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Preface and Acknowledgments

This note started when we (myself and Dr. D. J. Karia) first offered the course on Group Theory
in 2017-18. In the subsequent years to follow, hopefully the note will take a good shape. This
lecture note should not replace a human involvement of teaching but should serve purposes like:

• Saving of time of writing on the board by a teacher and copying by students in their
notebooks. This will give, in turn, more time for discussion of concepts in the class.

• Saving students from the possibility of errors while taking down the notes and then
spreading the errors unintentionally while passing on the notes taken by the students.

At the same time, there might be errors in the typed notes too. We encourage students to
read carefully and report the typos or errors in the notes, if any.

• A uniformity in approach in different classes.

This is a “Video Lectures Edition” an improvised/revised version of the covid-19 edition of
lecture note. Due to the COVID-19 pandemic, hints or sketch of proof of some of the exercises
were discussed in the online Google Meet or Microsoft Teams classes or in the YouTube videos.
Since this is a special “Video Lectures Edition” of the lecture note, it contains QR-codes with
links to YouTube Videos, and Video Clips of Google Meets which were provided to the students
to facilitate online learning and to make it more convenient during the covid-19 pandemic.
This has many advantages. For example,

• it removes the hesitation experienced in the class to ask the teacher to repeat a concept
once again,

• not losing link of the subject due to missed classes which happens in offline case,
• learn at one’s convenience,
• revision of certain topics or concepts later on,
• not missing any lecture or topic due to lack/poor internet connection, etc.

JAY MEHTA
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Groups: Quick Revision

In this unit, we shall study the following.
Definition of a group, some examples of groups, some preliminary lemmas, subgroups, two

equivalence relations a ≡ b mod H if ab−1 ∈ H and a ∼ b mod H if a−1b ∈ H, Legrange’s
theorem. Euler’s theorem, Fermat’s theorem, counting principle, the condition for HK to be a
subgroup and determination of o(HK), normal subgroups, and quotient groups, characteriza-
tions of normal subgroups, homomorphism, isomorphism, first isomorphism theorem, simple
group, Cauchy’s theorem for abelian groups.

The intension of this unit is to have a quick look at the basic group theory that you have
already studied. Consequently, we shall include a number of results, you have studied, as an
exercise.

Significance and Motivation

Groups are a part of the underlying structure of many algebraic structure and notions like
vector spaces, rings, fields, algebras, etc. Groups describe symmetry and so they are of great
importance. The theory of groups has many applications in Elliptic curves, Cryptography,
Elliptic curve cryptography, etc. It also has applications in other branches of sciences like
Physical Sciences, Chemical Sciences, Computer Sciences, etc. Groups were studied since
ancient times, even before the formal definition of such a structure was given.

Suppose we want to solve a simple algebraic equation x+ 5 = 2. We should look for an
appropriate set in which we can find the solution. Certainly the set of positive integers N is not
a probable candidate here. Let us look for the solution in the set of integers Z. We solve this
equation in the following steps.

• Adding the inverse of 5 (which is −5) on both the sides, we get

(x+5)+(−5) = 2+(−5).

9
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10 §1.1. Group: Definition and Examples

So one of the desired property we want our chosen set to have is the existence of inverse.

• Since we are looking for the value of x, we use associativity on the left hand side to get

x+(5+(−5)) = 2+(−5).

So another desired property our chosen set should possess is the associative property.

• Now we want the resultant of the operation addition to actually belong to the set. In
left hand side we get 0 and in the right hand side we get −3. Both these number do not
belong to N and so N is not a good choice of set which satisfy something what is called
closure. So we get

x+0 =−3.

Thus, we also should look for a set which is closed under the operation which we are
applying. Here in our case the operation is addition.

• Finally, we want to the left hand side to be x, i.e., 0 is preferred to be the ideal element
which has no effect on its operation with x. In other words, 0 should be the identity
element for our set (which here we have chosen to be Z). We have

x =−3.

Thus, our chosen set must have the property existence of identity.

This is just an example. To generalize such a concept, it is evident that a nonempty set which
satisfies the above mentioned properties for a chosen operation is desirable. This leads us to the
definition of Group.

1.1 Group: Definition and Examples

We start with the definition of a group.

Definition 1.1.1

Let G be nonempty set with an operation on it, denoted by · and satisfying the following
properties: the following.

1. a ·b ∈ G for all a,b ∈ G.
2. a · (b · c) = (a ·b) · c for all a,b,c ∈ G.
3. There is an element e ∈ G such that e ·a = a · e = a for all a ∈ G.
4. For each a ∈ G, there is an element a−1 ∈ G such that a ·a−1 = a−1 ·a = e.

Then G is called a group.

Remark 1.1.2. In the Definition 1.1.11.1.1, 11 is called the closure property. We also say that
the operation · is a binary operation or the set G is closed under the operation ·, 22 is called
associativity of operation ·, 33 is known as the existence of identity in G, and 44 is known as the
existence of inverse of each element in G. e in (33) is called an11 identity of G and a−1 in 44 is
called an inverse of a.

1We use ‘an’ because we have yet not proved that identity and inverses are unique.

PS03EMTH54 2023-24



§1.1. Group: Definition and Examples 11

For the sake of convenience, we shall denote the binary operation · between two elements
a,b ∈ G as simply ab instead of a ·b. Though we shall call it “product ab”, we keep in mind
that it is not the multiplication in usual sense. It can be any specified operation on the set G.

Definition 1.1.3

A group G is said to be abelian (or commutative) if for every a,b ∈ G, ab = ba. A group
which is not abelian is called non-abelian.

The number of elements in a group G is called order of G and is denote by o(G). If it is
finite, then we say that G is a finite group.

1.1.1 Some examples

Example 1.1.4. Now we list, without proof, some of the groups known to you.

1. C, R, Q, Z are abelian groups under addition.

2. For n ∈ Z, nZ= {nm : m ∈ Z}, the set of all integers divisible by n, is an abelian group
under addition.

3. C∖{0}, R∖{0}, Q∖{0}, (0,∞) and {−1,1} are abelian groups under multiplication.

4. For natural numbers m,n, the set of all m×n matrices with addition is an abelian group.

5. The set of all n×n invertible matrices over R is a group with multiplication.

6. The set of all n× n invertible real matrices whose determinant is 1 is a group with
multiplication.

Example 1.1.5. Let n ∈ N. Define Zn = {0,1,2, . . . ,n−1}, where k denotes the equivalence
class [k] for the relation ≡ mod n. For k,m ∈ Zn, define

k+m = k+m = t,

where 0 ≤ t < n and t = k+m mod n. Then Zn is an abelian group under +.

Solution. Claim 1: + is a binary operation on Zn. That is, + : Zn ×Zn → Zn is a function.

Clearly, for every (k,m) ∈ Zn ×Zn, we get k+m ∈ Zn. However, we need to prove its
uniqueness. Let j,k, l,m ∈ Z. If j ≡ k mod n and l ≡ m mod n, then

j− k = t1n
l −m = t2n

⇒ j+ l − (k+m) = (t1 − t2)n
⇒ j+ l ≡ k+m mod n. (1.1)

That is,
j+ l = j+ l = k+m = k+m. (1.2)

Dr. Jay Mehta jay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edu
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12 §1.1. Group: Definition and Examples

Hence, + is a binary operation on Zn.

Claim 2: + is associative.

Let j,k,m ∈ Zn. Then

( j+ k)+m = j+ k+m = ( j+ k)+m

= j+(k+m) = j+ k+m = j+(k+m). (1.3)

Thus + is an associative operation on Zn.

Claim 3: 0 is the identity of Zn.

For every k ∈ Zn,
k+0 = k+0 = k = 0+ k = 0+ k. (1.4)

Claim 4: Every k ∈ Zn has an inverse in Zn.

Let k ∈ Zn. Then

k+n− k = k+n− k = 0 = n− k+ k = n− k+ k. (1.5)

Finally, for any k,m ∈ Zn, we have

k+m = k+m = m+ k = m+ k. (1.6)

Thus (Zn,+) is an abelian group. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Definition 1.1.6

For a nonempty set S, A(S) denotes the set of all one-one onto functions from S to S.

Example 1.1.7. Let S be a set. Then A(S) is a group with composition as operation.

Solution. Step I: To show that A(S) is closed under composition.

Let f ,g ∈ A(S). Hence f : S → S and g : S → S are one-one, onto functions. Let x,y ∈ S
with x ̸= y. Then

(g◦ f )(x) = (g◦ f )(y)
⇒ g( f (x)) = g( f (y))
⇒ f (x) = f (y) (∵ g is one-one.)
⇒ x = y (∵ f is one-one.)

Hence, g◦ f is one-one. Now let z ∈ S. Since g is onto,

∃ y ∈ S such that g(y) = z. (1.8)

PS03EMTH54 2023-24
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§1.1. Group: Definition and Examples 13

Since y ∈ S and f is onto,
∃ x ∈ S such that f (x) = y. (1.9)

By (1.81.8) and (1.91.9), there exists x ∈ S such that g◦ f (x) = z. Hence g◦ f ∈ A(S). Thus A(S) is
closed under composition.

Step II: To show that composition is associative.

Let f ,g,h ∈ A(S). For x ∈ S,

(h◦g)◦ f (x) = (h◦g)( f (x))
= h(g( f (x)))
= h(g◦ f (x))
= h◦ (g◦ f )(x)

∴ (h◦g)◦ f = h◦ (g◦ f ).

Thus composition is associative.

Step III: To show that A(S) has identity.

Define ι : S → S by ι(x) = x, (x ∈ S). Then for f ∈ A(S) and x ∈ S, f ◦ ι(x) = f (ι(x)) =
f (x) = ι( f (x)) = ι ◦ f (x). Hence f ◦ ι = ι ◦ f = f . Thus ι is the identity of A(S).

Step IV: To show that to every f ∈ A(S), there is a g ∈ A(S) such that f ◦g = g◦ f = ι .

Let x ∈ S. Since f is onto, there exists y ∈ S such that f (y) = x. Since f is one-one, this y is
unique. Define g(x) = y. Then

(g◦ f )(y) = g( f (y)) = g(x) = y = ι(y)

and

( f ◦g)(x) = f (g(x)) = f (y) = x = ι(x)

Therefore g = f−1. Now it remains to show that g ∈ A(S), i.e., g is bijective.

• For x,y ∈ S,

g(x) = g(y)⇒ f (g(x)) = f (g(y))⇒ ( f ◦g)(x) = ( f ◦g)(y)⇒ ι(x) = ι(y)⇒ x = y.

Hence, g is one-one.

• Let y ∈ S. Then y = ι(y) = (g ◦ f )(y) = g( f (y)). Take f (y) = x ∈ S. Then g(x) = y.
Hence, g is onto.

Hence f−1 = g ∈ A(S). Thus A(S) is a group with composition. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Note that if S is a finite set with n elements, then the group A(S), denoted by Sn, has
cardinality n! (see Exercise 1.101.10). Also the group A(S) is nonabelian if and only if S has more
than 2 elements (see Exercise 1.91.9).

Dr. Jay Mehta jay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edu
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14 §1.1. Group: Definition and Examples

Definition 1.1.8

Consider a finite set S = {x1,x2, . . . ,xn} and let θ ∈ A(S). Suppose

θ(x1) = xi1, θ(x2) = xi2, . . . , θ(xn) = xin;

that is, θ(xk) = xik for k = 1,2,3, . . . ,n. Such a θ is called a permutation and is written as

θ =

(
x1 x2 . . . xn

θ(x1) θ(x2) . . . θ(xn)

)
=

(
x1 x2 . . . xn
xi1 xi2 . . . xin

)
(1.10)

Usually, we take S = {1,2, . . . ,n} and write

θ =

(
1 2 . . . n

θ(1) θ(2) . . . θ(n)

)
(1.11)

Also, the set A(S), in this case, is denoted by Sn. At times, we shall also write kθ for θ(k),
(1 ≤ k ≤ n), that is,

θ =

(
1 2 . . . n

1θ 2θ . . . nθ

)
(1.12)

Definition 1.1.9

Let n ∈ N and θ ,σ ∈ Sn. Then we define their product as

θσ =

(
1 2 . . . n

σ(θ(1)) σ(θ(2)) . . . σ(θ(n))

)
(1.13)

ı.e.,
θσ = σ ◦θ (1.14)

Example 1.1.10. Let n = 4, θ =

(
1 2 3 4
2 3 1 4

)
and σ =

(
1 2 3 4
2 1 4 3

)
Then

θσ =

(
1 2 3 4
2 3 1 4

)(
1 2 3 4
2 1 4 3

)
=

(
1 2 3 4
1 4 2 3

)
(1.15)

and

σθ =

(
1 2 3 4
2 1 4 3

)(
1 2 3 4
2 3 1 4

)
=

(
1 2 3 4
3 2 4 1

)
(1.16)

In the following example, we construct S3.

Example 1.1.11 (A standard Example). We set

ϕ =

(
1 2 3
2 1 3

)
, ψ =

(
1 2 3
2 3 1

)
and e =

(
1 2 3
1 2 3

)
. (1.17)

Then ϕ2 = e = ψ3. Also,

ψ
2 =

(
1 2 3
3 1 2

)
= ψ

−1

PS03EMTH54 2023-24
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§1.1. Group: Definition and Examples 15

ϕψ =

(
1 2 3
3 2 1

)
= ψ

2
ϕ = (ϕψ)−1

ψϕ =

(
1 2 3
1 3 2

)
= ϕψ

2 = (ψϕ)−1

Thus S3 =
{ϕ

2

q
e
q

ψ
3

, ϕ, ψ, ψ2,

(ϕψ)−1

q
ϕψ

q
ψ

2
ϕ

,

(ψϕ)−1

q
ψϕ

q
ϕψ

2

}
is a group.

Throughout this note, without defining ϕ and ψ again, we shall refer to these elements.

Example 1.1.12. Let n ∈ N be fixed and G = {a0,a,a2, · · · ,an−1}, a set of symbols. Define
aia j = ai+ j if i+ j < n and aia j = ai+ j−n if i+ j ≥ n. Then clearly G is a group. The group is
denoted by Cn and called the cyclic group of order n.

