(x) : x € E} is bounded.

Proof. Let B = {y1,%a2,...,Yyn} be an orthonormal basis of Y. Define Py : H — Y by

Py(l’) = <$7y1>y1+<$7y2>y2+"'+ <$7yn>ym (27 € H) (25)

Clearly,

Py® = Py(Py(z)) = Py({z,y0)y1 + (@, y2)y2 + -+ + (T, Yn)Un)
= (@, y1) Py (y1) + (@, 92) Py (y2) + - - + (2, Yn) Py (Yn)
=z, y)y + (T, )2+ (T, Y)Y (DY (2.5), Py (vi) = i)

Therefore P2 = Py, i.e. Py isidempotent (projection). Also, the range of Py is R(Py) =Y.
Also,

H=YoY™"
Then, since P is a projection, R(I — P) =ker P = Y+
Since F is weakly bounded, there exist ay,, ay,, ..., ay, > 0 such that

(o) <ey, Vz€B Yji=12...n
Therefore for x € F,

| Pyz||? = [{z, y1)|* + [z, y2)|* + - -+ + (@, yn) |? (by Pythagoras theorem applied to (2.5))

_ 2 2 2
= Qy, +ayz + +O‘yn'

Hence for all x € E, ||Pyz| < N, where N = \/0451 +a2, +---+ai . Thus, the set
{Pyx : x € E} is bounded. O
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Theorem 2.3.15. Let H be a Hilbert space and E be a subset of H then E is bounded
if and only if E is weakly bounded.

Proof. Suppose E is bounded. Then there exists an M > 0 such that ||z|| < M for all
x € E. Then for each y € H,

(=, o) < llzllllyll < Mllyll, =< E.

Therefore F is weakly bounded.

Conversely, assume that E is weakly bounded, i.e. for each y € H there is o, > 0 such
that [(z,y)| < ay for all z € E.

Suppose, if possible, E is unbounded. Then there exists x1 € E such that ||z1]| > 1. Let
2y =xy and Yy = L({z1}). Take P, = Py,. Since, dim Y] < o0, i.e. Y} is finite dimensional,
the set {Pi(z) : x € E} is bounded. Hence the set {x — Py(z) : € E} is unbounded
(otherwise E is bounded).

Since 2 (2 + Hazl”) > 0, there exists x5 € E such that ||xe — Py(z2)]| > 2 (2 + ”%10-
Zl 1

Let zo = x5 — Pi(x3). Then ||z > 2 (2 + ”azl ) and zy L Y7. Therefore,

21 1 Z9.

Let Yo = L({z1,29,22}). So dimY; < oo. Let P, = Py,. Then the set {P(z) :
x € FE} is bounded. Therefore the set {x — Py(z) : x € E} is unbounded. Since

3 (3 + ”azl” + Hazz”) > 0, there exists x3 € E such that

o)
||$3—P2(l'3>|| >3<3+ Q1 + = ) .
o, | [levs, |
Take z3 = w3 — Py(x3). Thus, ||z3]| > 3 (3 + IIZZIH + ||zz2”> and z3 1 Y5. So, 21, 29, 23 are
Z1 22
orthogonal. Continuing this way, suppose that z1,xs, 2o, ..., 2, 2, are chosen such that
21, 22, ..., Zm are orthogonal. Take
Yo = L({z1, 22, 29, . . ., Ton, Zm }-

Then dimY,, < co. Take P,, = Py, . Then the set { P,,(x) : x € E} is bounded and hence
the set {x — P, (x) : * € E} is not bounded. Since (m + 1) (m +14+357, ”az]-}> > 0,

there exists x,,11 € E such that

”xm-i-l - Pm(xm-i-l)H > (m+ 1) (m+ 1+Z H Qz; H)

Take 211 = Tmi1 — P(Tmy1). Then

lZmat]l > (m +1) <m+ 1 +Z o ||> (2.6)

and 2,11 L Y,,. Therefore 21, 25, ..., 2, Zms1 are orthogonal such that none of them is 0.
Then

H2m+1||2 = <Zm+17 Zm-l—l)
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= <xm+17 Zm+1> - <Pm(mm+1)v Zm+1>
= <f]jm+1, Zm+1> ( Pm(xm+1) < Ym7 Zm+1 1 Ym) (27)
Now,
(Tma1, 20y =0 Vn>m+2 (o zn L Yoia, Tmg1 € Yinga)- (2.8)
Take u; = Hiﬁ’ j=1,2,.... Therefore uy,us, ... are orthonormal. Since, 322 & < oo,
by Riesz-Fischer theorem,
Z —u,, converges in H.
n=1
Suppose y = > 074 %un Then
> 1
Ty, )] = | T, Z —Up
n=1 n
m-+1 1
= (e S ) (by (2.8)
n=1 n
> [(omer, 22 (i, 3 )|k 812 ol — 18]
- m+1 —n -
Zm+1 i ay
Z xm+17 >‘ - =
< (m+Dllzmsall /| 2= [zl
[ —
- -y (by (2.7)).
(m+Dllzmall 5= [l
Therefore
[Zmiall ¢~ a2
(@i, y)| 2 ——— = 0
m+ 1 n; |z
m a, m a.,
> (m+1) + -y (by (2.6))
=zl = ]
=m+1
which is not possible since |(z,y)| < ay, V 2 € E. Therefore £ must be bounded. O
Seminar Topics 5. In these exercises, H will denote a Hilbert space.

1. Let E, I be subsets of H. If E, F' are bounded, then show that £ + F, F' U F are

also bounded.

2. Let Y be a subspace of H. Show that Y is bounded if and only if Y = {0}.

3. £ C H and P be an orthogonal projection on H. Show that F is bounded if and

only if P(E) as well as (I — P)(FE) is bounded.
Let E C H be convex. Show that E is also convex.
5. Show that a subspace of H is convex.

=~
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CHAPTER

Bounded Operators on Hilbert spaces

3.1 Adjoints of Bounded Operators

In this section we discuss the adjoint of a bounded linear operator (i.e. bounded linear
map). Before we define it formally, consider the following example:

Example 3.1.1. Let H = (2 be the Hilbert space of square summable sequences. Let
S:H — Hand T :H — H be the left-shift and the right-shift operators respectively, i.e.

for . = (x(1),z(2),...), y = (y(1),y(2),...) € 2,
S(y) = (y(2),y(3),...) and  T(z)=(0,z(1),2(2),...).

Clearly, S and T are linear maps. It is also easy to see that S and T are bounded, as

ISyl = (guswwf _ (gy(in?)é < (Swr) =i

iral = (3 7 ) - (S0 ) el (TR =0)
)

Thus, S, T € BL(H

=

and

Also, observe that

(T, y) = ((0,2(1), 2(2),...), (y(1), ¥(2),4(3), .. )

Thus, S,T € BL(H) are opposite of each other in the sense that for every z,y € H = (2,
(Tz,y) = (z,5y).
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Remark 3.1.2. Now, we may have two questions here. First question is: given a bounded
linear map 7" on a Hilbert space H, i.e. T' € BL(H), does there always exists another
bounded linear operator S € BL(H) such that (T'z,y) = (z, Sy) for all x,y € H? Secondly,
if such operator (map) S exists, then is it unique?

The answer to both the questions posed above is affirmative in case of Hilbert space but
not true for every inner product space (which are not complete). First we prove the following
theorem which affirms the existence of unique operator S such that (T'z,y) = (z, Sy) for
all z,y € H. After proving the theorem, we give a counter example which shows that it
need not be true in an inner product space which is not complete.

Theorem 3.1.3. Let H be a Hilbert space and T € BL(H). There there is a unique
S € BL(H) such that (T'z,y) = (x,Sy) for every xz,y € H and ||S| < ||T.

Proof. For y € H, define f, : H — K by
fy(x) = (T, y) for all x € H.

Then f, is a linear functional on H (Verify!). Also,

(@) = [Tz, y)]

< ||Tz|||ly| (Schwarz inequality)
< ([T Hl=[lllyll (T is bounded)
= (T Myl

Therefore, f, is bounded and || f,|| < [|T||||y||. Then by the Riesz-representation theorem
there is a unique z € H such that

fy(x) = (2, 2) reH
and

1yl = [I=]].
Define S: H — H by Sy =z, (y € H). Then

(Tx,y) = fy(z) = (z,2) = (x, ), x € H.
Then S : H — H is linear for if y;,y, € H then for all x € H,

(Tz,y1 + ya)

= (Tz,y1) + Tz, y2)
= [y () + fy.(2)

= (z

= (x,

<33‘,S(y1 +y2)> =\t

,Sy1) + (w, Sy2)
S(yr + y2)).
Therefore

S(y1 +y2) =Sy1 +Sy2 Y yi,y2 € H.

Similarly, (Check!)
Slay) =aSy VyeH, a€K.
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Thus, S is a linear map. Now, for y € H

1Syl = llzll = 1Al < 1Tyl

Therefore S is bounded and taking supremum over all y with ||y|| < 1, we have
IS < [IT]]-
Now to show the uniqueness of S, suppose S’ € BL(H) such that for all z,y € H,

(z,Sy) = (Tx,y) = (x,5y).
Then, (z, (S — S")(y)) =0 for all z,y € H and hence S = 5. O

Definition 3.1.4. Let H be a Hilbert space and T'€ BL(H). The (unique) operator
S € BL(H) such that (T'z,y) = (x, Sy) for all z,y € H is known as the adjoint of T
and it is denoted by T™. Thus,

(Tx,y) = (x, T"y) for all z,y € H.

In Example 3.1.1, we saw that the right-shift operator on ¢2 is the adjoint of the left-shift
operator on /2. Let us give one more example of adjoint of a bounded linear operator.

Example 3.1.5. Consider the Hilbert space H = C?. Let T € BL(H) by defined as
T(z,y) = (z + iy, dy) for (z,y) € C2. Then one can see that its adjoint T* € BL(H) is
given by T*(z,y) = (z, —iz — iy) for all (z,y) € H = C? as for (z1,wy), (22, ws) € C?

(T'(z1,w1), (z2,w2)) = ((21 + twy,iwy), (22, ws))
= (21 + 1w1)Zy + 1wy
= 2129 + 1wy (22 + W2)
= ((z1,w1), (29, —i29 — iwo))

= ((z1, w1), T" (29, w2)).

Thus, for all z,y € C? we have
(T'z,y) = (z,Ty).

Exercise 3.1.6. Show by an example that the completion of the space is necessary for
the existence of the adjoint of a bounded operator.

Solution. Let X = cyo. We have already seen how inner product is defined on ¢y and that
it is not a complete space. Define T": X — X by

Tx = <§: x(nn),0,0,..) for v = (z(1),2(2),...) € X. (3.1)

n=1

Then T': X — X is a linear map (Verify!). Now, for all z € H

i x(n)
n

< > —fz(n)|

IT|| =
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IA

(i 1) ’ (i |a:(n)|2> ’ (Holder’s inequality)

Therefore T : X — X is a bounded linear operator, i.e. T'€ BL(X).

Suppose there exists S € BL(X) such that (Tx,y) = (x,Sy) for all x,y € X = cq.
Take u, = (0,0, ...,0, \1/ ,0,...). Then

nthplace
(Su1)(n) = (uy, Suy)
= (Tup,uy) (by (3.1))
1
n
Therefore (Su;)(n) = + for n =1,2,.... Hence, Su; € X = coo which is a contradiction
as S € BL(X). O

Proposition 3.1.7. Let H be a Hilbert space and S,T € BL(H), o € K. Then
1. (S+Ty=8*+T*

2. (aS)* = asS*
3. (ST)* = T*S*
4. (S*) =S

Proof. 1. Fory e H,

(1, (S +T)') =

S+T)z,y)

Sz, y)y + (Tx,y)

x, S™y) + (x, T"y)

z, (S*+T")y) x € H.

o~ o~ o~ ——

Therefore,
(S+T) =85"+T"
2. Forye H,
(z,(aS)"y) = (@S)z, y)
= a(Sz,y)
= oz, S™y)
= (z,aS"y) x e H.
Therefore,
(S)" = aS*
3. Forye H,
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= (z,T*S™y) x e H.

Therefore,
(ST)" =T*S™.
4. Fory e H,
(2, (57)"y) = (5", y)
= <y7 S*I)
= (Sy,z)
= (z,SY) reH
Therefore,
(57) =5
O
Corollary 3.1.8. Let H be a Hilbert space and S € BL(H) be invertible in BL(H ).
Then S* is invertible in BL(H) and (S*)™1 = (S71)*.
Proof. Since S is invertible in BL(H), there exists S~' € BL(H) such that
SSt=8"15=1
Taking adjoint, we get
(SS Y =S 'Sy =I"=1
Therefore,
(Sfl)*S* — S*(gfl)* =T
Hence, S* is invertible in BL(H) and (S*)~! = (S~1)*. E

Proposition 3.1.9. Let H be a Hilbert space and T' € BL(H). Then ||T*|| = ||T|| and
17T = IT°||*.

Proof. We have seen (in Proposition 2.2.15) that in a Hilbert space H, norm of T' € BL(H)
is defined by
1T} = sup{[(Tz,y)| : w2,y € X, [lz] <1, [yl <1},

Now, for x,y € H,
(Tz,y)| = [y, Tz)| = (T"y,2)|.
By taking supremum over z,y € H with ||z|| <1, |ly|]| < 1, we get

1= 1T

We also know (by Remark 2.2.13) that ||[T*T| < || T*|||T]| = ||T|*.
Now for x € H,

||T33||2 = (Tz,Tx)
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= (x,T"Tx)
< [|l=l[l[T"T ]

Taking supremum over x € H with ||z|| < 1, we get ||T||* < ||T*T||. Therefore
|T|* = (| 7°T.
E

Remark 3.1.10. Suppose H is a separable Hilbert space with orthonormal basis u, us, . . .
and T' € BL(H). If the matrix of T with respect to this orthonormal basis is

m(T) = (cuj).

Then
Oéz‘j = <TUj, Ul>

Now if m(T™*) = (B;;) with respect to orthonormal basis, then f;; = (T"u;, u;). Then
Bij = (T"uj, u;)
= (uy, Tu;)
== <TUZ, Uj> = 6(1]
Thus, m(T™) is the complex conjugate of the transpose of the matrix m(T).

Remark 3.1.11. Note that this is the case in Example 3.1.5. The bounded linear operator
T is defined by the matrix

and its adjoint 7* € BL(C?) as defined in Example 3.1.5 is given by the adjoint (conjugate
transpose) of the matrix of 7" as follows:

m(T*) = [ L 0.] .
Thus, for all (z,y) € C?,
T(z,y) = (v + iy, iy) and  T*(z,y) = (v, —iz — 1y)
are adjoints of each other as bounded linear operators.

Example 3.1.12. Let H = ¢?. As seen in Example 3.1.1, let 7" be the right-shift operator
on (% i.e. define for z = (x(1),2(2),...), T : £* — (* by

T(z(1),2(2),...) = (0,2(1), 2(2),...).

Then ||Tz||?> = ||z||* for all x € £2, i.e. T is isometry. Therefore T" is bounded and ||T|| = 1.

Consider the orthonormal basis {e, : n € N} of ¢?, where ¢, = (0,0,...,0, \1/ ,0,...).

nth place

So, by definition, T'(e,) = €,41 for alln =1,2,.... If

m(T) = (ij)
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is the matrix of T" with respect to this orthonormal basis then

aij = (Tej, ei) = (€11, €i) = d(j+1)(0)-

Therefore,
0 0 00 1 01 00 1
1000 0010
m(T)=[0 10 0 and  m(T") =0 0 0 1
0010 0000

Then T*(z(1),2(2),z(3),...) = (x(2),z(3),...).

Note: The operator T on ¢? defined in the above example is known as unilateral right-shift
and 7™ is known as unilateral left-shift.

Theorem 3.1.13. Let H be a Hilbert space and T € BL(H). Then
(a) ker(T) = R(T*)* and ker(T*) = R(T)*.
(b) ker(T)* = R(T*) and ker(T*)* = R(T).

Proof. (a) First we show that ker(T) = R(T*)".
reker(l)e Te=0
& (Tr,y)=0 VYyeH
< (v, T'y)=0 VyeH
&z e R(TH* .
By replacing T by T* and using (T*)* = T, we get ker(T*) = R(T)*.

(b) Taking L (complement) on both sides of (a) and also using the result that if Y is a
subspace (not necessarily closed) of H then Y1+ =Y we get

(ker T)*= = R(T*)** = R(T).

By replacing T' by T* and using (T%)* = T', we get

ker(T*)* = R(T) (T =T).
O
Corollary 3.1.14. Let H be Hilbert space and T € BL(H). Then
(a) T is injective i.e. T is one-one if and only if R(T*) is dense in H.
(b) T* is one-one if and only if R(T) is dense in H.
Proof. We know that T is one-one if and only if ker 7" = {0} if and only if
H={0}" = (ker T)*" = R(T%),
i.e. if and only if R(7T™) is dense in H.
For (b) part, replace T' by T*. =
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Definition 3.1.15. Let H be a Hilbert space and T' € BL(H). T is called bounded
below if there exists § > 0 such that ||Tz| > S||z|| for all x € H.

Remarks 3.1.16. 1. If T'€ BL(H) is isometry then 7" is bounded below.
If T is isometry then ||Tx| = |||, so in this case taking 5 = 1, we conclude that T
is bounded below
2. If T'e BL(H) is bounded below then 7' is one-one.
Let x € H such that Tx = 0 then because T is bounded below, there exits 5 > 0
such that
0= |Tx|| = Bllzll = ||zl <0 =z =0.

Therefore, T' is one-one.

Proposition 3.1.17. Let H be a Hilbert space and T' € BL(H) be bounded below. Then
R(T) is closed in H.

Proof. Let y € R(T). Then there is a sequence {z,} in H such that Tx, — y. Therefore,
{T'z,} is Cauchy. Since T is bounded below, there exists 5 > 0 such that

|7zl > Bllzll Ve H.