Example 1.1.13. Let S = Z and G = {σ ∈ A(S) : σ(n) = n for all but finitely many n ∈ Z}.
Then (show that) G is a group. (Exercise)

1.1.2 Some Preliminary Lemmas

We recall some results in this subsection. The proofs are left to the students as they have already
done it in the undergrad.

Lemma 1.1.14

Let G be a group. Then

1. The identity element of G is unique.

2. Every a ∈ G has a unique inverse in G.

3. For every a ∈ G, (a−1)−1 = a.

4. For all a,b ∈ G,(ab)−1 = b−1a−1.

Lemma 1.1.15

Given a,b ∈ G, the equations ax = b and ya = b have unique solutions for x and y in G. In
particular, the following cancellation laws hold in G. For a,u,w ∈ G,

au = aw ⇒ u = w and ua = wa ⇒ u = w

hold in G.

Dr. Jay Mehta jay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edu
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16 §1.2. Subgroups

1.2 Subgroups

Definition 1.2.1

Let G be a group and H be a nonempty subset of G. If H is also a group under the operation
of G, then H is called a subgroup of G.

Example 1.2.2. Let G be any group. Clearly, {e} and G are subgroups of G. They are called
the trivial subgroups of G or the improper subgroups of G.

Example 1.2.3. Consider the group G of integers under addition, i.e., the group (Z,+). Let H
be the subset containing all the multiples of 5. That is, H = 5Z= {5k | k ∈ Z}. Then H is a
subgroup of G.

Solution. We show that H is a subgroup of G.

• Closure. Let x,y ∈ H = 5Z. Then x = 5k1 and y = 5k2 for some k1,k2 ∈ Z. Then

x+ y = 5k1 +5k2 = 5(k1 + k2) ∈ 5Z.

• Associativity. Let x,y,z ∈ H. Then x,y,z ∈ G. Then

x+(y+ z) = (x+ y)+ z.

• Identity. Clearly the identity of G is the identity of H. Here 0 is the identity of H as
x+0 = x = 0+ x for all x ∈ H.

• Inverse. Let x ∈ H. Then x = 5k for some k and so −x = −5k ∈ H and x+(−x) = 0.
Thus, every element of H has an inverse.

□
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Hence, H = 5Z is a subgroup of G = Z under addition. There is nothing special about 5 here.
We can in general consider the subgroup nZ for any n ∈ Z. What can be said about nZ∩mZ?
First try 4Z∩6Z and then generalize your observation.

Is “being subgroup of” an equivalence relation? Which properties of an equivalence relation
are satisfied? Also, do we need to check all the properties of group for H to be a subgroup of
G? Observe that the associativity in H is inherited from that of G. Also there is no need to
check for identity element in H as it is assured from the existence of inverse of every element
in H. Consequently we have the following results which we recall without proof as they are
easy and you might have already studied them in your undergraduate course.

Lemma 1.2.4

Let G be a group and H be a nonempty subset of G. Then the following are equivalent.

1. H is a subgroup of G.

2. H is closed under the operation of G, i.e., ab ∈ H for every a,b ∈ H, and
every element of H has an inverse in H, i.e., a−1 ∈ H for every a ∈ H.

PS03EMTH54 2023-24
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§1.2. Subgroups 17

3. a,b ∈ H ⇒ ab−1 ∈ H.

4. a,b ∈ H ⇒ a−1b ∈ H.

Proof. Exercise. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Lemma 1.2.5

Let H be a nonempty finite subset of a group G. Then H is a subgroup of G if it is closed
under the operation of G.

Proof. Assignment/Seminar exercise. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Example 1.2.6. Let G be a group of real numbers under addition, and let H be the set of all
integers. Then H is a subgroup of G.

Example 1.2.7. Let G be the group of nonzero real numbers under multiplication, and let H be
the set of positive rational numbers. Then H is a subgroup of G.

Example 1.2.8. Let G be the group of all real 2×2 matrices
(

a b
c d

)
with ad −bc ̸= 0 under

multiplication. Let

H =

{(
a b
0 d

)
∈ G | ad ̸= 0

}
.

Then H is a subgroup of G.

Example 1.2.9. Let H be the group of 1.2.81.2.8, and let K =

{(
1 b
0 1

)
| b ∈ R

}
. Then K is a

subgroup of H.

Example 1.2.10. Let S be any set, A(S) be the group of one-one mappings of S onto itself,
under composition. For x0 ∈ S, let H(x0) = {φ ∈ A(S) | φ(x0) = x0}. Then H(x0) is a subgroup
of A(S). If x0,x1 ∈ S, x0 ̸= x1, then what is H(x0)∩H(x1)? Is it a subgroup of A(S)? Is it a
subgroup of H(x0) or H(x1)?

Example 1.2.11. Let G be a group, a ∈ G. Let (a) = {ai | i = 0,±1,±2, . . .}. Then verify that
(a) is a subgroup of G. It is called the cyclic subgroup generated by a.

The group in the above example is sometimes denoted by ⟨a⟩ also. Above example yields us
a way of producing subgroups of G. For any suitable choice of a, if G = (a), then G is said to
a cyclic group. Cyclic groups are very important in the theory of abelian groups. Note that a
cyclic group is abelian but the converse is not true.

Example 1.2.12. Let G be a group and W be a subset of G. Let (W ) be the set of all elements
of G representable as a product of elements of W raised to positive, zero, or negative exponents.
Then (W ) is the subgroup of G generated by W and is the smallest subgroup of G containing
W . Moreover, (W ) is the intersection of all the subgroups of G which contains W . Note that
such an intersection is never vacuous because G itself is a subgroup of G containing W .

Example 1.2.13. Let G be the group of nonzero complex numbers a + ib (i.e., a,b ∈ R,
a2 +b2 ̸= 0) under multiplication. Let H = {a+ ib ∈ G | a2 +b2 = 1}. Then verify that H is a
subgroup of G.
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1.2.1 Right and left cosets of a subgroup

Definition 1.2.14

Let G be a group and H be a subgroup of G. For a,b ∈ G, we say that a is congruent to b
mod H and write as a ≡ b mod H, if ab−1 ∈ H. We say that a is equivalent to b mod H
and write as a ∼ b mod H, if a−1b ∈ H.

Lemma 1.2.15

Let H be a subgroup of a group G. For a,b ∈ G show the following:
1. The relation a ≡ b mod H is an equivalence relation.
2. The relation a ∼ b mod H is an equivalence relation.

Proof. Exercise. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Let G = Z be the group under addition and H = Hn = nZ, the subgroup of G of all the
multiples of n. Since G is additive group, the relation a ≡ b mod H, i.e., ab−1 ∈ H is given
by a+(−b) = a−b ∈ Hn. Thus, a−b is a multiple of n or n | a−b. This is the usual number
theoretic definition of congruence of two integers a and b. Thus, the relation defined above for
an arbitrary modulo an arbitrary subgroup is a natural generalization of the congruence relation
in number theory which is a familiar notion.

Definition 1.2.16

If H is a subgroup of G, a ∈ G, then Ha = {ha | h ∈ H} and aH = {ah | h ∈ H}. The set
Ha is called the right coset of H in G and the set aH is called the left coset of H in G.

Examples 1.2.17. 1. Consider group G = S3 and its subgroup H = {e,ϕ}Then one can see
that there are three distinct right cosets H,Hψ,Hψ2 of H in G and three distinct left
cosets eH = H,ψH,ψ2H of H in G. Also, since G is non-abelian, the right cosets and
left cosets are not same except for H, for example, Hψ ̸= ψH.

2. Consider the group G = Z with addition and H = 3Z. One can see that it also has three
distinct right and left cosets. Since G is abelian, the right coset of H +a is same the left
coset a+H.

3. Consider G = S3 and H = {e,ψ,ψ2}. Find out the right cosets of H in G. How many
such distinct right cosets of H in G do we get? Observe the relationship between the
order of H, order of G, and the number of distinct right cosets of H in G.

Lemma 1.2.18

Let G be a group and H be a subgroup of G. For all a ∈ G, the equivalence class of a with
respect to the relations ≡ and ∼ are right and left cosets of H in G with respect to a. That
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is,

Ha = {x ∈ G | a ≡ x mod H}
aH = {x ∈ G | a ∼ x mod H}

Proof. Let a ∈ G.

• Let x ∈ Ha. Then x = ha for some h ∈ H. We want to show that x ∈ [a], where [a] = {x ∈
G | a ≡ x mod H} is the equivalence class of a. To show that x ∈ [a] we have to show
that ax−1 ∈ H. Now,

ax−1 = a(ha)−1 (∵ x = ha)

= a(a−1h−1) (∵ (ab)−1 = b−1a−1)

= (aa−1)h−1 (associativity of G)

= eh−1 = h−1 ∈ H (∵ H is a subgroup and h ∈ H).

Therefore Ha ⊂ [a] . To show [a]⊂ Ha, consider x ∈ [a].

x ∈ [a]⇒ a ≡ x mod H (by defn. of equivalence class)

⇒ ax−1 ∈ H (by defn. of congruence relation)

⇒ ax−1 = h for some h ∈ H
⇒ a = hx (multiply x from right on both sides)

⇒ h−1a = x (multiply h−1 from left on both sides)

⇒ x = h−1a ∈ Ha (∵ H is a subgroup and h ∈ H).

Therefore [a]⊂ Ha . Hence,

Ha = [a] = {x ∈ G | a ≡ x mod H},

i.e., the equivalence class of a (with respect to the relation ≡) is the right coset of H in G
(with respect to a).

• Let a = {x ∈ G | a ∼ x mod H} denote the equivalence class of a with respect to the
relation ∼. Same as above, show that aH = a.

□
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

We know that given two equivalence classes, either they are same or disjoint. Since left and
right cosets are equivalence classes, we have the following corollary.

Corollary 1.2.19

Let H be a subgroup of G. Then

1. Two right cosets of H in G are either identical or disjoint.

2. Two left cosets of H in G are either identical or disjoint.
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Lemma 1.2.20

Let G be a group and H be a subgroup of G. There is a one-to-one correspondence between
any

1. two right cosets of H in G,

2. two left cosets of H in G, and

3. a left and a right coset of H in G.

Hint. For a,b ∈ G, prove that the following are one-one correspondences:

1. ha ∈ Ha ↔ hb ∈ Hb;

2. ah ∈ aH ↔ bh ∈ bH and

3. ah ∈ aH ↔ hb ∈ Hb. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Remark 1.2.21.
Above lemma is very significant when H is a finite subgroup, for then it says that any two

right cosets (or left cosets) of H in G or a left and a right coset of H in G have the same number
of elements. Note that H = eH = He, i.e., H itself is a right coset (or a left coset). So any right
coset (or any left coset) of H in G has the same number of elements as that of H which is o(H).

When the group G itself is finite, using the Lemma 1.2.181.2.18 and Lemma 1.2.201.2.20, and what we
discussed above, we have the following well-known theorem called the Lagrange’s theorem
which states that order of a subgroup of a finite group divides the order of the group. We leave
the proof as an exercise as you might have already seen it in the undergrad syllabus.

Theorem 1.2.22: Lagrange’s Theorem

Let G be a finite group and H be a subgroup of G. Then order of H, that is o(H), is a
divisor of o(G), that is o(H) | o(G).

Proof. Assignment/Seminar exercise. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Definition 1.2.23

Let H be a subgroup of a group G. The index of H in G is defined to be the number of
distinct right cosets of H in G; and it is denoted by iG(H). If G is a finite group, then from
the proof of Lagrange’s theorem it is clear that

iG(H) =
o(G)

o(H)
(1.18)
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What if we define index of a subgroup in the group as the number of distinct left cosets
instead of right cosets? Is it possible? Does a subgroup H have the same number of right and
left cosets in G? Justify (see Exercise 1.221.22).

Before we proceed to see some immediate consequences of the Lagrange’s theorem, we
make the following important remark regarding the same.

Remark 1.2.24. Note that the converse of Lagrange’s theorem is not true. That is, a group G
need not have a subgroup of order m if m is a divisor of o(G). For example, there is a group of
order 12 which does not have a subgroup of order 6 thought 6 | 12. This group of order 12 can
be found as a subgroup of the group S4, the permutation group on 4 symbols. We shall study
more about permutations in the next Unit.

The converse of Lagrange’s theorem, however, is true for (finite) abelian groups.

Definition 1.2.25

Let G be a group and a ∈ G. We define the order of a to be the smallest n ∈ N, if it exists,
such that an = e and in this case, we write o(a) = n. If such an n exists, then we say that a
is of finite order. If such an n does not exist, then we say that a is of infinite order.

Corollary 1.2.26

If G is a finite group and a ∈ G, then o(a) | o(G).

Proof. Consider the cyclic subgroup H generated by a, i.e., H = (a). Then H consists of
elements of the form e,a,a2, . . .. Since G is a finite group, H = (a) is also finite. We shall show
that H has o(a) elements.
Claim. o(H) = o(a).
Clearly ao(a) = e. So the group H has at most o(a) distinct elements. If o(H) < o(a), then
ai = a j for some integers 0 ≤ i < j < o(a). Then a j−i = e, where 0 < j − i < o(a) which
is contradiction by the definition of o(a). Hence, o(H) = o(a). By Lagrange’s theorem,
o(H) | o(G), i.e., o(a) | o(G). □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Corollary 1.2.27

Let G be a finite group and a ∈ G. Then ao(G) = e.

Proof. By above corollary, o(a) | o(G). Therefore o(G) = mo(a) for some integer m. Then

ao(G) = amo(a) =
(

ao(a)
)m

= em = e.

□
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Definition 1.2.28

Let n ∈ N. The Euler’s totient function also called Euler’s phi function is defined as
φ : N→ N as φ(1) = 1 and φ(n) = number of positive integers less than n and relatively
prime to n, for n > 1.

Prove that for a given integer n > 1, the set

G = {k ∈ N : k < n, gcd(k,n) = 1}

is a group under multiplication modulo n (see Exercise 1.231.23).
Clearly o(G) = φ(n). Consequently, we have the following particular case of Corol-

lary 1.2.271.2.27.

Corollary 1.2.29: Euler

Let n > 1 be an integer and a ∈ N such that gcd(a,n) = 1. Then

aφ(n) ≡ 1 mod n. (1.19)

We consider the following case when n is replaced by a positive prime integer p.