Now, for m,n € N,
Bllwn — xpll < || Tap — T

Since {T'x,} is Cauchy, we get that {z,} is a Cauchy sequence in H. Since H is complete,
x, — x in H. As T is continuous, Tx, — Tx. But we have Tz, — y and hence by
uniqueness of limit, we have y = Tx € R(T'). Therefore, R(T) is closed. O

Theorem 3.1.18. Let H be a Hilbert space and T € BL(H). Then R(T) = H (i.e.
T is onto) if and only if T* is bounded below. Hence, R(T*) = H if and only if T is
bounded below.

Proof. Suppose R(T') = H (i.e. T is onto) then we have to show that 7™ is bounded below.
Suppose T™ is not bounded below. Then for each n, there exists z,, € H such that

1 *
Szl > 1772 (3:2)
Take yn = n7z;. Then |lyn|| = n. Now,
n
1T ynll = 17|
[l
n_ |zl
(by (32))
] 72
<1 vV n.

Let y € H = R(T). Then there exists x € H such that y = Tx. Now,

[{Yn> 9)| = [y, T')
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= [(T"yn, )|
< [T ynll[l]
< |l Co Tyl < 1).

Therefore the set {y, : n € N} is weakly bounded (taking o, = ||z||) and hence it is
bounded as we know (by Theorem 2.3.15) that a set E is weakly bounded if and only if it
is bounded. But ||y,|| = n which is a contradiction. Hence, 7 must be bounded below.

Conversely, assume that 7™ is bounded below. Then there exists 5 > 0 such that
T[] = Bll«f| Ve H.

Then by the last proposition, R(7™) is a closed subspace of a Hilbert space. Hence, R(T™)
is a Hilbert space.

Now, since T* is bounded below (by Remark 3.1.16), T* is one-one. Hence, for each

z € R(T*) there is a unique w € H such that T"w = z. Let y € H. Define g : R(T*) - K
by

9(z) = g(T"w) = (w,y),  weH. (3.3)

Then, clearly g is well-defined linear functional on R(7*). Now, for all z € R(T*)

|9(2)| =[l{w, y)]
= [[wllllyl

1
< EHT*MH llyll (since T is bounded below)

1 1
= Slellyl = (5||yu) el

Thus, g : R(T*) — K is a bounded-linear functional on the Hilbert space R(T*). So, by
Riesz-representation theorem, there exists x € R(T™) such that ¢g(z) = (2, x), z € R(T™).
Now, for all w € H, we have

g(T"w) = (T"w, z) = (w, Tx).
But by (3.3), we have g(T*w) = (w,y), ¥ w € H. Thus,
(w, Tz) = (w,y), Vwe H.
Therefore y = T’z and hence R(T') = H. &

Remark 3.1.19. Summing up the above remarks and results, we observed here that
1. T is bounded below = T is one-one (by Remark 3.1.16).
2. T is bounded below = R(T) is closed subspace of H (by above Proposition).
3. T* is bounded below < R(T') = H, i.e. T is onto (by above Theorem).
Also, T is bounded below < T* is onto, i.e. R(T*) = H.

3.2 Normal, Unitary and Self-adjoint operators
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Definition 3.2.1. Let H be a Hilbert space and 7" € BL(H). Then
1. T is said to be a normal operator if 7T = TT™.
2. T is said to be unitary it T%T = [ =TT".
3. T is said to be self-adjoint if T* =T.

Remarks 3.2.2. 1. T is normal if and only if
(T*x, T"y) = (Tx, Ty), Vax,y€ H.
2. T is unitary if and only if
(T*x, T"y) = (x,y) = (Tx, Ty), Vax,ye H.
3. T is self-adjoint if and only if

(Tw,y) = (x,Ty), Vaxyel.

Note that remark (2) above implies that unitary operator preserves the inner product,
i.e. it preserves the geometric structure. It is clear that every unitary operator is normal
and very self-adjoint operator is also normal.

Now, we give an example of a normal operator. We show that the diagonal operator is
normal.

Example 3.2.3. Let H be a separable Hilbert space. Then (by Theorem 1.3.10) H has a
countable orthonormal basis. Let uy, us, ... be orthonormal basis for H. Let {a,} be a
bounded sequence in K. Define T': H — H by

Tx = Zan(x,un)un, x € H.

n=1
Then for j =1,2,...,
TUj = OéjUj
:Oul+OUQ+"'+OUJ‘,1+Odej+OUj+1+"' .

This operator T is thus called a diagonal operator. Since, {a,,} is a bounded sequence,
the operator T' is bounded. Also,

T 'y = Z (T, Uy YU xr e H.

n=1

Thus, T™ is also diagonal and

T (Tx) = i an(Tx, uy)u,
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oo

= Jan]* (@, un)uy, x € H.
n=1
Similarly, (Show!) we have
TT 'z =Y |ow*(x,un)u,, € H.
n=1

Therefore TT* =TT, i.e. the diagonal operator is a normal operator.

Note: From above example, it follows that, unitary diagonal operator is self-adjoint if
and only if all the diagonal entries are £1.

Now, we shall derive the condition on a matrix of an operator T" for T to be normal,
unitary and self-adjoint. Consider the following example.

Example 3.2.4. Let H be a separable of Hilbert space and wuy, us, ... be orthonormal
basis for H. Let T' € BL(H) and M = («;;) be the matrix of T" with respect to this
orthonormal basis, i.e.

Q5 = <T'LL]', uz> W ’l,j

and -
TU]' = Z aijui.
i=1
So, T*up = 3071 BmkUm, where B = agpm. Now,
<T*TUj, Ul> = <TU]‘, TUZ>

00 00
= <Z Qi Unp, Z amium>
n=1 m=1
0o 00
= Z Z Oénj&mi<un7um>

n=1m=1
o)

= Z Qnj Q-
n=1

Similarly, (T'T*uju;) = Y001 @jn . Thus,

1. T is normal if and only if for each i, j

o oo
D Qjnlin = ) Qi
n=1 n=1

2. T is unitary if and only if for each i, j

Z QjnQlin = 0;j = Z Ol Ol

n=1 n=1

1 ifi=y

0 ifi#j.

3. An operator T is self-adjoint if and only if the matrix of T" is conjugate symmetry
(i.e. matrix of 7" is same as the conjugate of its transpose).

where 5ij =
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Theorem 3.2.5. Let H be a Hilbert space and T € BL(H) be self-adjoint. Then

|IT|| = sup{[{T'z, )| : v € H,[J«f| < 1}.

Proof. Let v = sup{|(T'z,x)| : * € H, ||z|| < 1}. Then clearly a < ||T]| as

a= sup{[(Tz,z)|: x € H, ||z|] <1}
< sup{[(Tz,y)| : z,y € H, [lz]| <1, |yl <1} =|IT].

Now, we show that ||T'|| < a. For x € H, z # 0, take y = %. Then ||y|| = 1 and by

[EH]
Ty, 4)] = ‘<||T||||||>' <o

Therefore, for all z € H, we have

definition of a, we have

(T, z)| < ol (3.4)
Now, for x,y € H,

(T(x+y)z+y —(T(@—-y),r—y) = Tz,z) + (Tx,y) + (Ty,z) + (Ty,y)
— [Tz, 2) — (Tz,y) — (Ty,z) + Ty, y)]

= 2[(T'z,y) + (Ty, )]
=2[(Tx,y) + (y, Tx)] (.- T is self-adjoint)
= 2[(Tz, y) + (T'z, y)]
= 4Re(Tx,y)
Now,
4Re(Tw,y) < [(T(z +y),z +y)| + [Tz —y),z - y)
< a(flz +yl* + [lz = yl*) (by (3.4))
= 2a(||z||* + ly|*) Vz,yeH (by Parellogram law).

Thus, if z,y € H with [|z|| <1, ||y|| < 1, then 4 Re(T'z,y) < 4 or
Re(Tz,y) < « (3.5)

for all z,y € H with [|z]] < 1 and ||y|| < 1. Take z,y € H with ||z| <1, |ly|]| < 1 and
(Tz,y) = re??, where r = |(Tx,y)|. Take g = e=z. Then ||x¢|| = ||z| < 1 and

(Txo.y) = e (T, y) = r = [Tz, y)|.
Therefore, by equation (3.5), since ||zo| < 1 and ||y|| < 1, we have
[Tz, y)| = (Txo, y) = Re(zo,y) < .
Taking supremum over all z,y € H with ||z|| < 1, |ly|]| < 1, we obtain
17| < o
S AT = sup{[{T, 2)| - x € H, |[x]] < 1}.
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Corollary 3.2.6. Let H be a Hilbert space and T € BL(H) be self-adjoint. Then
(Tx,z) =0 for all x = 0 if and only if T = 0.

Proof. By above theorem, we have

17l =0
& sup{|{Tw,2)| 2 € H, o] <1} =0
& (Tx,z) =0, Ve H.

&

Consider the following example in which (T'z,z) = 0 for all z € H but T # 0. Then we
show that T is not self-adjoint.

Example 3.2.7. Take H = R? and define T': H — H by T(x(1),2(2)) = (—x(2),2(1))
for all z = (z(1),2(2)) € R* = H. Then

(T, w> ((—w(2),w( ) (x(1), 2(2)))
—z(2)2(1) + 2(1)(2) = 0.

Thus, (T'x,xz) = 0 for all x € H. But notice that 7" # 0 as
T(1,0) = (0,1) £ (0,0).

Then by above corollary, T" cannot be self-adjoint. Consider the matrix of T given by

m(T) = [(1) _01] .

« |0 1
m(T") = l_l O] :
Thus, T'# T* and so T is not self-adjoint.

Then the matrix of T™ is

Proposition 3.2.8. Let H be a Hilbert space and T'€ BL(H). Then
1. T is isometry if and only if T*T = 1I.
2. T is unitary if and only if T is an onto isometry. In that case, ||T~(z)| = ||z||
for all x € H.
3. T is normal if and only if |Tz| = ||T*z|| for all x € H.

Proof. 1. For every z € H,

1Tl = o
& (Tx,x) = (z, )
& (T"Tx,z) = (x,x)
< (T'T — DNx,z) =0
sT'T—-1=0 (. T*T — I is self-adjoint, by Corollary 3.2.6)
ST =1.
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2. If T is unitary, then T*T =1 = TT*. As T*T = I by (1) above, T is an isometry.
Let y € H and let x = T*y. Then

Te=T(T"y) =1y =y.
Thus, T is onto. Since, T is unitary, 7-! = T*. Then,
] = |TT*(2)|| = | T(T"2)|| = |T"|| = |7~ || (T is isometry).

Conversely, assume that T' is an onto isometry. Since, T is an isometry, clearly T
is one-one. Thus, T': H — H is one-one and onto and hence T is invertible. Also,
since T' is isometry by (1) above, T*T = I. Now,

TT* = (TT*)(TT™)
= T(T*T)T™"
=TIT ' =1

Therefore, TT* = I =T*T, i.e. T is unitary.
3. For every x € H,
| T = | T"|?
& (Tx,Tz) = (T"x, T x)
& (T"Tz,z) = (TT x, x)
< (T =TT )z, z) =0

S T'T-TT =0 (. T*T — TT" is self-adjoint, by Corollary 3.2.6)
ST T=TT".
Therefore, T' is normal if and only if ||Tx| = ||T*z|| for all x € H.
U
Corollary 3.2.9. Let H be a Hilbert space and T' € BL(H) be normal. Then
T2l = 1T*T|| = [ITI1* = IIT*]* = I(T")?].
Proof. Since T is normal, by above theorem, for x € H
IT%2|| = |T(T)|| = | T"(T=)]l.
Taking supremum over all x € H with ||z|| < 1, we get
|72 = |T*T|| = ||T||* (the last equality by Proposition 3.1.9).
Replacing T" by T, since T' is normal, we get
(T2 =TT = |ITT*|| = ||T"|*
Hence, the result. O

Now, we investigate whether and under what conditions sums, products (compositions)
and limits of self-adjoint, normal and unitary operators are self-adjoint, normal and unitary
respectively.
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. )
Theorem 3.2.10. Let H be a Hilbert space.
(a) Let S and T be self-adjoint. Then S + T is self-adjoint. Also, ST is self-adjoint
if and only if S and T commutes.
(b) Let S and T be unitary. Then ST is unitary. Also, S+ T is unitary if and only
if it is surjective and Re(Sz, Tx) = —1 for every x € H with ||z| = 1.
(c) Let S and T' be normal. If S commutes with T* and (hence) T commutes with S*

S then S +T and ST are normal. )

Proof.  (a) Suppose S and T are self-adjoint, i.e. S =S5* and T"= T*. Then
(S+T) =5"4+T"=S+T.
Thus, S + T is self-adjoint. Also, ST is self-adjoint if and only if
(ST) = (ST)"=T"S*=TS5.

Thus, ST is self-adjoint if and only if S and T commutes.
(b) S and T are unitary. Therefore,

SS*=1=5*S and TTr* =1=T"T.

Then

(ST)(ST) = (T*S")ST =T*(S*S T =TT =1
and

ST(ST) = 8ST(T*S*) =S(TT*)S* =55 =1.

Thus, ST is unitary. Since S and T are unitary, by (2) of Proposition 3.2.8, S and
T are surjective isometry. Then,

1(S + T)al® = (S + T)z, (S + T)x)
(Sz, Sz + (Tx,Tx) + (Sx,Tz) + (Tx, Sx)
|z||* + ||z]|* + 2 Re(Sz, Tx) (.- S, T are isometry).

Thus, by (2) of Proposition 3.2.8, S + T is unitary if and only if S + T is surjective
and it is isometry, i.e. ||(S + T)z|| = ||z||. That is, S 4+ T is unitary if and only
if S+ T is surjective and [|z]|* = ||[(S + T)z||* = ||z||* + ||z||* + 2Re(Sz, Tz) or
||| + 2Re(Sz, Tx) = 0. Thus, if z € H with ||z|| = 1 then Re(Sz, Tz) = —1.

(¢) Suppose S, T are normal and S commutes with 7, i.e. ST* = T*S and T' commutes

with S*, i.e. T'S* = S*T'. Then,
(S+T)(S+T)=(S"+T")(S+1T)
=SS+ TS+ S*T+T*T
=SS+ ST " +TS" +TT"
=S(S*+T*)+T(S*+T17)
=(S+T)(S"+T).
Thus, S + T is normal. Also, ST is normal, as

(ST (ST) = (T"S")(ST)
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=T*(S*S)T

=T*(SS")T (" S is normal)
= (T7S)(S*T)

= (ST*)(T'S") (by assumption)
= S(TT")S” (".- T is normal)
= (ST)(ST)".

Theorem 3.2.11. Let H be a Hilbert space. Then the set of all normal operators, the
set of all unitary operators and the set of all self-adjoint operators in BL(H) are closed
in BL(H).

Proof. Let H be a Hilbert space and consider a sequence of operators {S,,} in BL(H)
such that S,, — S, i.e. ||S, —S|| = 0. Then S} — S*.

o If {S,} is a sequence of normal operators, then
SS* =1im S, S, =1lim S, S, = S*S.

Thus, S is normal.
o If {S,} is a sequence of unitary operators, then

SS* =1im S,S; = I =1lim S5, = S*S.

Thus, S is unitary.
o If {S,} is a sequence of self-adjoint operators, then

S* =limS; = I =lim S, = S.

Thus, S is self-adjoint.

Theorem 3.2.12. Let H be a Hilbert space over K = C and S € BL(H). Then there
are unique self-adjoint operators A and B in BL(H) such that S = A+ iB.

Proof. Let
S+ 5T S — S*
2 2%

A+iB = (SES )+z’(S;,S ) —S.

7

A

Then,

It is easy to see that (Check!) A and B are self-adjoint. Now to prove uniqueness, let A;
and B; be self-adjoint operators in BL(H) such that S = A; + ¢By. Then S* = A; —iB;
and

_S+ST (AL +iBy) + (AL —iBy)
2 2

A =A;.
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Similarly,

B S —.S* _ (A1 +1iBy) — (A1 —1iBy) _ B,
21 21

Thus, there are unique self-adjoint operators A and B in BL(H) such that S = A+:B. O

Exercise 3.2.13. In the above theorem, show that

1. S is normal if and only if AB = BA.
2. S is unitary if and only if AB = BA and A%+ B? = I.
3. S is self-adjoint if and only if B = 0.

Solution. Seminar exercise. O

3.3 Positive Operators

Definition 3.3.1. Let H be a Hilbert space. An operator S € BL(H) is called positive
if S is self-adjoint and (Sz,x) > 0 for all x € H. In this case, we write S > 0.

Note: If S,T € BL(H) are self-adjoint then S — T and T'— S are self-adjoint. Further, if
S —T > 0 then we may write S > T or T'< S.

Exercise 3.3.2. What is a partial order? Show that the above relation “>" on the set of
self-adjoint operators on H is a partial order.

Next, we give couple of examples of positive operators.

Example 3.3.3. Let H be a separable Hilbert space and uy, us, ... be orthonormal basis
for H. For n = 1,2, ..., define

n
= > (x,uj)uy, x e H.
j=1

Then for z,y € H,

=
8
~
£
I
/Pﬂ\
3

<.
I

1<x,uj>uj,§;<y,ui>ui>

[e.e]

(z,u;)( M(uj, ug)
-1

I
M:

12

.
Il

I
NE

1<3?> ui) (Y, u;),

<.
Il

where y = >-2°, (y, u;)u; is the Fourier expansion of y. Similarly,

n
quj

Jj=1

Hence, for all z,y € H
(Pa(x),y) = (z, Pa(y))-
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Thus, P, is self-adjoint. Also,

(Po(x),z) = 2: (z,u;)]* >0, VaxcH

Therefore, P, is a positive operator, i.e. P, > 0.

Example 3.3.4. Let {«,} be a sequence of real numbers. Define S: H — H by
Sy = Z (T Up YU, x € H.
n=1

Then S is bounded and self-adjoint (as seen before). Also, for all z € H,

(Sz,z) = <n§:1 (T, U YUy, w>

= > an(@, un) (un, )

n=1

[ee}
= Zan|<x,un>|2.
n=1

If a, > 0 for all n then (Sz,z) > 0 for all z € H, i.e. S > 0. Conversely, if S > 0 then
(Sx,x) >0 for all z € H and hence a,, = (Su,,u,) > 0 for all n.