Corollary 1.2.30: Fermat

Let a ∈ N and p ∈ N be a prime. Then

ap ≡ a mod p. (1.20)

Proof. Case I: gcd(a, p) = 1.

Note that φ(p) = p−1. Hence by Corollary 1.2.291.2.29 (Euler’s result),

ap−1 ≡ 1 mod p
∴ ap ≡ p mod p.

Case II: gcd(a, p) ̸= 1.

In this case, the gcd(a, p) = p. Consequently, p | a. Then a ≡ 0 mod p and so we also have
ap ≡ 0 mod p. Hence,

ap ≡ a mod p.

This completes the proof. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Corollary 1.2.31

If G is a finite group with o(G) = p, a prime integer, then G is cyclic.
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Proof. Proof in seminar/assignment. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

1.3 A Counting Principle

Let H and K be two subgroups of a group G. In general HK is not a subgroup of G (see
Exercise 1.241.24). However the following Lemma characterizes when HK is a subgroup of G.

Lemma 1.3.1

Let H,K be subgroups of a group G. Then HK is a subgroup of G if and only if HK = KH.

Proof. First assume that HK = KH. We shall prove that HK is a subgroup of G. Suppose
HK = KH.

Claim 1: HK is closed under the product of G.

Let ,x,y ∈ HK. Then x = h1k1 and y = h2k2 for some h1,h2 ∈ H and k1,k2 ∈ K. Then

xy = (h1k1)(h2k2)

= h1(k1h2)k2 (∵ associativity)
= h1(h3k3)k2 (∵ k1h2 ∈ KH = HK, so k1h2 = h3k3, for some h3 ∈ H, k3 ∈ K)

= (h1h3)(k3k2) (∵ associativity)
∈ HK (∵ h1,h3 ∈ H, k2,k3 ∈ K, H & K are subgroups).

Hence, HK is closed under the operation of G.

Claim 2: Every element of HK has an inverse in HK

Let x = hk ∈ HK, for some h ∈ H and k ∈ K. Then x−1 = (hk)−1 = k−1h−1 ∈ KH = HK
∴ (x)−1 ∈ HK.
Hence HK is a subgroup of G.
Conversely, assume that HK is a subgroup of G. Then we shall prove that HK = KH.
First we show that KH ⊂ HK. Let x = kh ∈ KH, where h ∈ H,k ∈ K. Then

∴ h−1 ∈ H,k−1 ∈ K (∵ H and K are subgroups)

∴ h−1k−1 ∈ HK

∴ (h−1k−1)−1 ∈ HK (∵ HK is a subgroup)

∴ kh ∈ HK (∵ kh = (h−1k−1)−1)

∴ KH ⊂ HK

Now we show that HK ⊂ KH. Let x = hk ∈ HK, where h ∈ H,k ∈ K.

∴ x−1 ∈ HK (∵ HK is a subgroup)

∴ (hk)−1 ∈ HK
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∴ (hk)−1 = h1k1 (for some h1 ∈ H,k1 ∈ K)

∴ x = hk = k−1
1 h−1

1 ∈ KH (taking inverse on both sides)
∴ HK ⊂ KH

This completes the proof. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Note that when G is commutative, HK = KH automatically. Hence we have the following.

Corollary 1.3.2

Let H,K be two subgroups of an abelian group. Then HK is a subgroup of G.

Now we obtain a formula for counting the number of elements of HK.

Lemma 1.3.3

If H and K are finite subgroups of G of order o(H) and o(K) respectively, then

o(HK) =
o(H)o(K)

o(H ∩K)
. (1.21)

Proof. Let H ∩K = {e = r1,r2, . . . ,rm}. Then o(H ∩K) = m.
Let us first list all elements of HK in the form

hk : h ∈ H, k ∈ K (1.22)

with all possible repetitions. So, there are o(H)o(K) entries in (1.221.22). We show that each
element of HK appears exactly m (= o(H ∩K)) times in this list.

Let x ∈ HK. Then there are h ∈ H and k ∈ K such that x = hk.
For i = 1,2, . . . ,m, let

hi = hri and ki = r−1
i k.

Then x = hk can be written in the form “an element of H times an element of K” in m distinct
ways as shown below.

x = h1k1 = h2k2 = h3k3 = · · ·= hmkm (1.23)

Now suppose hk can also be written as h′k′ with h′ ∈ H and k′ ∈ K.

Claim 1: h′k′ is already listed in (1.231.23), that is, h′ = hri, k′ = r−1
i k for some i.

hk = h′k′

⇒ (h′)−1h = k′k−1 ∈ H ∩K

⇒ ((h′)−1h)−1 = (k′k−1)−1 ∈ H ∩K

⇒ h−1h′ = k(k′)−1 ∈ H ∩K

⇒ h−1h′ = k(k′)−1 = ri for some ri ∈ H ∩K
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⇒ r−1
i = k′k−1.

Consequently, h′ = (hh−1)h′ = h(h−1h′) = hri and k′ = k′(k−1k) = (k′k−1)k = r−1
i k.

Thus the repetition h′k′ is one of the forms listed in (1.231.23). Hence to count the exact number
of elements of HK, we have to divide o(H)o(K) by m = o(H ∩K). This proves (1.211.21). □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Corollary 1.3.4

Let H,K be two subgroups of a finite group G. If

o(H)>
√

o(G) and o(K)>
√

o(G),

then H ∩K ̸= {e}.

Proof. Since HK ⊂ G, o(HK)≤ o(G). Let o(H)>
√

o(G) and o(K)>
√

o(G). Suppose, if
possible, o(H ∩K) = 1. Putting this value in (1.211.21)

o(HK) =
o(H)o(K)

o(H ∩K)
>

√
o(G)

√
o(G)

o(H ∩K)
=

o(G)

o(H ∩K)
= o(G), (1.24)

a contradiction to the fact that o(HK)≤ o(G). Thus o(H ∩K) ̸= 1. Thus H ∩K ̸= {e}. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

As and application of the above corollary, we prove the following.

Proposition 1.3.5

Let p,q ∈ N be two prime numbers with p > q and let G be a group of order o(G) = pq.
Then G has at most one subgroup of order p.

Proof. Let H,K be two subgroups of G with o(H) = o(K) = p. We show that H = K. Now

pq < p2 (∵ q < p)
⇒√

pq < p

⇒
√

o(G)< o(H) = o(K).

Then by above corollary, H ∩K ̸= (e) and so o(H ∩K) ̸= 1. Now, H ∩K is a subgroup of H and
K both. So, o(H ∩K) | o(H) and o(H ∩K) | o(K). That is, o(H ∩K) | p. Since o(H ∩K) ̸= 1,
it follows that o(H ∩K) = p.

Thus H ∩ K is a subset of H having p elements. Also H has p elements. Therefore,
H ∩K = H and similarly H ∩K = K. Hence, H = K. □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

1.4 Normal Subgroups and Quotient Groups

Let G be a group, H be a subgroup of G and a ∈ H. Then the left and right cosets of H in G are

aH = {ah | h ∈ H} and Ha = {ha | h ∈ H}
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respectively. Now if G is abelian, then clearly aH = Ha, i.e., a left coset of H in G is same
as the right coset of H in G. When is this not true? Consider the following example in a
non-abelian set-up.

Let G = S3 and H = (ϕ) = {e,ϕ}. Then the following are the distinct right and left cosets
of H in S3.

Right cosets Left cosets
Hϕ = He = H = {e,ϕ} ϕH = eH = H = {e,ϕ}
Hϕψ = Hψ = {ψ,ϕψ} ψϕH = ψH = {ψ,ψϕ}

Hψϕ = Hψ2 = {ψ2,ϕψ2 = ψϕ} ϕψH = ψ2H = {ψ2,ψ2ϕ = ϕψ}

Thus, there are three distinct right (or left) cosets of H in G and hence index of H in G is 3.
Observe that Hψ ̸= ψH. Also the coset Hψ is not a left coset. What is interesting is a subgroup
for which every left coset is also a right coset, of course, this is trivial in case of abelian groups.
Now, consider the following example.

Let G = S3 and N = (ψ) = {e,ψ,ψ2}. Then the following are the distinct right and left
cosets of N in S3.

Right cosets Left cosets
Nψ2 = Nψ = Ne = N = {e,ψ,ψ2} ψ2N = ψN = eN = N = {e,ψ,ψ2}

Nψϕ = Nϕψ = Nϕ = {ϕ,ψϕ,ψ2ϕ

q
ϕψ

} ψϕN = ϕψN = ϕN = {ϕ,ϕψ,ϕψ2

q
ψϕ

}

Note that there are two distinct cosets of N in G and hence index of N in G is 2. Not only
that, but every left coset of N in G is also a right coset of N in G. Such subgroups are of special
importance and called normal subgroups of the group G. We define here in a different way and
then eventually we shall show that a subgroup N of G is normal if and only if every right coset
of N in G is also a left coset of N in G.

Definition 1.4.1

Let G be a group and N be a subgroup of G. We say that N is a normal subgroup of G if
for every g ∈ G and n ∈ N, gng−1 ∈ N. Symbolically, this is written as N ◁G.

Examples 1.4.2. 1. For any group G, the subgroups G and (e) are normal subgroups of G
called the improper normal subgroups of G.

2. Any subgroup of an abelian group G is a normal subgroup of G.

3. The subgroup N = (ψ) is a normal subgroup of S3 (verify). Also check whether the
subgroup H = (ϕ) is a normal subgroup of S3 or not. What are other normal subgroups
of S3?

Remark 1.4.3. For any g ∈ G, we have

gNg−1 = {gng−1 | n ∈ N}.

Hence, (from the definition of normal subgroup) equivalently we say that N is a normal subgroup
of G if gNg−1 ⊂ N for every g ∈ G. In fact, the reverse inclusion is also true and we have the
following lemma.
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Lemma 1.4.4

N is a normal subgroup of G if and only if gNg−1 = N for every g ∈ G.

Proof. Assume that gNg−1 = N for every g ∈ G. Then gNg−1 ⊂ N for every g ∈ G and hence
N is normal in G.

Conversely, assume that N is normal in G. Then by definition for every g ∈ G, we have

gNg−1 ⊂ N.

If g ∈ G, then g−1 ∈ G and so we can also write

g−1Ng ⊂ N.

Hence for every g ∈ G,

g(g−1Ng)g−1 ⊂ g(N)g−1

⇒ N ⊂ gNg−1.

Therefore, gNg−1 = N for every g ∈ G. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

If gNg−1 = N for every g ∈ G, then gN = Ng for every g ∈ G. This means that every left
coset of N in G is also a right coset of N in G. This leads us to the following lemma.

Lemma 1.4.5

The subgroup N of G is a normal subgroup of G if and only if every left coset of N in G is
a right coset of N in G.

Proof. If N is normal in G, then by above lemma, gNg−1 = N for every g ∈ G. Hence,
(gNg−1)g = Ng, and equivalently gN = Ng for every g ∈ G. Thus, the left coset gN is the right
coset Ng.

Conversely, suppose that every left coset of N in G is a right coset of N in G. For any g ∈ G,
consider the left coset gN of N in G. Suppose it is the right coset Na of N in G for some a ∈ G.
That is, suppose

gN = Na.

Now, g = g · e ∈ gN. Hence, g ∈ Na. But we have g = e ·g ∈ Ng. We know that any two right
cosets of N in G are either identical or disjoint. Since g ∈ Ng∩Na, we conclude that Na = Ng.
Hence, gN = Ng or gNg−1 = N for every g ∈ G. Hence, N is a normal subgroup of G. □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Remark 1.4.6. We know that HK = {hk | h ∈ H, k ∈ K}. What if we take K = H. Then we
have

HH = {h1h2 | h1,h2 ∈ H} ⊂ H (∵ H is closed).

On the other hand, H = He ⊂ HH. Hence, HH = H.
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Now, suppose N is a normal subgroup of G and a,b ∈ G. Consider the right cosets Na and
Nb. Since N is normal in G, by the above lemma, aN = Na. Therefore, we can multiply two
right cosets to get a right coset as follows.

(Na)(Nb) = N(aN)b = N(Na)b = NNab = Nab.

Thus, product of two right cosets Na and Nb is again a right coset and precisely it is Nab,
i.e., the right coset of N in G with respect to the product ab in G. Consequently, we have the
following significant results.

Lemma 1.4.7

A subgroup N of G is a normal subgroup of G if and only if the product of two right cosets
of N in G is again a right coset of N in G.

Proof. Suppose N is normal in G and a,b ∈ G. Then

(Na)(Nb) = N(aN)b = N(Na)b = NNab = Nab.

Thus, the product of two right cosets of N in G is again a right coset of N in G.
Converse part of this is left as an exercise (see Exercise 1.251.25) □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Notation. Let G/N (read as “G quotient N”) denote the collection of right cosets of N in G.
(That is the elements of G/N are subsets of G and we define product in G/N as the product of
right cosets defined above).

Then the number of elements in G/N is precisely iG(N), the index of N in G. We have the
following theorem.

Theorem 1.4.8

If G is a group and N is a normal subgroup of G, then G/N is also a group.

Definition 1.4.9

Let N be a normal subgroup of a group G. The group G/N is called the quotient group or
the factor group of G by N.

Proof of Theorem 1.4.81.4.8. For the quotient product of the right cosets defined above, we have

• Let X ,Y ∈ G/N. Then X = Na and Y = Nb for some a,b ∈ G. Then

XY = (Na)(Nb) = Nab ∈ G/N.

• Let X ,Y,Z ∈ G/N. Then X = Na, Y = Nb and Z = Nc for some a,b,c ∈ G. Now, since
G is associative, we have

(XY )Z =(NaNb)Nc=(Nab)Nc=N(ab)c=Na(bc)=Na(Nbc)=Na(NbNc)=X(Y Z).
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• Consider the element N = Ne ∈ G/N. If X ∈ G/N, then X = Na for some a ∈ G. Now,

XN = NaNe = Nae = Na = X .

Similarly, NX = X . Consequently, N = Ne is an identity element for G/N.

• Suppose X = Na ∈ G/N with a ∈ G. Then Na−1 ∈ G/N, and

NaNa−1 = Naa−1 = Ne = N.

Similarly, Na−1Na = Ne = N. Hence, Na−1 is the inverse of Na in G/N.