Theorem 3.3.5 (Generalized Schwarz inequality). Let H be a Hilbert space and S €
BL(H). Then S or —S is positive if and only if

|(Sz, y)|* < (Sz,z)(Sy,v), Vax,yeH.

Proof. Suppose S is a positive operator, i.e. (Sz,z) > 0 for all x € H. For z,y € H,
define

(z,y)s = (Sz,y).
Then (Show that)

e (z,x)s >0forallz e H.
o The function (-,-)s from H x H to K is linear in first variable.
o The function (-,-)g is conjugate symmetry (*.- S is self-adjoint).

We have to prove that for all x,y € H,

[, )sl” < (@, 2)s(y. v)s.

The proof of the above follows exactly as in Schwarz inequality provided that (y, y)s # 0.
If (y,y)s = 0 but (z,x)s # 0 then we can interchange the role of  and y to have the above
inequality. Now, it remains to show that above inequality is true for (z,z)s =0 = (y,)s.
Then, in this case

(r+y,z+y)s+{r—yx—y)s=2(x,x)s+ (y,y)s = 0.
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Therefore, (x+y,x+y)s =0 = (x—y,x—y)s. Replacing y by iy, we get (x+iy, x+iy)s =
0= (x —iy,x —iy)s. Hence,

Kz, y)s = (+y,x+y)s —(z -y, z—y)s
+i(x +iy,x +iy)s —i{x — iy, x — 1y)s
= 0.

Thus, in any case, for all x,y € H, we have

(2, 9)s]? < (x,2)5(y, )s,

provided that S is a positive operator. If, in case, —S is positive, then by the above case
(as proved earlier)

[{(=S)z, y)I*
((=8)z, 2){(=5)y, y)
= (Sz,2)(Sy,v)

[{Sz,y)[*

IN

for all z,y € H.
Conversely, assume that
(S, y)[* < (Sz,2)(Sy,y),  Va,yeH.

Then either (Sz,z) > 0 for all z € H or (Sz,z) <0 for all x € H, i.e. either S is positive
or —S is a positive operator. O

Definition 3.3.6. A self-adjoint operator S on a Hilbert space H is said to be positive-
definite if (Sxz,x) > 0 for every non-zero z € H.

Note: If S is a positive-definite operator on H, then equality holds in the generalized
Schwarz inequality, in above theorem, if and only if x and y are linearly dependent. This
follows by observing that

(x,y)s = (Sx,y), Vax,y€H,

defines an inner product on H in this case.

Proposition 3.3.7. Let H be a Hilbert space and T'€ BL(H). Then T is not bounded
below if and only if there is a sequence {x,} in H such that ||z,| =1 and Tx, — 0.

Proof. Suppose T is not bounded below. Then for each n € N there exists x,, € H such
that

1
1Tl < .
Thus, Tz, — 0.

Conversely, assume that there is a sequence {x,,} in H such that ||z,| = 1 and Tx,, — 0.
Suppose, if possible, T" is bounded below. Then there exists § > 0 such that 8||z| < ||Tz||
for all x € H. Then

0 <= pllzall <lim [T, =0

which is a contradiction and hence no such $ > 0 exists. Therefore, T" is not bounded
below. =
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CHAPTER

Spectrum and Numerical Range

4.1 Spectrum of a bounded operator

( )
Definition 4.1.1. Let H be a Hilbert space over K and T' € BL(H). The set
o(T)={X € K:T — Al is not invertible in BL(H)}
is called the spectrum of T'.
\_Elements of o(7) are known as spectral values of T'. )
(] ot . )
Definition 4.1.2. Let H be a Hilbert space over K and T' € BL(H). The set
0.(T) ={\ € K : T — Al is not one-one}
={AeK:3z€H, |z|| =1and (T — A\)z = 0}.
is known as the eigen spectrum of T.
\_ Elements of 0.(T') are known as eigenvalues (or characteristic roots) of 7. )

-
Definition 4.1.3. Let H be a Hilbert space over K and 7' € BL(H). The set
0.(T) ={X € K : T — A is not bounded below}

is known as the approximate eigen spectrum of T and the elements of o,(7") are known
as approzrimate eigenvalues of T

By the last Proposition 3.3.7, we have

\_a(T) = {\ € K : 3 asequence {z,} € H such that ||z,[| =1 and (T'— )z, — 0}. )

75
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Proposition 4.1.4. Let H be a Hilbert space and T € BL(H). Then X € o(T) if and
only if X € o(T™), i.e.
o(T) = {fi: p € o(T")}.

Proof. For T'€ BL(H),

A€ o(T) < (T — M) is not invertible in BL(H)
< (T — AI)* is not invertible in BL(H)
& (T* — M) is not invertible in BL(H)
=

M€ o(TH).

Theorem 4.1.5. Let H be a Hilbert space and T € BL(H). Then
1. 0.(T) C a,(T).
2. 0(T) =0, (T)U{p:pue€o.(TH}.

Proof. 1. Let A € 0.(T'). Then there exists x € H with ||z|| = 1 such that (T'—\[)z =
Take x,, = x for all n, then

0=(T—= M)z, = 0=\ € a,(T).

Thus, 0.(T) C 04(T).

2. Let A € 0 ,(T)U{n : p € 0.(T*)}. Then A\ & 0,(T) and A i : p € o.(T*)}.
Therefore, (T — M) is bounded below and 7% — X is one-one. Therefore (by
Proposition 3.1.17) R(T' — AI) is closed in H and (by Theorem 3.1.13)

R(T — M) = ker(T* — M)*= = {0}* =

Therefore R(T' — M) = H, i.e. T — A\ is onto.
Since, (T'— M) is bounded below it is one-one. Thus, (7' — AI) is one-one and onto

and hence it is invertible, i.e. (T — AI)~! exists and it is linear.
Now, since T'— AI is bounded below, there exists 5 > 0 such that |[(T'—AI)z|| > 5]|z||
for all z inH. Let y € H. Take x = (T — A )™'y. Then

1T = A1)y = |l
IEMT—MMH

1
= gl

Therefore, (T — A )~' € BL(H) which implies A\ & o(T). Hence

o(T) Co (T)U{p:pe€ao(T}.
Now, consider A & o(T'). Then (T'— X\)~' € BL(H). Therefore for x € H

lll = (T = AT = Az |
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= (T = AD) (T = M)z
Bllall = (T — AD)al],
where = Wll)—ln Therefore, T'— AI is bounded below, i.e. A & 0,(T) and hence
o.(T) C o(T). (4.1)
Now, let A € {fi: p € 0.(T*)}. Then
A€ 0o(T*) C ao(T*) C o(T).
Therefore A € o(T*) = A € o(T). Therefore, {fi : 1 € 0.(T*)} C o(T). Hence,

o(T)=0,(T)U{pn:pu€oae(T)}.

Remark 4.1.6. From the above theorem and from equation (4.1), we have
0.(T) C o,(T) C o(T).

If H is finite dimensional, i.e. dim H < oo then
0e(T) = 0,(T) = o(T).

However, in general, it is possible that
0(T) € 0,(T) € o(T).

Consider the following examples.

Example 4.1.7. Define T : > — (* by
T(z(1),x(2),...) = (x(l), 36(22), :15(33)’ . ) .

Then observe that Tx = 0 = = = 0, i.e. there does not exists a x # 0, x € ¢? such that
Tx = 0. In other words, T'=T — 0 is one-one. Therefore

0&o.(T).
Now, Te,, = +e, for all n, where ¢,, = (0,0,...,0, L0, ).

nth place

Since ||e,|| = 1 and Te,, — 0, by definition we have 0 € ¢,(T"). Thus,
0e(T) S 04(T).
Example 4.1.8. Consider the right shift operator on ¢2, T : ¢?> — ¢? defined by
T(z(1),x(2),...)=(0,z2(1),z(2),...).

Then, ||Tx| = ||z|. Therefore, there does not exist a sequence {x,} such that ||z,| =1
and T'z,, — 0 and hence 0 & o,(7T).
On the other hand, observe that e; ¢ R(T), i.e. T is not onto. Hence, T is not invertible.

Therefore 0 € o(T). Thus,
o.(T) C o(T).
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Proposition 4.1.9. Let H be a Hilbert space and T € BL(H) be normal. Then
X € 0.(T) if and only if X € o.(T*).

In fact, if v € H, ||z|| = 1 such that (T — M)z = 0 if and only if (T* — X\ )x = 0.

Proof. Since T is normal, T'— AI is normal. So, by a previous result (Proposition 3.2.8)
(T = ADz|| = |(T* = AX)z| VYazeH
Thus, A € 0.(T) if and only if there exists © € H with ||z|| = 1 such that (T"— M)z =0
if and only if (by above) (T* — A)z = (T'— A\ )*x =0
if and only if A € o.(T™).

Corollary 4.1.10. Let H be a Hilbert space and T € BL(H) be normal. Then

o(T) = o,(T).

Proof. By previous theorem, we know that

o(T)=0,(T)U{i:pe€ o (T}
Now, we show that if 7" is normal then {ii : p € 0.(T*)} C 0,(T). Then we are done (as
this will give o(T") = 0,(T") from above theorem).