Hence, if N is a normal subgroup of G, then G/N is a group with the quotient product of right
cosets. □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

What about the converse of the above theorem? If G/N is a group with the above defined
operation, is it true that N must be a normal subgroup of G?

In addition, if G is a finite group, then we have the following lemma about the order of G/N.

Lemma 1.4.10

If G is a finite group and N is a normal subgroup of G, then

o(G/N) = o(G)/o(N). (1.25)

Proof. Since the elements of G/N are the right cosets of N in G, the order of G/N is precisely

iG(N) =
o(G)

o(N)
.

□
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

1.5 Homomorphisms

Definition 1.5.1

Let G, Ḡ be two groups. A mapping φ : G → Ḡ is said to be a homomorphism from G to Ḡ
if φ(ab) = φ(a)φ(b) for all a,b ∈ G.

Below we give some examples of homomorphisms between different groups. In each of
these examples, as an exercise, check the following things.

• whether φ is one-one
• whether φ is onto
• φ(e), where e is the identity of G
• φ(x) and φ(x−1) for x ∈ G
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Example 1.5.2. For any group G and any group Ḡ, the mapping φ : G → Ḡ by φ(x) = e for all
x ∈ G is a homomorphism called the trivial homomorphism.

For any group G, the map φ(x) = x for all x ∈ G is also a homomorphism.

Example 1.5.3. Let G = Z with addition and let Ḡ = G. Then the map φ : G → Ḡ defined by
φ(x) = 2x is a homomorphism.

Example 1.5.4. Let G =R with addition and Ḡ =R∖{0} with multiplication. Define φ : G →
Ḡ by φ(a) = 2a. Then φ is a homomorphism as

φ(ab) = 2a+b = 2a2b = φ(a)φ(b).

Since 2a is always positive, note that, the image of φ is not all of Ḡ, i.e., φ is not onto. φ is a
mapping of G into Ḡ.

Example 1.5.5. Let G = S3 = { e
q

ϕ
0
ψ

0

,

ϕ
1
ψ

0

q
ϕ , ψ

q
ϕ

0
ψ

1

,

ϕ
0
ψ

2

q
ψ2 , ϕψ

q
ϕ

1
ψ

1

,

ϕ
1
ψ

2

q
ψϕ } and Ḡ = {e,ϕ}. De-

fine the mapping f : G → Ḡ by f (ϕ iψ j) = ϕ i. That is

f :



e 7→ e
ϕ 7→ ϕ

ψ 7→ e
ψ2 7→ e

ϕψ 7→ ϕ

ψϕ 7→ ϕ

Verify that f is a homomorphism of G onto Ḡ. One may also take Ḡ = S3. In that case, the
homomorphism would not be onto.

Example 1.5.6. Let G = R∖{0} under multiplication and Ḡ = {1,−1} be the group under

multiplication. Define φ : G → Ḡ by φ(x) =
{

1 if x is positive
−1 if x is negative. .

Then φ is a homomorphism.

Example 1.5.7. Let G = Z under addition and let Ḡn be the group of integers under addition
modulo n. Define φ : G → Ḡn by φ(x) = remainder of x on division by n. Verify that φ is a
homomorphism.

Example 1.5.8. Let G be the group positive real numbers with the operation multiplication and
let Ḡ = R with addition. Then φ : G → Ḡ by φ(x) = log10 x is a homomorphism because

φ(xy) = log10(xy) = log10(x)+ log10(y) = φ(x)φ(y).

Example 1.5.9. Let G = GL2(R) be the group under matrix multiplication and let Ḡ =R∖{0}
under multiplication. Define φ : G → Ḡ by φ(A) = det(A) for A ∈ GL2(R). Then verify that φ

is a homomorphism of G onto Ḡ.

The following observation can be made from the examples we have seen above.
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Lemma 1.5.10

If φ is a homomorphism of G into Ḡ, then
1. φ(e) = ē, the unit element of Ḡ.
2. φ(x−1) = φ(x)−1 for all x ∈ G.

Proof. 1. Since φ is a homomorphism and ee = e,

φ(e)φ(e) = φ(ee) = φ(e).

By cancellation law in Ḡ, φ(e) = ē.
2. Since φ is a homomorphism,

φ(x)φ(x−1) = φ(xx−1) = φ(e) = ē.

By the definition of inverse in Ḡ, φ(x−1) = φ(x)−1.
□

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Definition 1.5.11

Let G and Ḡ be two groups and φ : G → Ḡ be a homomorphism. Then the kernel of φ is
denoted by Kφ or kerφ and is defined by

kerφ = {x ∈ G | φ(x) = ē, where ē is the identity of Ḡ}.

Lemma 1.5.12

Let G and Ḡ be two groups. If φ is a homomorphism of G into Ḡ with kernel K, then K is
a normal subgroup of G.

Proof. First we show that K = kerφ is a subgroup of G.
Let x,y ∈ kerφ . Then φ(x) = ē and φ(y) = ē. Since φ is a homomorphism,

φ(xy) = φ(x)φ(y) = ēē = ē.

Also for x ∈ kerφ , φ(x−1) = φ(x)−1 = ē−1 = ē. That is x−1 ∈ kerφ . Hence, kerφ is a subgroup
of G.

Now we show that K = kerφ is a normal subgroup of G.
For any g ∈ G and k ∈ kerφ ,

φ(gkg−1) = φ(g)φ(k)φ(g−1) = φ(g)ēφ(g−1) = φ(g)φ(g)−1 = ē.

Thus, gkg−1 ∈ kerφ and hence K = kerφ is a normal subgroup of G. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Now, we give another example of a canonical homomorphism from a group to its quotient
group by a normal subgroup in the form of the following lemma the proof of which is already
seen earlier.
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Lemma 1.5.13

Let G be a group and N be a normal subgroup of G. Define φ : G → G/N by φ(x) = Nx,
(x ∈ G). Then ϕ is an onto homomorphism with kerϕ = N.

Proof. First we show that φ is onto. Let X ∈ G/N. Then X = Ny for some y ∈ G and
φ(y) = Ny = X . Hence, φ is onto.

Now we show that φ is a homomorphism. If x,y ∈ G, then

φ(xy) = Nxy = NxNy = φ(x)φ(y).

Finally,

kerφ = {x ∈ G | φ(x) = N} (N is identity of G/N)

= {x ∈ G | Nx = N}
= {x ∈ G | x ∈ N}= N.

□
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Now let φ be a homomorphism of G onto Ḡ with kernel K. Let ḡ ∈ Ḡ. What are all the
inverse images of ḡ in G? If ḡ = ē, then it is clear from the definition of kernel that inverse
images of ē is the kernel K. If we know one x ∈ G which in inverse image of some ḡ ∈ Ḡ, then
we can find all the other inverse images by the following lemma.

Lemma 1.5.14

If φ is a homomorphism of G onto Ḡ with kernel K, then the set of all inverse images of
ḡ ∈ Ḡ under φ in G is given by Kx, where x is any particular inverse image of ḡ in G.

Proof. Let ḡ ∈ Ḡ. Let x ∈ G be any particular inverse image of ḡ, i.e. φ(x) = ḡ. First we show
that elements of Kx are the inverse images of ḡ under φ .

Let y ∈ Kx, where K is kerφ . Then y = kx for some k ∈ K and

φ(y) = φ(kx) = φ(k)φ(x) = ēḡ = ḡ.

Thus, y is also an inverse image of ḡ under φ .
Now we show that any inverse image of ḡ under φ is in Kx. Let z be any arbitrary inverse

image of ḡ under φ , i.e. φ(z) = ḡ. Since φ(x) = ḡ, we have

φ(z) = φ(x)

⇒ φ(z)φ(x)−1 = ē

⇒ φ(z)φ(x−1) = ē (∵ φ(x)−1 = φ(x−1))

⇒ φ(zx−1) = ē (∵ φ is homomorphism)

⇒ zx−1 ∈ K = kerφ

⇒ z ∈ Kx.

□
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Definition 1.5.15

A homomorphism φ from G into Ḡ is said to be an isomorphism if φ is one-one.
Let G, Ḡ be two groups. We say that G is isomorphic to Ḡ if there exists an isomorphism

from G onto Ḡ. In this case, we write G ≈ Ḡ.

Theorem 1.5.16: First Isomorphism Theorem

Let G, Ḡ be two groups and ϕ : G → Ḡ be an onto homomorphism with kernel K. Then
G/K ≈ Ḡ.

Proof. The proof is left as exercise. The hint is shown below.

G Ḡ

G/K

σ

φ

ψ

g φ(g)

Kg

σ

φ

ψ

Define ψ : G/K → Ḡ by ψ(Kg) = φ(g). Show that the map ψ is well-defined, bijective and
a homomorphism, using the fact that φ is an onto homomorphism. □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

1.5.1 Application: Cauchy’s Theorem for Abelian Groups

Theorem 1.5.17: Cauchy’s Theorem for Abelian Groups

Let G be a finite abelian group and p ∈ N be a prime such that p | o(G). Then there is an
element a ̸= e ∈ G, such that ap = e.

Proof. We prove this result by induction on o(G).

Step I: o(G) = 1.

Suppose o(G) = 1. Then the result is vacuously true.22

Step II: Induction hypothesis: Suppose that the result is true for all abelian groups having
order < o(G).

Case I: G has no subgroup other than G and {e}.

In this case, o(G) must be prime and that prime must be p. Thus G is cyclic and so there is
a ∈ G such that o(a) = o(G) = p.

Case II: G has a subgroup N other than G and {e} and p | o(N).

2Give me a prime p such that p | 1 and I will give you a such that o(a) = p.
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34 §1.6. Relation of two homomorphic groups

By induction hypothesis, there is a ∈ N such that o(a) = p. So, we are done.

Case III: G has a subgroup N other than G and {e} and p ∤ o(N).

Since G is commutative, N is normal. So, G/N is a group and o(G/N) = o(G)/o(N) <
o(G). Since G/N is commutative, by induction hypothesis, there is X = Nb ∈ G/N such that
X ̸= Ne and X p = Ne = N. That is o(X) = p . Since X ̸= N, b ̸∈ N. Also since X p = N,
(Nb)p = Nbp = N and so bp ∈ N.

Then by a corollary of Lagrange’s theorem, (bp)o(N) = e. That is (bo(N))p = e. Let c = bo(N).
Then cp = e. It remains to show that c ̸= e.

c = e ⇒bo(N) = e

⇒Nbo(N) = Ne = N

⇒(Nb)o(N) = N

⇒Xo(N) = N

But (Nb)p = N, i.e., o(X) = p. So we have p | o(N) which a contradiction to our assumption
that p ∤ o(N). Thus c ̸= e. Hence o(c) = p. This completes the proof. □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

1.6 Relation of two homomorphic groups

We will prove a result about the relation of two groups which are homomorphic. For this,
consider the following lemma.

Lemma 1.6.1

Let φ be a homomorphism of G onto G with kernel K. For a subgroup H of G, let
H = {x ∈ G | φ(x) ∈ H}. Then H is a subgroup of G and K ⊂ H. If H is normal in G,
then H is normal in G. Moreover, this association sets up a one-one mapping from the set
of all subgroups of G onto the set of all subgroups of G containing K.

Proof. Left as a seminar/assignment exercise. Refer the reference book by I. N. Herstein. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 1.6.2

Let φ be a homomorphism of G onto G with kernel K, and let N be a normal subgroup of
G, N = {x ∈ G | φ(x) ∈ N}. Then G/N ≈ G/N. Equivalently, G/N ≈ (G/K)(N/K).

Proof. Left as a seminar/assignment exercise. Refer the reference book by I. N. Herstein. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Exercises

These seminar topics will cover some of the exercises that you have already studied in your
undergraduate course.
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Exercise 1.1
Let (G,∗) be a group. Define × on G by g×h = h∗g, (g,h ∈ G). Show that (G,×) is a group.

Exercise 1.2
Let G = {x ∈ C : x27 = 1}. Show that G is a group under multiplication.

Exercise 1.3
Let G,H be two groups. For(g1,h1),(g2,h2) ∈ G×H, define

(g1,h1)(g2,h2) = (g1g2,h1h2). (1.7)

Show that with this operations, G×H is a group.

Exercise 1.4
Show that the set of all 2×2 matrices form a group under matrix addition.

Exercise 1.5
Show that the set GL(2,C) of all 2×2 matrices with nonzero determinant is a group under

matrix multiplication.

Exercise 1.6

Let G =

{(
a b
−b a

)
: a,b ∈ R, a2 +b2 ̸= 0

}
. Show that G is a group. Prove the same sym-

bolically by writing
(

a b
−b a

)
= aI +bJ, where I =

(
1 0
0 1

)
and J =

(
0 1
−1 0

)
.

Exercise 1.7

Let G =

{(
a b
c d

)
: a,b,c,d ∈ Zp, ad −bc ̸= 0

}
. Show that G is a group.

Exercise 1.8
Let S be a set with one or two elements. Find the number of elements of A(S).

Exercise 1.9
Show that for a set S, A(S) is commutative, if and only if |S|< 3, here |S| denotes the cardinality,
that is, number of elements in S.
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Exercise 1.10
Show that Sn has exactly n! elements.

Exercise 1.11
Show that Sn is a group.

Exercise 1.12
Show that a group has a unique identity element.

Exercise 1.13
Show that to every element of a group, there is a unique inverse.

Exercise 1.14
State what do we mean by the cancellation laws in a group and prove them.

Exercise 1.15
Show that the set of all 2×2 matrices with determinant 1 is a subgroup of GL(2,C).

Exercise 1.16
Does the set of all 2× 2 matrices with determinant 1 or −1 form a subgroup of GL(2,C)?

Prove your claim.

Exercise 1.17
Does the set of all 2×2 matrices with determinant −1 form a subgroup of GL(2,C)? Prove

your claim.

Exercise 1.18
Let S be a set and x1 ∈ S. Define H(x1) = { f ∈ A(S) : x1 = f (x1)}. Show that H(x1) is a

subgroup of A(S).

Exercise 1.19
Let G be a group and W ⊂ G, define

⟨W ⟩= {an1
1 an2

2 · · ·ank
k : ai ∈W,ni ∈ Z for 1 ≤ i ≤ k,k ∈ N}.

Show that ⟨W ⟩ is a subgroup of G.
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Exercise 1.20
Find all the right cosets of the subgroup 7Z= {7n : n ∈ Z} of Z.

Exercise 1.21
Find all the right and left cosets of the subgroup H = ⟨ϕ⟩ of S3 in S3.

Exercise 1.22
Let G be a group and H be its subgroup. Show that the number of right cosets of H in G is

same as the number of left cosets of H in G.

Exercise 1.23
Let n > 1 be an integer. Let G = {k ∈ N : k < n, gcd(k,n) = 1}. Show that G is a group under
multiplication modulo n.

Exercise 1.24
Consider the subgroups H = {e,φ}, K = {e,φψ} of S3. Verify that HK ̸= KH and that none
of them is a subgroup of S3. Is HK or KH a subgroup of S3? Justify.

Exercise 1.25
Let G be a group and N be a subgroup of G. If product of two right cosets of N in G is also a
right coset of N in G, then show that N is normal in G.

Exercise 1.26
Show that “being isomorphic to” or “group isomorphism” is an equivalence relation.

Exercise 1.27
Let G be a finite group. If G has no proper subgroup, then show that G is a cyclic group of

prime order.

Exercise 1.28
Let G be a group and a ∈ G with o(a) = n. If am = e, then show that n | m.

Dr. Jay Mehta jay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edu

mailto:jay_mehta@spuvvn.edu
jay_mehta@spuvvn.edu
jay_mehta@spuvvn.edu




2

C
H

A
P

T
E

R

Conjugate Classes & Class Equation

In this unit, we shall study the following.
Automorphism, inner automorphism, Cayley’s theorem and its applications, permutation

groups, permutation as a product of disjoint cycles and transpositions, even and odd permuta-
tions, alternating group, another counting principle, conjugate classes, class equation and its
applications, Cauchy’s theorem (general case), number of conjugate classes in Sn.

2.1 Automorphisms

Definition 2.1.1

Let G be a group. An isomorphism from G onto G is called an automorphism. The set of
all automorphisms of a group G will be denoted by Aut(G) or A (G).

Lemma 2.1.2

Let G be a group. Then the set A (G) is a group.

Proof. Let us note that A (G) ⊂ A(G). So, we need to prove that A (G) is nonempty and
closed under composition and inversion. Since the identity map I : G → G, defined by I(g) = g,
(g ∈ G), is an onto isomorphism, A (G) ̸= /0. Also (since A(G) is a group), we know that the
composition of two one-one and onto functions is again one-one and onto. So now we prove
that composition of two homomorphisms is a homomorphism. Let S,T ∈ A (G). Then for any
x,y ∈ G,

(ST )(xy) = S(T (xy)) (composition of functions)
= S(T (x)T (y)) (∵ T is a homomorphism)

39
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40 §2.1. Automorphisms

= S(T (x))S(T (y)) (∵ S is a homomorphism)

= (ST )(x)(ST )(y) (composition of functions).

Thus, ST is a homomorphism and hence A (G) is closed under composition.
Now we prove that for every T ∈ A (G), T−1 ∈ A (G). Let T ∈ A (G). So, T ∈ A(G) and

this implies T−1 ∈ A(G). Also,

xy = I(x)I(y)

xy = T T−1(x)T T−1(y)

= T (T−1(x)T−1(y))

So T−1(xy) = (T−1(x)T−1(y)). Thus, every element of A (G) has an inverse in A (G). Hence
A (G) is a subgroup of A(G). □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Example 2.1.3. Let G be a group. Let T : G → G be defined by T (x) = x−1. Then
1. T ∈ A(G).
2. T ̸= I (i.e. T is non-trivial automorphism) if and only if there is x0 ∈ G such that x0 ̸= x−1

0 .
3. T ∈ A (G) if and only if G is abelian.

Solution. (11) Clearly, T (x) = T (y)⇒ x−1 = y−1 ⇒ x ̸= y. Thus T is one-one. Also for any
x ∈ G, x−1 ∈ G and T (x−1) = (x−1)−1 = x. So, T is onto.

(22)

x = x−1 for all x ∈ G ⇔ T (x) = x for all x ∈ G
⇔ T = I.

(33) Note that T is one-one and onto. Now,

T is a homomorphism ⇔T (xy) = T (x)T (y) for all x,y ∈ G

⇔ (xy)−1 = x−1y−1 for all x,y ∈ G

⇔ (xy) = (x−1y−1)−1 for all x,y ∈ G
⇔ G is abelian.

□
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Lemma 2.1.4

Let G be a group and g ∈ G. Define Tg : G → G by Tg(x) = gxg−1, (x ∈ G). Then
Tg ∈ A (G) .

Proof. For x,y ∈ G,

Tg(xy) = gxyg−1

= gxg−1gyg−1

= Tg(x)Tg(y).
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Thus Tg is a homomorphism. Also, for y ∈ G, taking x = g−1yg, we see that Tg(x) = gxg−1 =
gg−1ygg−1 = y. So, Tg is onto. Finally, for x,y ∈ G,

Tg(x) = Tg(y)⇒ gxg−1 = gyg−1 ⇒ x = y.

This completes the proof. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Definition 2.1.5

Let G be a group and g ∈ G. Then the automorphism Tg : G → G defined by Tg(x) =
gxg−1, (x ∈ G), is called an inner automorphism corresponding to g. The set of all inner
automorphisms is denoted by I (G).

Remark 2.1.6. Note that here we deviate from the definition of the inner automorphism given
by [Herstein I. N., p. 68]. His definition is also valid but he operates a function on an element
from right and we from left. So, we have to change.

If G is a non-abelian group, then ab ̸= ba for some a,b ∈ G. Therefore a ̸= bab−1. Then
Tb(a) = bab−1 ̸= a = I(a). Thus Tb ̸= I, i.e. Tb is a non-trivial automorphism.

Lemma 2.1.7

Let G be a group and I (G) = {Tg ∈ A (G) | g ∈ G}. Show that I (G) is a group.

Proof. Exercise. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Lemma 2.1.8

Let G be a group. I (G)≈ G/Z, where I (G) is the group of inner automorphisms of G,
and Z is the center of G.

Proof. Define ψ : G → I (G) by ψ(g) = Tg.
From Lemma 2.1.72.1.7, it follows that ψ is a homomorphism.
Now

g ∈ ker(ψ)⇔ Tg = I
⇔ Tg(x) = x ∀ x ∈ G

⇔ gxg−1 = x ∀ x ∈ G
⇔ gx = xg ∀ x ∈ G
⇔ g ∈ Z

Thus, ker(ψ) = Z, the centre of G.
Finally, for any Tg ∈ I (G), ψ(g) = Tg. Thus, the image of ψ is I (G), i.e. ψ is onto. So,

by the first isomorphism theorem, G/ker(ψ)≈ ψ(G) that is I (G)≈ G/Z. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Lemma 2.1.9

Let G be a group and ϕ ∈ A (G). If a ∈ G with o(a)> 0, then o(ϕ(a)) = o(a).

Proof. Suppose o(a) = n for some n ∈ N. Then ϕ(a)n = ϕ(an) = ϕ(e) = e. Also for any
1 ≤ k < n, if ϕ(a)k = e, then ϕ(ak) = e and so ak = e (∵ φ is one-one). This is a contradiction
since o(a) = n. So, φ(a)k ̸= e for any 1 ≤ k < n and hence o(ϕ(a)) = n. □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Next we compute the automorphisms of cyclic groups.

Example 2.1.10. Consider a finite cyclic group of order r, G = (a), ar = e and also o(a) = r.
Let T ∈ A (G). Observe that if T (a) is known then T (g) is known for all g ∈ G. This is
because if g ∈ G, then g = ai for some i and T (ai) = T (a)i. Thus, we need to consider only the
possibilities of T (a) in G.

Since T (a) ∈ G and G is cyclic, assume that T (a) = at for some t. Since T is automorphism,
by the above lemma, T (a) must have the same order as that of a, i.e., order of T (a) also must
be r.

Claim. gcd(t,r) = 1.
Suppose d = gcd(t,r). Then (Ta)r/d = (at)r/d = (ar)t/d = et/d = e. Hence o(Ta) is a divisor

of r/d. But o(Ta) = r. Therefore d = 1.
Denote the map T ∈ A (G) given by T (a) = ai by Ti. Now consider Ur = {t ∈ N : 1 ≤ t <

r,(t,r) = 1}, the group of all integers relatively prime to r under multiplication modulo r. One
easily sees that TiTj = Ti j.Thus, the mapping i 7→ Tj is an isomorphism of Ur onto A (G) and
hence Ur ≈ A (G).

Example 2.1.11. Determine automorphism of an infinite cyclic group (Exercise).

2.2 Cayley’s Theorem

Throughout this section, G will denote a group.

Definition 2.2.1

Let G be a group and g ∈ G. We define τg : G → G by τg(x) = gx, (x ∈ G).

Theorem 2.2.2: Cayley

Every group is isomorphic to a subgroup of A(S) for some set S.
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Proof. We set S = G.

Claim 1: {τg : g ∈ G} is a nonempty subset of A(G).

Let g ∈ G. For a,b ∈ G,

τg(a) = τg(b)⇒ ga = gb ⇒ a = b (by the left cancellation law).

Hence τg is one-one. Also for any y ∈ G, let x = g−1y. Then

τg(x) = g(g−1y) = y.

Hence τg onto. Thus {τg : g ∈ G} ⊂ A(G). Since τe ∈ {τg : g ∈ G}, it is nonempty.
Define ψ : G → A(G) by ψ(g) = τg, (g ∈ G), so that ψ(G) = {τg : g ∈ G}.

Claim 2: ψ is a homomorphism.

For g,h ∈ G,

τgh(x) = (gh)x = g(hx) = τg(hx) = τgτh(x)
∴ τgh = τgτh

∴ ψ(gh) = ψ(g)ψ(h). (2.1)

Claim 3: ψ is an isomorphism (i.e. ψ is one-one).

Suppose ψ(g) = ψ(h) for some g,h ∈ G.

ψ(g) = ψ(h)
⇒ τg = τh

⇒ τg(x) = τh(x) (∀ x ∈ G)

⇒ gx = hx (∀ x ∈ G)

⇒ g = h (taking x = e).

Thus ψ is an isomorphism. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Lemma 2.2.3

Let G be a group and H be a subgroup of G. Consider the set of all left cosets of H in G

S = {xH : x ∈ G}. (2.2)

For g ∈ G, define tg : S → S by

tg(xH) = gxH, (xH ∈ S), (2.3)

and θ : G → A(S) by
θ(g) = tg, (g ∈ G). (2.4)

Then θ is a homomorphism and ker(θ) is the largest normal subgroup of G contained in
H.
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Proof. We divide the proof in several steps.

Claim 1: tg ∈ A(S) for every g ∈ G.

For a fixed g ∈ G, clearly tg(x) = gxH ∈ A(S). Thus tg is a mapping from S to S. Also, for
xH,yH ∈ S,

tg(xH) = tg(yH)

⇒ gxH = gyH
⇒ xH = yH.

Thus tg is one-one.
Also for yH ∈ S, define x = g−1y. Then tg(xH) = gxH = gg−1yH = yH. So, tg is onto.

Claim 2: θ is a homomorphism.

Note that for g,k ∈ G and xH ∈ S,

tgk(xH) = (gk)xH = g(kx)H = tg(kxH) = tgtk(xH)

⇒ tgk = tgtk
⇒ θ(gk) = θ(g)θ(k) for all g,k ∈ G.

Thus θ is a homomorphism.

Claim 3: ker(θ)⊂ H.

Let ι : S → S denote the map ι(xH) = xH, (xH ∈ S).

h ∈ ker(θ)⇒θ(h) = ι

⇒ th = ι

⇒ th(xH) = ι(xH) = xH for every xH ∈ S
⇒ hxH = xH for every xH ∈ S
⇒ heH = eH
⇒ hH = eH
⇒ h ∈ H

Claim 4: ker(θ) a normal subgroup of G.

Indeed, kernel of every homomorphism is a normal subgroup. So, the claim follows.11

Claim 5: If N is a subgroup of H such that N is a normal subgroup of G, then N ⊂ ker(θ).

Let n ∈ N. Then for all x ∈ G,

x−1nx ∈ N ⊂ H (because N is normal in G and n ∈ N)

⇒ x−1nxH = eH = H
⇒ nxH = xH

1Here we used this result. Let φ : G → Ḡ be a homomorphism, then ker(φ) is a normal subgroup of G.
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⇒ tn(xH) = xH for every xH ∈ S
⇒ tn = ι

⇒ θ(n) = ι

⇒ h ∈ ker(θ)
⇒ N ⊂ ker(θ).

This completes the proof. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Taking H = (e) in the above lemma, we get Cayley’s theorem. As a consequence of the
above theorem, we have the following result which is useful in proving that subgroups of certain
order in the group G will contain a normal subgroup of G and as a result G cannot be a simple
group. We have not yet defined simple group and we will define it in the next Unit, where we
apply such results.

Corollary 2.2.4

Let H be a subgroup of a finite group G. If o(G) ∤ iGH!, then H must have a subgroup
N ̸= {e} such that N is normal in G, that is H must contain a nontrivial normal subgroup
of G.

Proof. Let S = {xH : x∈G} and θ : G→A(S) be the mapping as in Lemma 2.2.32.2.3. By the above
lemma, we know that θ is a homomorphism and kerθ is a normal subgroup of G contained in
H. Now, we prove that kerθ is non-trivial. Suppose, if possible, that θ is an isomorphism. So,
o(G) = o(θ(G)). Now

o(θ(G)) | o(A(S))
⇒ o(G) | o(A(S)) (because o(G) = o(θ(G)))

⇒ o(G) | iGH!, a contradiction
⇒ θ is not an isomorphism
⇒ ker(θ) ̸= {e}

Thus, ker(θ) is nontrivial normal subgroup of G contained in H. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

2.2.1 Applications

The above corollary is an important result which can be used to prove, in certain cases, that a
group has a proper normal subgroup. We will see this in again in Unit-3 but below we consider
a couple of examples based on the above result.