Let A\ € {fi : pp € 0o(T*)}, ie. X € 0.(T*). Then, since T is normal, by previous
proposition
A€ a.(T) C o, (T).

Thus, {ft: u € 0.(T*)} C 04(T) and hence o(T') = 0,(T") by above theorem. E

Example 4.1.11. In this example we show that above proposition is not true if 7" is not
normal, i.e. A € 0.(T) # X € 0.(T™) in general (if T" is not normal).

Define T': K? — K? by T(2(1),z(2)) = (iz(1) + x(2),ix(2)). Then
m(T) = [é 1.1

with respect to the orthonormal basis {e;, ez} and
o =i 0
m(T") = lo —z']
Therefore, T*(z(1),2(2)) = (—iz(1), z(1) — iz(2)).

Now, T(x(1),2(2)) = i(x(1),2(2)) if and only if (iz(1) + x(2),iz(2)) = i(x(1),z(2)) if
and only if z(2) = 0. Thus,

T(1,0) =1(1,0) i.e. Tey = ie.

On the other hand, T (z(1),z(2)) = —i(z(1), z(2)) if and only if (—iz(1),z(1) —iz(2)) =
—i(z(1),2(2)) if and only if 2(1) = 0. Thus,

T(1,0) =4(1,0) but T*(1,0) #i(1,0).
Thus, i € 0.(T) but i = —i & 0.(T*). Note that here 7%(0,1) = (0, 1).
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Consider one more example of the same, i.e. A € 0,(T) # X € 0.(T*) in general (when
T is not normal).

Example 4.1.12. Consider the left-shift operator on ¢, S : £ — ¢? defined by
S(z(1),x(2),...) = (z(2),x(3),...).
Then, Se; = 0, where e; = (1,0,0,...) # 0. Thus, S =S — 0/ is not one-one, i.e.
0 € o.(T).
As seen in Example 3.1.1, S* is the right-shift operator defined by
S*(z(1),2(2),...=(0,2(1),z(2),...).
Then S*e; = ey # 0. Observe that S* = S* — 0] is one-one, i.e. A = 0 & 0.(S*) but

A=0 € o.(9).

Proposition 4.1.13. Let H be a Hilbert space and T' € BL(H) be normal. If v € H
such that (T — N )*x = 0 then (T — X))z = 0.

Proof. Suppose x € H such that (T'— AI)*z = 0. Then

(T = AD)z||* = (T = D)z, (T — M)z)
= (T = 2\D)*(T — M)z, x)
< |\(T = X)*(T — M)z||||z] (by Schwarz inequality)
= ||(T — MN)(T — X)z||||=| (T — Al is normal)
= (T = AD*z|| =0

g

In the following example, we show that the above result is not true if 7" is not normal.

Example 4.1.14. We show that 7?2z = 0 then Tz = 0 is not true in general, i.e. if T is
not normal. Define T : K? — K? by

T(2(1),2(2)) = (0,2(1)).
Then T?%(z(1),2(2)) = T(0,z(1)) = 0 for all (z(1),z(2)) € K*. But
T(1,0) = (0,1) # 0.
Proposition 4.1.15. Let H be a Hilbert space and T'€ BL(H) be normal. Then the

eigenvectors corresponding to distinct eigenvalues of T are orthogonal i.e. if \,u €
0e(T), N # pu and x # 0,y # 0 are such that Tx = A\x and Ty = py then (z,y) = 0.
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Proof. Suppose A\, i € 0.(T), A # pand x # 0,y # 0 are such that Tx = Az and Ty = py
then (z,y) = 0. then

= (x, iy) (by Proposition 4.1.9)

Thus,
(A= p){z,y) = Mz, y) =z, y) = 0.

Therefore, (z,y) = 0 as A and p are distinct eigenvalues, i.e. A\ # p. O

In the following example, we show that the above result is not true if 7" is not normal.

Example 4.1.16. We show that eigenvectors corresponding to distinct eigenvalues need
not be orthogonal in general, i.e. if T is not normal. Define T': K? — K2 by

T(x(1),2(2)) = (z(1) + z(2),22(2)).

Then Te; = T(1,0) = (1,0), i.e. 1 is eigenvalue of T" and (1,0) is the corresponding
eigenvector.

Also, T(1,1) = (2,2), i.e. (1,1) is the eigenvector corresponding to eigenvalue 2 of T.
But the eigenvectors are not orthogonal as

((1,0),(1,1)) =1 #£0.

4.2 Numerical range of a bounded operator

Definition 4.2.1 (Numerical range). Let H be a Hilbert space and T' € BL(H). The
set
W(T) ={(Tz,z) :z € H, ||z]| =1}

is called numerical range of T

Remark 4.2.2. For x € H with ||z|| =1,
(T, z)| < | Tx|||l=]l < |T|[l«]* = [T]I

Thus, the numerical range W (T') is bounded by ||T°||.

However, it is not closed but it is convex.

Proposition 4.2.3. Let H be a Hilbert space and T' € BL(H). Then
1. A€ W(T) if and only if X € W(T™).
2. 0.(T) C W(T).
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Proof. 1. Let A € W(T'). Then there exists € H such that ||z|| =1 and A = (T'z, z).
Therefore

A= (Tz,z) = (x,T*x) = (T*z,z) € W(T").

Thus, A € W(T) = XA € W(T*). For the converse part, replace A by \.
2. Let A € 0.(T). Then there exists € H, ||z|| = 1 such that (T"— A)z = 0, i.e.
Tx = Ax. Then
A= Nz, z) = Az, z) = (Tx,z) € W(T).

Therefore, o.(T) C W(T).

Proposition 4.2.4. Let H be a Hilbert space and T € BL(H). Then o,(T) Cc W(T).

~—

Proof. Let A € 0,(T). Then there exists a sequence {x,} in H with ||z,|| =1 for all n
such that (T"— AI)z,, — 0. Therefore

(T, xn) = Al = [(T@n, 2n) — Man, )|
= [{(T" = AD)ap, xn)|
< (T = AD)an = 0.
Thus, (Tx,, z,) — X\ in K and hence A € W(T) (" (T'z,, x,) € W(T) for all n). E
[Corollary 4.2.5. Let H be a Hilbert space. If T € BL(H) then o(T) C W(T). ]

Proof. We know that
o(T) Coo(T)U{in: p€oe(T")}.

Let A € {i: p € 0.(T*)}. Then A € 0.(T*). By previous result (2. of Proposition 4.2.3),
we have A € W(T™*) and hence A € W(T). By above proposition, we already have

0.(T) € W(T) and hence we conclude that o(T) C W(T). O

Example 4.2.6. By above corollary we have o(T') C W(T). It is not true in general that
o(T) € W(T). Consider the diagonal operator on ¢* having diagonal entries 1,3, 3,...,
ie. T :(?> — (? defined by

T(x(1),z(2),2(3),...) = (ac(l),x;), :10(33)7> .

Then Te, = < for all n = 1,2,.... Then |le,|| =1 and Te, — 0 (- |Te,|| = =+ — 0).
Therefore,
0€0,(T)Coa(T).

But for z = (z(1),z(2),...) € 2 with ||z| = 1, we have

n—1 n n

Therefore 0 ¢ W(T).
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Remark 4.2.7. Let H be a Hilbert spae and T' € BL(H) be self-adjoint. Then

1. W(T) C R.
This is true, indeed if z € H, ||z|| = 1 then

(Tz,z) = (x,Tz) = (Tx, ).
Therefore, (T'z, x) € R and hence W(T) C R.
2. o(T) CR.
Indeed o(T) Cc W(T) C R.
Notations: Let T'€ BL(H) be self-adjoint. Consider

mr =inf{\: X € W(T)}
Myp =sup{A: A e W(T)}

The inf and sup exists because W (T') is a bounded subset of R.

Theorem 4.2.8. Let H be a Hilbert space (H # {0}) and T' € BL(H) be self-adjoint.

Then
{mr, Mz} € 0,(T) = o(T) C [my, M7].
Proof. By definition of mr there exists a sequence {z,} in H with ||z,| = 1 for all n such
that

(Txy, Tp) — M.
Now, since T is self-adjoint, T — mq[ is self-adjoint. Also, for all x € H with ||z| = 1,
(T —mpDzx,x) = (Tx,x) — mp{z,x) = (Tx,x) — mr > 0.

This is because, by definition of my, (T'z,x) > my for all x € H with ||z|| = 1. Thus,
T — mrl is a positive operator, i.e.

(T'—mgl) > 0.
Take S =T — mrl then by the generalized Schwarz inequality, we have
(Sz,y)|* < (Sw,z)(Sy,y), VayeH
Therefore, taking x = x,, and y = Sx,, in the above inequality, we get

1Szall* = 1Sz, Swa)|*
< <Sxmxn><82xmsxn>
< (Szp, ) [ISI° (o flzall = 1.

Now,
(S, xn) = (T —mpl)xy, x,) = (Txy, ) — mp — 0.

Therefore from above, we get

|Sz,| — 0, ie. Sz, — 0.
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and hence (T — myl )z, — 0, where ||z,|| = 1. Therefore,
my € 04(T).
Similarly, one can prove that My € o,(7T') by taking S =T — MrI and observing that —S

is a positive operator.
Since, T is self-adjoint, it is normal and hence 0,(T") = o(T'). Thus,

my, Mr € 0,(T) = o(T) C W(T) C [mry, Mr].