Example 2.2.5. Let G be a group of order 36. Suppose G has a subgroup H of order 9 (we will
prove later in Unit-3 that it will always have a subgroup of order 9). Then i(H) = o(G)

o(H) = 4.
Then i(H)! = 4! = 24 < 36 = o(G). Thus, o(G) ∤ i(H)!. Then by the above corollary, H has a
subgroup N ̸= (e) which is normal in G. Since N is a subgroup of H, o(N) | o(H). So o(N) = 3
or 9. If o(N) = 9, then N = H, i.e., H itself (is subgroup of H which) is normal in G.
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Example 2.2.6. Let G be a group of orer 99 and suppose that H is a subgroup of G or order 11
(such a subgroup always exists by Cauchy’s theorem, i.e., the cyclic subgroup generated by
an element of order 11 in G). Then i(H) = 9 and 99 ∤ 9!. Thus, o(G) ∤ i(H)! and hence by the
above corollary, H has a subgroup N ̸= (e) which is normal in G. Since N is a subgroup of H,
o(N) | o(H) and so o(N) = 11 which implies. N = H. That is, H is a normal subgroup of G.

2.3 Permutation groups

We recall the following from an earlier section for ready reference.

Definition 2.3.1

Consider a finite set S = {x1,x2, . . .xn} and let σ ∈ A(S). Suppose

σ(x1) = xi1, σ(x2) = xi2, . . . , σ(xn) = xin;

that is, σ(xk) = xik for k = 1,2,3, . . . ,n. Such a σ is called a permutation and is written as

σ =

(
x1 x2 . . . xn

σ(x1) σ(x2) . . . σ(xn)

)
=

(
x1 x2 . . . xn
xi1 xi2 . . . xin

)
(2.5)

Usually, we take S = {1,2, . . . ,n} and write

σ =

(
1 2 . . . n

σ(1) σ(2) . . . σ(n)

)
=

(
1 2 . . . n
i1 i2 . . . in

)
(2.6)

Also, the set A(S), in this case, is denoted by Sn. At times, we shall also write kσ for σ(k),
(1 ≤ k ≤ n), that is,

σ =

(
1 2 . . . n

1σ 2σ . . . nσ

)
(2.7)

Definition 2.3.2

Let n ∈ N and σ ,ψ ∈ Sn. Then we define their product as

σψ =

(
1 2 . . . n

ψ(σ(1)) ψ(σ(2)) . . . ψ(σ(n))

)
(2.8)

ı.e.,
σψ = ψ ◦σ (2.9)

Definition 2.3.3

Let S be any set and θ ∈ A(S). For a,b ∈ S, we write a ≡θ b if b = aθ i for some i ∈ Z,
that is, b = θ i(a).
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Lemma 2.3.4

Given θ ∈ A(S), the relation ≡θ is an equivalence relation.

Proof. • Reflexivity. Let a,b,c ∈ S. Clearly, a ≡θ a because a = aθ 0. Thus ≡θ is
reflexive.

• Symmetry.

a ≡θ b

⇒ ∃ i ∈ Z such that b = aθ
i

⇒ bθ
−i = a

⇒ b ≡θ a.

Thus ≡θ is symmetric.
• Transitivity.

a ≡θ b, b ≡θ c

⇒ ∃ i, j ∈ Z such that b = aθ
i,c = bθ

j

⇒ aθ
i+ j = aθ

i
θ

j = bθ
j = c

⇒ a ≡θ c.

Hence ≡θ is transitive.
□

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Definition 2.3.5

Let θ ∈ A(S), and s ∈ S. The equivalence class of s with respect to the relation ≡θ is
called the orbit of “s” under θ . Thus the orbit of s under θ is the set

{. . . ,θ−2(s),θ−1(s),θ 0(s),θ 1(s),θ 2(s), . . .} ⊂ S.

Lemma 2.3.6

Let S be a finite set, θ ∈ A(S) and s ∈ S. Then there exists smallest positive integer l = l(s),
depending upon s, such that sθ l = s. Also, in this case, s,sθ ,sθ 2, . . . ,sθ l−1 are all distinct
elements of S.

Proof. Exercise. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Definition 2.3.7

Let S be a finite set and θ ∈ A(S). Then the orbit of s under θ consists of elements
s,θ(s), . . . ,θ l−1(s), where l is the smallest positive integer such that θ l(s) = s.
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By a cycle of θ we mean the ordered set

(s,sθ ,sθ
2, . . . ,sθ

l−1) (2.10)

for some s ∈ S and l.

If we know all the cycles of θ then we can find θ since we would know the image of all the
elements of S under θ . Since each cycle is an ordered set (tuple) of elements of an equivalence
class (orbit), the cycles of θ are disjoint. We can also define cycle as a permutation as follows.

Definition 2.3.8

Let S be a finite set. By a cycle in A(S), we mean an ordered subset

(i1, i2, i3, . . . , ir), (2.11)

where i1, i2, i3, . . . , ir are distinct elements of S and r ∈ N. We also identify this cycle in
(2.112.11) with the permutation θ ∈ A(S) which maps

i1 to i2, i2 to i3, . . . ir−1 to ir, ir to i1 and a to a if a ̸= ik for any k = 1,2, . . . ,r.

We shall refer to this permutation as the cycle (i1, i2, i3, . . . , ir). We say that the order of
this cycle is r or this is an r-cycle. We also say that the length of this cycle is r.

The following example will make the concept of cycles and their product clear.

Example 2.3.9. 1. In S5, (1,4,2) =
(

1 2 3 4
4 1 3 2

)
.

2. In S4, (1,4,2) =
(

1 2 3 4 5
4 1 3 2 5

)
.

3. In S6,

(1,4,2)(3,5) =
(

1 2 3 4 5 6
4 1 3 2 5 6

)(
1 2 3 4 5 6
1 2 5 4 3 6

)
=

(
1 2 3 4 5 6
4 1 5 2 3 6

)
.

4. In S5,

(1,4,3,2)(3,5) =
(

1 2 3 4 5
4 1 2 3 5

)(
1 2 3 4 5
1 2 5 4 3

)
=

(
1 2 3 4 5
4 1 2 5 3

)
.

In the following example, an r-cycle is expressed in different ways.

Example 2.3.10. Let us write an r-cycle (i1, i2, i3, . . . , ir) as cycles in different ways.

Solution.

(i1, i2, i3, . . . , ir) = (i2, i3, . . . , ir, i1)
= (i3, i4 . . . , ir, i1, i2)
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· · ·
= (ik, ik+1, . . . , ir, i1, i2, . . . , ik−1)

· · ·
= (ir, i1, i2, . . . , ir−1) (2.12)

We consider all of these to be the same except writing a cycle differently. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Definition 2.3.11

Let S be a finite set. The cycles (i1, i2, i3, . . . , ir) and ( j1, j2, j3, . . . , jt) in A(S) are said to
be disjoint cycles, if ik ̸= jp for any 1 ≤ k ≤ r and 1 ≤ p ≤ t.

Example 2.3.12.

1. (1,3,2) and (3,4,5) are not disjoint because 3 appears in both the cycles.

2. (1,3,2) and (6,4,5,7) are disjoint as they do not have any element in common.

3. (1,5) and (3,4,5) are not disjoint because 5 appears in both the cycles.

Example 2.3.13. We obtain the orbits and cycles of each i ∈ {1,2,3, . . . ,7} under the permuta-

tion θ =

(
1 2 3 4 5 6 7
3 4 1 6 5 7 2

)
Solution.

1θ = 3,1θ
2 = 3θ = 1

∴ orb(1) = {1,3}, l(1) = 2

orbit of 3 = orbit of 1 and l(3) = l(1) = 2

2θ = 4,2θ
2 = 4θ = 6,2θ

3 = 6θ = 7,2θ
4 = 7θ = 2

∴ orb(2) = {2,4,6,7}, l(2) = 4

orbit of 4 = orbit of 6 = orbit of 7 = orbit of 2 and l(4) = l(6) = l(7) = l(2) = 4. Finally,

5θ = 5
∴ orb(5) = {5}, l(5) = 1.

Consequently,
(1,3),(2,4,6,7),(5)

are the cycles of θ . One easily verifies that (1,3)(2,4,6,7)(5). □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Proposition 2.3.14

Every permutation is the product of its cycles.
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Proof. Let θ be a permutation. Then its cyclers are of the form (s,sθ , . . . ,sθ l−1). Since such a
cycle is the equivalence class of s, the cycles of θ are disjoint. Let ψ be the product of all the
cycles of θ . We shall show that ψ = θ .

Let s′ ∈ S. Since the cycles of θ are disjoint, s′ is exactly in one cycle of θ . Hence, the
image of s′ under θ is same as the image of s′ under the product, ψ , of all distinct cycles of
θ . Therefore θ(s′) = ψ(s′), i.e., θ and ψ have the same effect on every elments of S. Hence
ψ = θ which means that every permutation θ can be written as the product of its (disjoint)
cycles.

□
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Remark 2.3.15. Every permutation is the product of its cycles. Since disjoint cycles commute
and a cycle of length 1 is identity permutation, this product is unique upto

1. changing the order in which cycles appear,
2. an equivalent way of writing any cycle and
3. omission of any 1-cycle.

Definition 2.3.16

A cycle of length 2 is called a transposition.

Example 2.3.17. Now that we know how to multiply the cycles, the following, which expresses
some cycles as a product of transpositions, is apparent.22

1. (1,3,2,5,6) = (1,3)(1,2)(1,5)(1,6) = (6,1)(6,3)(6,2)(6,5)

2. (1,2,3) = (1,2)(1,3) = (2,3)(2,1) = (1,3)(3,2)

Motivated from the above, we have the following theorem.

Theorem 2.3.18

Every cycle can be written as a product of transpositions.

Proof. Exercise. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Corollary 2.3.19

Every permutation can be written as a product of 2-cycles (i.e. transpositions).

Proof. Combining the above two results (Proposition and Theorem), the corollary follows. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

The 2-cycles are important and have many applications. We define a type of permutation
based on these 2-cycles.

2Verify!
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Definition 2.3.20

A permutation is said to be even if it can be written as a product of even number of
transposition. A permutation which is not even is called an odd permutation.

Is it possible that in one representation a permutation is written as the product of even number
of transposition and in another representation the same permutation is written as the product of
odd number of transposition? If so, then is that permutation considered even or odd? We shall
show that this cannot happen. For this we introduce a polynomial in multiple variables.

In what follows, pn denotes the polynomial 33

pn(x1,x2, . . . ,xn) = (x1 − x2)(x1 − x3) · · ·(x1 − xn)(x2 − x3)(x2 − x4) · · ·(x2 − xn)

· · ·(xn−2 − xn−1)(xn−2 − xn)(xn−1 − xn)

=
n

∏
i=1
i< j

(xi − x j).

in n variables x1,x2, . . . ,xn.

Definition 2.3.21

Let θ ∈ Sn. Define

θ pn(x1,x2,x3, . . . ,xn) = pn(xθ(1),xθ(2),xθ(3), . . . ,xθ(n))

i.e.,

θ

n

∏
i=1
i< j

(xi − x j) =
n

∏
i=1
i< j

(xθ(i)− xθ( j))

The effect of any permutation on the plynomial pn is just in the sign of pn. We record this
result as the following lemma without proof. The proof was given by Dr. D. J. Karia in our old
lecture note. Interested students can read the proof from that note.

Lemma 2.3.22

Let θ ∈ Sn. Then θ pn =±pn.

What is interesting and concerns us is the effect of a transposition on the polynomial pn for
which we have the following lemma.

Lemma 2.3.23

3Write p1, p2, p3, p4
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If ϕ is a transposition in Sn, then ϕ pn =−pn.

Proof. Exercise. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Corollary 2.3.24

If a permutation θ can be written as a product of even number of transpositions, then in
every representation of θ , as a product of transpositions, the number of transposition will
be even.

Proof. Let θ ∈ Sn can be written as a product of even number of transpositions. Say,

θ = ϕ1ϕ2 · · ·ϕ2k

Thus θ pn = ϕ1ϕ2 · · ·ϕ2k pn = pn. If θ = ψ1ψ2 . . .ψr, where each ψi is a transposition, then
pn = θ pn = ψ1ψ2 . . .ψr pn. So, ψ1ψ2 . . .ψr does not change sign of pn. But each ψi changes
the sign of pn. So, ψ1ψ2 . . .ψr must change the sign of pn even number of times. So, r is
even. □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Let An be the subset of Sn consisting of all the even permutations. Is it a subgroup of Sn? Is
it normal? What is its order?

Lemma 2.3.25

Let W be the group {1,−1} under multiplication. Define ψ : Sn →W by

ψ(θ) =

{
1, if θ is even

−1, if θ is odd.

Then ψ is a homomorphism. Also ker(ψ) = An.

Proof. Assignment Exercise. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Corollary 2.3.26

1. An is a normal subgroup of Sn

2. o(An) =
o(Sn)

2
= n!

2 .

Proof. 1. Since kernel of a homomorphism is a normal subgroup of the domain group, An
is a normal subgroup of Sn.
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2. Since ψ is a homomorphism of Sn onto W = {−1,1} with kernel An, by first isomorphism
theorem,

Sn/An ≈W.

Therefore, o(Sn/An) = o(W ) and so o(Sn)
o(An)

= 2. Hence, o(An) =
n!
2 .

□
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Definition 2.3.27

Let n ∈ N. We define the alternating group An to be the subgroup of Sn of order n!
2 of all

the even permuations. That is,

An = {θ ∈ Sn : θ is even} (2.13)

From our discussion above, we have the following lemma.

Lemma 2.3.28

Sn has a normal subgroup of index 2, the alternating group An, consisting of all even
permutations.

2.4 Another Counting Principle

Definition 2.4.1

Let G be a group and a,b ∈ G. We say that b is conjugate of a if there exists c ∈ G such
that b = c−1ac. In this case, we write a ∼ b.

Lemma 2.4.2

Conjugacy is an equivalence relation on group G.

Proof. Clearly, a = a−1aa proves that a ∼ a. Next,

a ∼ b ⇒ b = x−1ax for some x ∈ G

⇒ xbx−1 = a

⇒ (y)−1by = a, where y = x−1

⇒ b ∼ a.

Finally,

a ∼ b,b ∼ c ⇒ b = x−1ax,c = y−1by for some x,y ∈ G (2.14)
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⇒ c = y−1x−1axy = (xy)−1a(xy) (2.15)
⇒ a ∼ c. (2.16)

This completes the proof. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Notation: The equivalence class of a under the relation of “being conjugate of” is called the
conjugate class of a and is denoted by C(a). That is,

C(a) = {x ∈ G : a ∼ x}= {y−1ay : y ∈ G}. (2.17)

Also, ca will denote the number of elements in C(a).
Summing up what we discussed, we conclude that for a finite group G,

o(G) = ∑ca, (2.18)

where the summation is taken over one a from each conjugate class. We shall need this
observation in the class equation that we are heading to obtain.

Definition 2.4.3

Let G be a group and a ∈ G. Then the normalizer of a in G is the set

N(a) = {x ∈ G : xa = ax}

Thus, N(a) consists of precisely those elements in G which commute with a.

Lemma 2.4.4

Let G be a group and a ∈ G. Then N(a) is a subgroup of G.

Proof. • Let x,y ∈ N(a). Then xa = ax and ya = ay. Now,

(xy)a = x(ya) = x(ay) = (xa)y = (ax)y = a(xy).

Thus, xy commutes with a and so xy ∈ N(a).

• Let x ∈ N(a). Then xa = ax. Therefore x−1(xa) = x−1ax, i.e., a = x−1ax. So, ax−1 =
x−1axx−1 or ax−1 = x−1a. That is, x−1 commutes with a. Hence, x−1 ∈ N(a).

Hence, N(a) is a subgroup of G. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 2.4.5

Let G be a finite group and a ∈ G. Then

ca = iGN(a) = o(G)/o(N(a)). (2.19)
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Proof. Consider the set G/N(a) = {N(a)x : x ∈ G} of all right cosets of N(a) in G. Define
ϕ : G/N(a)→C(a) by ϕ(N(a)x) = x−1ax. Note that for N(a)x,N(a)y ∈ G/N(a),

N(a)x = N(a)y N(a)e = N(a) = N(a)yx−1 (2.20)

⇔ yx−1 ∈ N(a)

⇔ yx−1a = ayx−1

⇔ x−1ax = y−1ay (2.21)

N(a)x = N(a)y ⇒ x−1ax = y−1ay in (2.212.21) means that ϕ is well defined and x−1ax = y−1ay ⇒
N(a)x = N(a)y means that ϕ is well defined.

Clearly, for any x−1ax ∈ C(a) ∈ G, we see that ϕ(N(a)x) = x−1ax. Hence ϕ is onto also.
Thus the number of distinct elements in C(a) is the same as the distinct right cosets of N(a) in
G. So, ca = o(C(a)) = o(G)/N(a) = iGN(a). This completes the proof. □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Corollary 2.4.6

For a finite group G,

o(G) = ∑
o(G)

o(N(a))
, (2.22)

where the sum is taken over one element a in each conjugate class.

Proof. Note that “being conjugate of” is an equivalence relation and C(a) are precisely the
equivalence classes of this relation. So, {C(a) : a ∈ G} is a partition of G. Thus,

o(G) = ∑ca = ∑
o(G)

o(N(a))
,

where the sum is taken over one element a in each conjugate class. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

The equation (2.222.22) is called the class equation of G.

Example 2.4.7. Compute N(a) and C(a) for all a ∈ S3.

Solution. Recall that
S3 = {e,ϕ,ψ,ψ2,ϕψ,ϕψ

2},

with the relations
ϕ

2 = ψ
2 = e,ϕψ = ψ

−1
ϕ

Also recall that ϕ = (1,2) and ψ = (1,2,3).

N(e), C(e)

e ∈ Z ⇒ N(e) = G, and C(e) = e. (2.23)

N(ϕ), C(ϕ)

eϕ = ϕ = ϕe ⇒ e ∈ N(ϕ)
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Clearly ϕ commutes with ϕ ⇒ e ∈ N(ϕ)

ϕψ = ψ
2
ϕ ̸= ψϕ ⇒ ψ ̸∈ N(ϕ)

ϕψ
2 = ψϕ ̸= ψ

2
ϕ ⇒ ψ

2 ̸∈ N(ϕ)

ϕ(ϕψ) = ψ ̸= (ϕψ)ϕ = ψ
2 ⇒ ϕψ ̸∈ N(ϕ)

ϕ(ψϕ) = ψ
2 ̸= (ψϕ)ϕ = ψ ⇒ ψϕ ̸∈ N(ϕ)

Thus, N(ϕ) = {e,ϕ} and o(N(ϕ)) = 2. Therefore, by the above theorem, we must have

o(C(ϕ)) = o(S3)/o(N(ϕ)) =
6
2
= 3.

Now, we shall find C(ϕ). By definition C(ϕ) = {x−1ϕx | x ∈ S3}.

e−1
ϕe = ϕ

ϕ
−1

ϕϕ = ϕ

ψ
−1

ϕψ = ϕψ
2

(ψ2)−1
ϕψ

2 = ϕψ
4 = ϕψ

(ϕψ)−1
ϕ(ϕψ) = ψ

−1
ϕ
−1

ψ = ψ
−1

ϕψ = ϕψ
2

(ϕψ
2)−1

ϕ(ϕψ
2) = (ψ2)−1

ϕψ
2 = ψψϕ = ϕψ

Collecting all the above we get,

C(ϕ) = {ϕ,ϕψ,ϕψ
2}.

N(ψ), C(ψ)

Verify that N(ψ) = {e,ψ,ψ2} and C(ψ) = {ψ,ψ2}.
Compute all other N(a) and C(a) for all other a ∈ S3. Note that some of the above relations

and expressions will be helpful.
□

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

2.4.1 Applications

In this subsection we study couple of applications of Theorem 2.4.52.4.5. First consider the following
lemma.

Lemma 2.4.8

a ∈ Z if and only if N(a) = G. If G is finite, then a ∈ Z if and only if o(N(a)) = o(G).

Proof. If a ∈ Z, then xa = ax for all x ∈ G. That is, all x ∈ G commutes with a and hence
N(a) = G.

Conversely, suppose N(a) = G. That is, xa = ax for all x ∈ G. In other words, a commutes
with every x ∈ G. Hence, a ∈ Z.

PS03EMTH54 2023-24
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In particular, if G is a finite group, then

a ∈ Z ⇔ N(a) = G ⇔ o(N(a)) = o(G).

□
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Remark 2.4.9. In the above lemma, we saw that a ∈ Z ⇔ N(a) = G. Thus, if G is a finite
group, for such an a, o(G)

o(N(a)) = 1. Hence, taking elements of Z, outside the sum in the class
equation of G, we have

o(G) = o(Z)+∑
o(G)

o(N(a))
, (2.24)

where the sum is taken over one element a in each conjugate class such that o(N(a))< o(G) or
o(N(a)) ̸= o(G).

Application 1

Theorem 2.4.10

Let p be a prime number and G be a group of order pn for some n ∈ N. Then Z(G) ̸= {e}.

Proof. Recall the Class Equation (2.242.24),

o(G) = o(Z)+∑
o(G)

o(N(a))
, (2.25)

where the sum is taken over one element a in each conjugate class such that o(N(a))< o(G).
For N(a) appearing in the sum on the right hand side,

o(N(a))< o(G) ⇒ o(N(a)) = pka for some ka < n

⇒ o(G)

o(N(a))
= pn−ka

⇒ p | o(G)

o(N(a))
whenever o(N(a))< o(G)

⇒ p | ∑
o(G)

o(N(a))

⇒ p |
(

o(G)−∑
o(G)

o(N(a))

)
⇒ p | o(Z)

Since o(Z)> 0, o(Z) is at least p. Thus Z ̸= {e}. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Corollary 2.4.11

If o(G) = p2 for some prime number p, then G is abelian.
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Proof. We need to prove that G = Z(G). So, we need to prove that o(Z(G)) = o(G). By the
above theorem, Z(G) ̸= {e}. So, o(Z(G)) = p or o(Z(G)) = p2.

Suppose, if possible, that Z(G) ̸= G. Thus o(Z(G)) = p. So, we get a ∈ G∖Z(G). Now,

b ∈ Z(G)⇒ bc = cb for all c ∈ G
⇒ ba = ab
⇒ b ∈ N(a)
⇒ Z(G)⊂ N(a).

But a ∈ N(a) and a ̸∈ Z(G)

⇒ o(Z(G))< o(N(a))≤ p2

⇒ p < o(N(a))≤ p2

⇒ o(N(a)) = p2 (because o(N(a)) | o(G))

⇒ N(a) = G
⇒ a ∈ Z(G),

a contradiction. Thus Z(G) = G. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Remark 2.4.12. All groups of order 4,9,25,49,121 are commutative.

Application 2

As an application of the counting principle, we prove the general case of Cauchy’s theorem.

Theorem 2.4.13: Cauchy’s Theorem

Let G be a finite group and p ∈N be a prime such that p | o(G). Then G has an element of
order p.

Proof. We prove this result by induction on o(G).

Step I: o(G) = 1.

In this case, the result is vacuously true.44

Step II: Induction hypothesis: The result is true for all finite groups having order < o(G).

If there is a proper subgroup W of G such that p | o(W ), then by induction hypothesis there
exists an element of order p in W and so in G. Thus, we may assume that G does not have any
proper subgroup W such that p | o(W ).

Recall the class equation of G:

o(G) = o(Z(G))+ ∑
N(a)̸=G

o(G)

o(N(a))
.

4Give me a prime p such that p | 1 and I will give you a such that o(a) = p.
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Since p | o(G), p ∤ o(N(a)), we have

p | o(G)

o(N(a))
,

and so

p | ∑
N(a)̸=G

o(G)

o(N(a))
.

Since p | o(G), the class equation gives,

p |
(

o(G)−∑
o(G)

o(N(a))

)
⇒ p | o(Z(G))

Thus Z(G) is a subgroup of G whose order is divisible by p. Since we have assumed that p
does not divide order of any proper subgroup of G, we conclude that Z(G) is not proper. But
Z(G) ̸= (e) as p | o(Z(G)). So G = Z(G), and hence, G is abelian. So, by the Cauchy’s theorem
for abelian groups, there is an element a ∈ G such that o(a) = p. This completes the proof. □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

2.4.2 Conjugate Classes in Sn

Now we turn to computation of conjugate classes of Sn.

Definition 2.4.14

Let n ∈ N. We say that n1,n2,n3, . . . ,nr is a partition of n if

1. 0 < n1 ≤ n2 ≤ n3 ≤ ·· · ≤ nr and

2. n = n1 +n2 +n3 + · · ·+nr.

we say that two partitions n1,n2,n3, . . . ,nr and n′1,n
′
2,n

′
3, . . . ,n

′
s are the same if s = r and

ni = n′i for all i = 1,2, . . . ,r. We denote the number of distinct partitions of n by p(n).

Example 2.4.15.

n = 1.

1 = 1 is the only way to write 1. So, there is only one partition of 1. Hence p(1) = 1.

n = 2.

2 = 2
= 1+1

are the only two ways to write 2. So, 2 has two partitions. Hence p(2) = 2
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n = 3.

3 = 3
= 1+2
= 1+1+1

are the only three ways to write 3. Hence p(3) = 3.

n = 4.

4 = 4
= 1+3
= 1+1+2
= 1+1+1+1
= 2+2

are the only five ways to write 4. Hence p(4) = 5.

n = 5.

5 = 5
= 1+4
= 1+1+3
= 1+1+1+2
= 1+1+1+1+1
= 2+2
= 1+2+2
= 2+3

are the only seven ways to write 5. Hence p(5) = 7.

Now let us recall from Proposition 2.3.142.3.14 that every permutation can be written as a product
of disjoint cycles. This representation, partitions n. Let us understand it by means of an
example.

Example 2.4.16. Suppose we are given a permutation θ ∈ S10 and after writing it as a product
of disjoint cycles, we get

θ = (1,3,4)(2,5,6)(7,9). (2.26)

It seems that the 8 and 10 do not appear in the above representation of θ as a product of disjoint
cycles. So, we rewrite the product by including 1-cycles also. Not only this, but we also arrange
the cycles in ascending order according to their lengths. So, we get,

θ = (10)(8)(7,9)(1,3,4)(2,5,6). (2.27)
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Now in this representation, each number from 1 to 10 occurs exactly once. Clearly, the sum of
the lengths of the cycles equals to 10. Thus θ gives us a partition

10 = 1+1+2+3+3. (2.28)

It is apparent that each permutation will give unique partition as it can be written uniquely as a
product of disjoint cycles. We shall call this partition a cycle decomposition.

Example 2.4.17. Two different permutations may give rise to the same partition. To see this
observer that the permutations

σ = (7)(9)(1,2)(3,4,5)(6,8,10)
θ = (1,3,4)(2,5,6)(7,9).

are not equal but they give rise to the same partition of 10 which is 10 = 1+1+2+3+3. Also,
note that θ = (7)(9)(11)(1,2)(3,4,5)(6,8,10) can be considered as an element of S11 and the
corresponding partition will be 11 = 1+1+1+2+3+3.

Definition 2.4.18

Let σ ∈ Sn. We say that
1 ≤ n1 < n2 < · · ·< nk ≤ n (2.29)

is the cycle decomposition of σ if there are disjoint cycles σ1,σ2, . . . ,σk ∈ Sn with ℓ(σi) =
ni for 1 ≤ i ≤ k satisfying the following.

1. σ = σ1σ2 · · ·σk and

2. n = n1 +n2 + · · ·+nk.

Our next goal is to prove that two permutations in Sn give the same partition of n (i.e., they
have the same cycle decomposition) if and only if they are conjugate to each other.

Lemma 2.4.19

Let σ ,θ ∈ Sn.
iσ = j, iθ = s, jθ = t ⇒ sθ

−1
σθ = t. (2.30)

Proof. sθ−1σθ = iσθ = jθ = t. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Thus, if σ maps i to j, then θ−1σθ maps θ(i) to θ( j).

Remark 2.4.20. If (i1, i2, . . . , ik) is a cycle of σ , if and only if (i1θ , i2θ , . . . ikθ) is a cycle of
θ−1σθ

Corollary 2.4.21

Let σ ∈ Sn. Then every conjugate of σ has the same cycle decomposition.
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Example 2.4.22. For σ = (4,5)(1,2,3),(2,4,1)(3,5,6,7) ∈ S7, compute θ−1σθ .