Corollary 4.2.9. Let H be a Hilbert space and T' € BL(H) be self-adjoint. Then
1| T|} = max{|mr, [Mr[} = sup{|A| : A € o(T)}.
2. |T|| =sup{|A|z : A € o(T*T)}.

Proof. 1. Since T is self-adjoint, by previous theorem, we have

my, My € 0,(T) = o(T) C W(T) C [my, Mr].
We know that
|T|| = sup{|{Tz,z)| : x € H, [[z]| <1}.

Therefore, ||T'|| = max{|mr|, |Mz|}. Also, from above theorem it follows that
171 = max{[mr|, [Mr[} = sup{[A] : A € o(T)}.

2. Since T is self-adjoint, T*T is self-adjoint and ||T'||* = ||T*T||. Also, from above
theorem
|T*T|| = sup{A: A € o(T"T)}
and hence ||T|| = sup{v/A: X € o(T*T)}.
U

. )
Theorem 4.2.10 (Ritz Method). Let H be a Hilbert space (H # {0}) and T € BL(H)

be self-adjoint. Consider x1,xo,... in H. Forn=1,2,... let

Yn = L({I’l,l’g, Ce ,,’L‘n})

Take

a, = inf{(Tz,z) :z €Y, ||z| =1}
and

Bn =sup{(Tz,z) : x € Y,,|z| = 1}.
Then

mr <oy S0 < <o <SPS Pp <o < B S Bagn < My
If L({x1, 22, ...}) is dense in H, then

mr = lim o, and M7 = lim 6,.
n—oo n—oo
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- 4

Proof. Since Y,, C Y,,11, it is clear that
mTSOérH»l SOénS SﬁngﬂnJrl SMT
Since {a,} is a non-increasing sequence which is bounded below, it converges. Suppose

mo = i an.
Then, clearly mr < mg. Suppose if possible, my < mg. Then there exists x € H, ||z|| =1
such that
my < (Tz,x) < my.

Now, since L({x1,z2,...}) is dense in H, there exists a sequence {y,} in L({x,z2,...})
such that y, — x in H. Then
[ynll = llzl = 1.
For sufficiently large n, take z, = g2 then [[z,]| =1 and z, — z (- [lz] = 1).
Now, since y,, € L({z1,22,...}), there exists an integer j, such that y, € Y, =
L({x1,22,...,2;,}). Therefore, z, € Y; . Then letting n — oo, we have

mo < aj, < Tz, z,) = (Tx,z) < my

which is a contradiction and hence my = mg = h_)m .
n o0

In the same way, it follows that {3,} is a non-decreasing sequence which is bounded
above and hence it converges. As above, one can show that My = lim,_,. 8,. Since,
a, < (3, for each n, the proof is complete. O

4.3 Compact Self-Adjoint Operators

Definition 4.3.1. Let H be a Hilbert space and T': H — H be a linear map. T is
said to be compact if for every bounded sequence {x,} in H, {Tx,} has a convergent
subsequence.

Example 4.3.2. Every bounded linear operator T : K — K is compact. This is because
if {x,,} is a bounded sequence in K then {T'z,} is bounded sequence in K (.- T € BL(K)).
Therefore by Bolzano-Weiertrass theorem, {T'z,} has a convergent subsequence. Due
to Bolzano-Weiertrass property, this is true for any bounded linear map on K™. More
generally, we shall show that any bounded linear operator with finite-dimensional range is
compact.

Proposition 4.3.3. Let H be a Hilbert space and T : H — H be compact linear
transformation. Then T is bounded.

Proof. Suppose T is compact on H. To show that T" is bounded it suffices to show that
there exists a > 0 such that

|Tz|| <a VYazeH, |z <1
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Suppose T is not bounded. Then for each 5 > 0 there exists x5 € H, ||zg|| < 1 such that
[Tl > 5.
Therefore for 8 = there exists x; € H, ||| < 1 such that
| Taq]| > 1.
Now, take 5 =1+ |[|[Txy|| then there exists x5 € H, ||z2]] < 1 such that
| Txo| > 14 [|T4]].
Taking 5 = 1 + max{||Tz||, ||Tz2||} then there exists z3 € H, ||z3]| < 1 such that
[Ts|| > 1+ max{[|Tz|], | Tz}
Continuing this way, we get x1,Zs, ..., z, such that ||z;|| <1 for all j and
T2l > 1+ max{Ta |, T2 .., | T I}
Therefore for n < m, ||Tx,,| > 1+ ||T2,||. Therefore,
[Tl = Tzl > 1.

Hence,
[T — Tn|| = [| T || — (| Tn]] > 1.

Therefore {Tx,} has no convergent subsequence and hence 7" is not compact, which is a
contradiction. Hence, T" must be bounded. 0

The converse of above result is not true, i.e. a bounded linear operator in general
need not be compact. Consider the following example of identity operator on an infinite
dimensional Hilbert space. It is bounded but not compact.

Example 4.3.4. Suppose H is an infinite dimensional Hilbert space. Let {u,us,...} be
infinite orthonormal subset of H. Then clearly {u,} is bounded ("." [|u,|| =1, V n). Let I
be the identity operator on H. Then

1t = Tl = Jtm = wall = V2, m#n.

Therefore, {Iu,} = {u,} has no convergent subsequence and hence I is not compact.

Proposition 4.3.5. Let H be a Hilbert space and T' € BL(H) be such that R(T) is
finite dimensional (i.e. rank of T is finite). Then T is compact.

Proof. Suppose dim(R(T")) = m. Let {uy,ua,...,uy,} be orthonormal basis of R(T).
Define ¢ 5 R(T) - (K™, | - ) by

Qb(I) = (<x,u1>, (a:,u2>, T ,(x,um>), S R<T)

Then ¢ is a linear onto isometry (Verify!).

Now, if {z,} is a bounded sequence in H, then since T" is bounded, {T'x,} is bounded.
Since ¢ is an isometry, {¢(Tz,)} is bounded in K™. Then by Bolzano-Weierstrass
property of K™, {¢(Tx,)} has a convergent subsequence, say {¢(T'z,1)}. Hence, {Tx, 1}
is convergent subsequence of {7z, }. Therefore, T' is compact. E
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Corollary 4.3.6. Let H be a finite dimensional Hilbert space and T € BL(H). Then
T is compact.

Proof. As dim H < oo, dim R(T") < oo. Therefore T' is compact by above theorem. [

Remark 4.3.7. The identity operator on a Hilbert space H is compact if and only if H
is finite dimensional.

Theorem 4.3.8. Let H be a Hilbert space and {Tx,} be a sequence of compact operators
in BL(H) such that T,, — T in BL(H) (i.e., T € BL(H) and |T,, — T|| = 0). Then T
18 compact.

Proof. Suppose {x,} is a bounded sequence in H. Then there exists a > 0 such that
[zl < o, ¥ n.

Since Ty is compact and {z,} is bounded, {T1z,} has a convergent subsequence, say
{T\zn1}. Now, as {z,1} is bounded (being subsequence of {z,}) and 7, is compact,
{Tx,1} has a convergent subsequence, say {Tox, }.

Note that here the sequence {z, 2} is a subsequence of {z,, } and {11z, 1} is convergent.
Therefore, {T1z,2} is also convergent.

Continuing this way, we get convergent sequence {1jx,} such that {Tjz, x} is conver-
gent for all j =1,2,... k. Therefore {T,,xy} converges for each n. Now, for m,k € N

| Txrr — TTmml| < |TTer — Tnzrkll + (| Toxk ke — Tnmmll + 1 TnZmm — Tmml|
< T = Talllzn sl + 1Tz s — Tontmmll + 1T = Talll|2m,ml
< 20T = Tol| + | Tazke — Tam,ml|
— 0 as k,m — oo and n — oc.

Therefore {T'zyx} is Cauchy in H and since H is a Hilbert space {T'zyx} converges in H
which is a subsequence of {T'z,,} where {x,} is bounded. Hence, T is compact. O

Theorem 4.3.9. Let H be a Hilbert space and T € BL(H) be compact. then T* is
compact.

Proof. Suppose {x,} is a bounded sequence in H. Then there exists o > 0 such that
|zn|| < « for all n. Since, T* € BL(H), i.e. since T* is bounded, {T*z,} is a bounded
sequence in H.

Let y, = T*z, forn =1,2,.... Since T"is compact, {T'y, } has a convergent subsequence,
say {Tn,;}. Then for j, k € N,

||T*a:nj — xnkH2 <T*xnj — T 2y, T 2, — T"x,,)
= (Yn; — Yny, T"(Tn; — T, )
<T(yn] ynk) -'L‘nj - xnk>
= {

Tyn] Tynk7 xn] xnk>
S NTyn; = Tynpllllzn, — 20l
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< 2« HTynj - TynkH
— 0 as j,k — oo.

Therefore, {T*z,,} is a Cauchy sequence in H and since H is complete, {1z, } converges
in H. Hence, T™ is compact. O

Proposition 4.3.10. Let H be a Hilbert space. Then

1. If S, T are compact on H, then S+ T is compact and .S is compactV o € K.
2. If S is compact on H and T' € BL(H), then ST and T'S are compact.

Proof. 1. Let {z,} be a bounded sequence in H. Since S is compact {Sz,} has a
convergent subsequence {Sx,,}. Since {z,,} is bounded and T is compact, {T'zy, }
has a convergent subsequence {T'z,, }.

Now, since {Sz,,} converges and {Sz,, } is a subsequence of {Sz,,}, then {Sz,, }
is convergent. Therefore {(S + T)xnjk} is convergent. Hence, S 4T is compact.
Let {x,} be a bounded sequence in H. Since S is compact {Sz,} has a convergent
subsequence {Sx,, }. Therefore {aSx,,} is convergent for all « € K. Hence, a.S is
compact

2. Let {z,} be a bounded sequence in H. Since T' is bounded {T'z,} is bounded. Since
S is compact, {S(Tz,)} = {(ST)x,} has a convergent subsequence. Therefore, ST
is compact.
Next we show that T'S is compact. Suppose {z,} is a bounded sequence in H. Since
S is compact, {Sz,} has a convergent subsequence {Sx,,}. As T € BL(H),ie. T
is continuous linear functional, {T'Sxy,} is convergent. Therefore T'S is compact.

O

Remark 4.3.11. Let H be a Hilbert space and IC(H) be the set of all compact operators
on H. Then IC(H) is a closed two-sided ideal in BL(H).

Remark 4.3.12. Let H be a Hilbert space and T' € BL(H) be compact. Then T7! is
bounded, i.e. T~' € BL(H) (T is invertible) if and only if H is finite dimensional.

Indeed this is true because T is compact and T—! € BL(H) implies that I =TT~ is
compact. Therefore, Hilbert space H must be finite dimensional.

4.3.1 Hilbert-Schmidt Operators

(- )
Definition 4.3.13. Let H be a separable Hilbert space. T € BL(H) is said to be
Hilbert-Schmidt operator if

> T un|? < oo,

n=1
\Where {uy,uy, ...} is an orthonormal basis of H. )
f )

Theorem 4.3.14. Let H be a separable Hilbert space and T be a Hilbert-Schmidt
operator on H. Then

1. T is compact.
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k 2. T* is Hilbert-Schmidt. )

Proof. 1. Let {uy,us,...} be orthonormal basis of H (".- H is separable) such that

o0
Z ||Tun||2 < Q.

n=1

Since {uq,us, ...} is orthonormal basis of H, each z € H has a Fourier expansion
written as follows:

Therefore,

Now, for m = 1,2, ... define
Z Ty U ) Ty

Then dim R(T},) < m, i.e. T}, is a finite rank operator for all m. Therefore T, is
compact. Now, for each v € H,

(T = T)z||* = ITz — Tl

i (@, up)uy,

2

n=m+1
o 2
< (3 lwulizul)
n=m+1
< > Hzun)f Y [[Tun|®  (by Holder’s inequality)
n=m+1 n=m+1
< z” Yo NTun|? (by Bessel’s inequality).
n=m+1

Therefore -
IT =Tl < > [[Tua]l* = 0 as n — oo.

n=m+1

Hence, T' is compact.
2. Suppose {uq,usg, ...} is orthonormal basis of H such that

> | Tun|)? < oo
n=1
Now,
Z | T*u,||* = Z Z (T Wy, Uy | (by Parseval’s identity)
n=1m=1
= Z Z |<“mTum>|2
m=1n=1
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n=1

= Z Z ‘(Tum>un>‘2
m=1n=

= ) ||Tun|?* < oo (by Parseval’s identity).

m=1
Therefore T* is Hilbert-Schmidt.
O

Remark 4.3.15. Unlike the set of all compact operators, in general, the set of Hilbert-
Schmidt operators is not closed in BL(H), i.e. if {T},} is a sequence of Hilbert-Schmidt
operators such that 7T,, — T, then T need not be Hilbert-Schmidt.

Next we show that there is no significance of the chosen orthonormal basis {uy, us, ...} in
the definition of Hilbert-Schmidt operator. In other words, the condition 3-0° | [|Tu,,||* < oo
is independent of the choice of the orthonormal basis {uy, us,...}.

Proposition 4.3.16. Let H be a separable Hilbert space and T € BL(H) be Hilbert-
Schmidt. Suppose {uy,us, ...} and {vi,vq,...} be two orthonormal bases of H. Then

o o

2 2
DT unll® = 1T vall*.
n=1 n=1

Proof.

SNNTuallP = D> (Tun, vm)? (Parseval’s identity)
n=1

= > T vnl? (Parseval’s identity)

= Z HTUmH2 (by above).

O

Exercise 4.3.17. The set of all Hilbert-Schmidt operators on H is a linear space (vector
space).

Exercise 4.3.18. Let Cy(H) denote the set of all Hilbert-Schmidt operators on H. For
T € Cy(H) define

1
2
)

71, = (32 17l
n=1
where {uy,us, ...} is orthonormal basis of H. Then || - ||, is a norm on Cy(H).

By above proposition, it is clear that ||T’||5 is invariant of the choice of orthonormal
basis of H. Now, we give an example of a Hilbert-Schmidt operator.
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Example 4.3.19. Suppose (q;;) is an infinite matrix such that
(o) o0
Z Z |aij|2 < 0.
i=1j=1

Let T be a operator on ¢* defined by («;;), i.e. Te; =Y ayje;. Then

=1

1 Tes]|* =

2 oo
= |ail*.
=1

x
Z Q€4
=1

Therefore,
Do ITejl* =D 2> Jays|* < oo
j=1 j=1i=1

Hence, T is a Hilbert-Schmidt operator on £2.

4 )
Theorem 4.3.20. Let H be Hilbert space and T' € BL(H) be compact. Then

9a(T) \ {0} = o(T) \ {0},

i.e. non-zero approximate eigenvalue of T is eigenvalue of T

g If 0 # X € 0.(T), then the corresponding eigenspace ker(T — A1) is finite dimensz’onal.}

Proof. Suppose 0 # A € 0,(T'). Then there exists a sequence {z,} such that ||z,| =1
for all n and (T — M)z, — 0. Since {z,} is bounded and T is compact, {T'z,} has a
convergent subsequence {T'x,, }.

Suppose lim; oo T2y, = x. Then lim;_,o Az, = 2 (. (T"— M)z, — 0). Therefore,

tim Az || = 2]
j—00
Since ||zy,|| = 1, |A\| = ||z|| and since A # 0, x # 0. Now,

Tx=T (hm )\:z:nj>

J]—00

= A lim T'z,,, (T e BL(H))
J]—00

= \Z.

Thus, we have x # 0 such that (T'— Al)x = 0. Hence, \ € o.(T).

Next, suppose for 0 # X € o.(7T), the corresponding eigen space ker(7' — A\I) is not finite
dimensional. Then by Gram-Schmidt orthonormalization, we have an infinite orthonormal
subset {uy,us, ...} of ker(T'— AI). Therefore

Tu, = Au, vV n.
Therefore for n # m,
1Tt = Tt * = (AP n — winl|* = 2N

Thus, {u,} is a bounded sequence for which {T'w, } does not have a convergent subsequence.
This is contradiction since 7' is compact. Therefore

dimker(T" — X\I) < oo.
E
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Proposition 4.3.21. Let H be a Hilbert space and T € BL(H) be compact self-adjoint.
Then ||T|| or —||T|| is eigenvalue of T'.
Proof. Since T is self-adjoint, mr, My € 0,(T) and (by Corollary 4.2.9)
17| = max{[mz|, |Mr|}.
Now, if M7y + mq > 0, then My > 0 and My > |my|. Therefore
T = My € 0,(T).
If My + mp <0, then |mp| > |Mr| and so |mp| = ||T||. Therefore
—||T|| = mr € o,(T).

As T is compact, ||T|| or —||T|| € 0,(T) \ {0} = 0.(T) \ {0}. Therefore, ||T|| or —||T|| is

eigenvalue of T. ([l

Now, we state the following result (without proof) about the spectrum of a compact
self-adjoint operator which is known as Spectral theorem for compact self-adjoint operators.
. )
Theorem 4.3.22 (Spectral theorem for compact self-adjoint operators). Let H be a
Hilbert space and T € BL(H) be a non-zero compact self-adjoint operator. Then there
exists a finite or infinite sequence {s,} of real numbers with |s1| > [s2] > -+ and
orthonormal subset {uy,us,...} of H such that and

i (x, up)u (4.2)

\Further, if the set {uy,} is infinite, then s, — 0 as n — oco. )

4 )
Corollary 4.3.23. Let T' be a non-zero self-adjoint Hilbert-Schmidt operator on H.

If {sn} is a sequence of non-zero eigenvalues of T as given in the above theorem, i.e.
|s1| > |sg| > -+, then

o
> sal® < .

_ n=1 Y,

Proof. Since T is Hilbert-Schmidt operator, it is compact. Let
(o]
anxunun, r € H,
n=1

as in above theorem. Then T'(u,) = s,u, for n = 1,2,.... Since T is Hilbert-Schmidt
operator, we have

Z a2 = 3 1T () < oc.

n=1

O
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