Solution. By the Remark 2.4.202.4.20

θ
−1

σθ = (4θ ,5θ)(1θ ,2θ ,3θ) = (1,6)(2,4,5).

□
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Corollary 2.4.23

Let σ ,ψ have the same cycle decomposition. Then they are conjugate.

Proof. Let 1 ≤ n1 ≤ n2 < n3 < · · ·< nk be the cycle decomposition of σ and ψ , so that

σ = (i1, i2, . . . , in1)(in1+1, in1+2, . . . , in1+n2) · · ·(in1+n2+···+nk−1, . . . , in) (2.31)

and

ψ = ( j1, j2, . . . , jn1)( jn1+1, jn1+2, . . . , jn1+n2) · · ·( jn1+n2+···+nk−1 , . . . , jn) (2.32)

Define itθ = jt , t = 1,2, . . . ,n. Then from Lemma 2.4.192.4.19, it is clear that

θ
−1

σθ = ψ (2.33)

□
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

So, we have proved the following theorem in the above Lemma and Corollaries.

Theorem 2.4.24

Two permutations in Sn have the same cycle decomposition if and only if they are conjugate
of each other.

Proof. Combine Lemma 2.4.192.4.19, Corollary 2.4.212.4.21 and Corollary 2.4.232.4.23. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Lemma 2.4.25

The number of conjugate classes in Sn is p(n), the number of distinct partitions of n.

Proof. We have seen that a permutation gives unique cycle decomposition, which is nothing but
a partition of n. Also, two conjugate permutations give rise to the same cycle decomposition.
Conversely, given a partition 1 ≤ n1 ≤ n2 < n3 < · · ·< nk of n, define

σ = (1,2, . . . ,n1)(n1 +1,n1 +2, . . . ,n1 +n2) · · ·(n1 +n2 + · · ·+nk−1, . . . ,n). (2.34)

Then the cycle decomposition of σ is 1 ≤ n1 ≤ n2 ≤ n3 ≤ ·· · ≤ nk. Thus number of conjugate
classes of Sn is the same as the number of partitions of n. □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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2.4.3 Applications

Example 2.4.26. Find the elements that commute with (1,2) in Sn.

Solution. Since disjoint cycles commute, permutations leaving 1 and 2 both fixed certainly
commute with (1,2). There are (n− 2)! such permutations in Sn (which fixes both 1 and
2). Also, (1,2) commutes with with itself. Thus, (1,2)θ commutes with (1,2), where θ is a
permutation among the (n−2)! permutations. This way we get 2(n−2)! such permutations.
Now, we shall show that these are the only ones which commute with a = (1,2).

We know that ca =
o(G)

o(N(a)) . Therefore, the number of permutations which commute with
a = (1,2) in Sn is

o(N(a)) =
o(Sn)

ca
=

n!
no. of conjugates of (1,2)

.

Since two conjugates have the same cycle decomposition, a conjugate of (1,2) is of the form
(a,b) where a has n possibilities and b has n− 1 possibilities. But since (a,b) = (b,a), the
number of conjugates of (1,2) is n(n−1)

2 . Therefore, o(N(a)) = n!
n(n−1)/2 = 2(n−2)!.

Thus, the above listed permutations are the only ones in Sn which commute with (1,2). That
is, if σ ∈ Sn commutes with (1,2), then σ = (1,2)iτ , where i = 0 or 1 and τ is a permutation
fixing both 1 and 2. □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Example 2.4.27. Show that the n-cycle (1,2, . . . ,n) ∈ Sn commutes only with its powers.

Solution. Let θ = (1,2, . . . ,n). Then θ n = e and clearly θ commutes with its powers. This
gives n elements which commute with θ . Now, we show that no other element commutes with
θ by determining the order of its normalizer, i.e., o(N(θ)).

Since the conjugates have the same cycle decomposition, any conjugate of θ is an n-cycle.
There are (n−1)! such elements in Sn. Therefore,

o(N(θ)) =
o(Sn)

cθ

=
n!

(n−1)!
= n.

Hence, an n-cycle in Sn commutes only with its powers. That is, there are exactly n-elements in
Sn which commute with θ = (1,2, . . . ,n). □

Dr. Jay Mehta,
Department of
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Sardar Patel
University.

Exercises

Exercise 2.1
Show that two disjoint cycles in Sn commute. Is the converse true? Justify. Show that a cycle

of length 1 is the identity permutation.

Exercise 2.2
Let An denote the set of all even permutations in Sn. Show that An is a normal subgroup of Sn.
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Exercise 2.3
Let H be a subgroup of a group G and a ∈ G. Show that aHa−1 is a subgroup of G and

o(aHa−1) = o(H).

Exercise 2.4
For a,b ∈ R, define τab : R→ R by τab(x) = ax+b, (x ∈ R). Show that

G = {τab : a,b ∈ R,a ̸= 0}.

is a subgroup of A(R).

Exercise 2.5
A group of order 21 has exactly elements of order 7.

1. 3 2. 4 3. 6 4. 7

Exercise 2.6
For g ∈ G, define λg : G → G by λg(x) = xg, (x ∈ G). Show that

1. λg ∈ A(G) and
2. λgh = λhλg.

Exercise 2.7
Let λg be defined as in (2.62.6) above and τg be defined as in Definition 2.2.12.2.1. Show that

λgτh = τhλg for g,h ∈ G.

Exercise 2.8
Let H be a subgroup of a group G. Show that ∩

g∈G
gHg−1 is a normal subgroup of G.

Exercise 2.9
Find the smallest possible group containing a,b satisfying

1. a2 = b3 = e and
2. ab = b−1a

Exercise 2.10
Find all the normal subgroups of S3.
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Exercise 2.11
Find the centre of S3.

Exercise 2.12
Write the following permutations as product of disjoint cycles.

1.
(

1 2 3 4 5 6 7
5 4 1 6 2 3 7

)

2.
(

1 2 3 4 5 6
4 5 2 6 3 1

)

3.
(

1 2 3
1 2 3

)

4.
(

1 2 3
2 3 1

)

Exercise 2.13
Write each cycle of permutations in (2.122.12) as a product of transpositions in more than one

ways.

Exercise 2.14
Find all transpositions in S4 commuting with (2,3). Find all three cycles in S4 commuting

with (2,3).

Exercise 2.15
Find (1,2,3)−1 in S5.

Exercise 2.16
Let θ = (i1, i2, . . . , ik) be a cycle in Sn, (k ≤ n). What is the order of θ? Justify.

Exercise 2.17
What is the order of the permutation θ = (i1, i2, i3)(i3, i4), where i1, i2, i3, i4 are distinct.

Exercise 2.18
Let θ1,θ2, . . . ,θk be disjoint cycles, each with order m1,m2, . . . ,mk respectively. Show that the

order of θ1θ2 . . .θk = lcm(m1,m2, . . . ,mk).
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Exercise 2.19
Prove or disprove: two distinct cycles θ and σ in Sn have the same orbits.

Exercise 2.20
For n ∈ N and ψ,θ ∈ Sn, define φ ∼ θ if φθ−1 is an even permutation.

1. Show that ∼ is an equivalence relation.

2. Find equivalence classes of this relation.

3. Show that [e] is a subgroup.

Exercise 2.21
Define ψ : Sn →{−1,1} by

ψ(θ) =

{
1, if θ is even
−1, if θ is odd.

Exercise 2.22
Prove or disprove: For every integer n, a group of order n2 is abelian.

Exercise 2.23
Prove or disprove: For every prime number p, a group of order p3 is abelian.

Exercise 2.24
List all the partitions of 6 to obtain p(6) = 11.

Exercise 2.25
Find the order of the normalizer of a transposition in Sn. Also find the order of a conjugate

class of a transposition in Sn and hence deduce the order of its normalizer.

Exercise 2.26
Find C(σ) and N(σ) for an n-cycle σ ∈ Sn.

Exercise 2.27
Find the number of r-cycles in Sn.
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Exercise 2.28
Compute all conjugates of (1,2)(3,4) in Sn. Also find all σ ∈ Sn commuting with (1,2)(3,4).

Exercise 2.29
Find two permutations in A5 which are conjugate in S5 but not in A5.

Exercise 2.30
Compute the conjugate classes in A5.

Exercise 2.31
Compute all automorphisms of an infinite cyclic group.

Exercise 2.32
Find all automorphisms of S3. Is A (S3) = I (S3)?

Exercise 2.33
Show that for any automorphism T of a group G, T (Z)⊂ Z.

Exercise 2.34
For a fixed n ∈ Z, show that the automorphism x ∈ Z 7→ nx ∈ Z is not an inner automorphism.
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Sylow’s Theorem

In this unit, we shall study the following.
Sylow’s theorems and applications, and simple groups.

3.1 Sylow’s Theorem

Recall that by Lagrange’s theorem we have, for finite groups, order of a subgroup divides order
of a group. However, the converse of Lagrange’s theorem is not true (Exercise 3.13.1), i.e. if G is a
group of order n and m is a positive integer such that m | n, then G need not have any subgroup
of order m. Sylow’s theorem relates to answering the converse of Lagrange’s theorem partially.

In this section we shall study Sylow’s theorem and its applications. Sylow’s theorem is one
of the important and basic result in the theory of finite groups. There are three results due to
Sylow, collectively called Sylow’s theorem, known as first part of Sylow’s theorem, second part
of Sylow’s theorem and third part of Sylow’s theorem. They are also known as First Sylow
theorem, Second Sylow theorem and Third Sylow theorem.

The First Sylow theorem, i.e. the first part of the Sylow’s theorem has many different
proofs, three proofs among which are presented in our text [?]. The first proof is based on
number-theoretic and combinatorial arguments. The second proof is based on the class equation
and the topics that we have already covered so far in the course. The third proof is based on the
idea of showing that Sylow’s theorem hold for a larger group than the one we are considering
and the method involves of showing existence of a p-Sylow subgroup (see Definition 3.1.33.1.3)
of Spk by constructing it inductively. Some of the concepts used in the third proof, which are
essential tools for proving other two parts of Sylow’s theorem, are already covered in this
chapter.
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3.1.1 First proof of Sylow’s theorem

Let us recall that
(

n
r

)
=

n!
k!(n− k)!

. Now we turn to computation of conjugate classes of Sn.

Lemma 3.1.1

Let p be a prime and n,m,r,α ∈N such that n = pαm, pr | m but pr+1 ∤ m. Then pr |
(pα m

pα

)
but pr+1 ∤

(pα m
pα

)
.

Proof. We have,(
pαm
pα

)
=

(pαm)!
(pα)!(pαm− pα)!

=
[pαm(pαm−1) · · ·(pαm− pα +1)][(pαm− pα)!]

pα !(pαm− pα)!

=
pαm(pαm−1) · · ·(pαm− pα +1)

pα !

=
pαm(pαm−1) · · ·(pαm− pα +1)

pα(pα −1) · · ·(pα − pα +1)

=
m(pαm−1) · · ·(pαm− i) · · ·(pαm− pα +1)

(pα −1) · · ·(pα − i) · · ·(pα − pα +1)
(3.1)

Let us note that in the above expression, for k ≥ α , pk ∤ pα − i. On the other hand,

pk | (pα − i)⇔ pα − i = apk for some a

⇔ − i = apk − pα for some a

⇔ pαm− i = pαm+apk − pα for some a

⇔ pαm− i = pα(m−1)+apk for some a

⇔ pαm− i = pk(pα−k(m−1)+a)for some a

Thus the all powers of p dividing pα − i for some i in the numerator in (3.13.1) will be cancelled
out. But the power of p dividing m will not be cancelled. This completes the proof. □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 3.1.2: Sylow’s Theorem

Let p be a prime number and pα | o(G). Then G has a group of order pα .

Proof. Since pα | o(G), there is m ∈ N such that o(G) = pαm. Assume that

pr | m but pr+1 ∤ m. (3.2)
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Thus, pα+r | o(G). Let M denote the set of all subsets of G having exactly pα elements. Note
that there are

(pα m
pα

)
elements in M . Also by above lemma, pr |

(pα m
pα

)
but pr+1 ∤

(pα m
pα

)
. That is

pr+1 does not divide the number of elements in M .

Claim 1: Equivalence relation on M

For M1,M2 ∈ M , define M1 ∼ M2 if M1 = M2g for some g ∈ G. We show that ∼ is an
equivalence relation on M . Indeed M = Me for all M ∈ M . Thus ∼ is reflexive. Also,
M = Ng ⇔ N = Mg−1. Thus ∼ is symmetric. Finally M = Ng,N = Hk ⇒ M = Hkg gives the
transitivity of ∼. So, ∼ is an equivalence relation.

Claim 2: For some equivalence class [M] of ∼, pr+1 does not divide the number of elements
in [M].

Suppose for each class [M] for this equivalence relation, pr+1 divides [M]. So, pr+1 divides
the number of elements in M , a contradiction to the above lemma, as M has

(pα m
pα

)
elements

and pr+1 does not divide m. Thus there is some equivalence class [M] such that pr+1 does not
divide number of elements in [M]. Let

[M] = {M1,M2, . . . ,Mn}. (3.3)

Clearly (by the definition of the above equivalence relation),

g ∈ G, Mi ∈ [M]⇒ Mig ∈ [M].

Define
H = {g ∈ G : M1g = M1}. (3.4)

Claim 3: H is a subgroup of G.

Let g,h ∈ H. Then M1g = M1 = M1h

M1gh−1 = (M1g)h−1 = (M1)h−1 = (M1h)h−1 = M1

Thus gh−1 ∈ H. So, H is a subgroup of G.

Claim 4: The map ψ : [M] → {Hg : g ∈ G}, defined by ψ(M1g) = Hg, (M1g ∈ [M]), is a
bijection.

First of all note that

M1g1 = M1g2 ⇔ M1g1g−1
2

⇔ g1g−1
2 ∈ H

⇔ g1 ∈ Hg2

⇔ Hg1 = Hg2

⇔ ψ(M1g1) = ψ(M1g2)

The ⇒ part of this gives the well-definedness of ψ and ⇐ part gives the injectivity of ψ .
Now, we show that ψ is onto. Clearly for Hg, we choose M1g and ψ(M1g) = Hg. Thus ψ

is onto and hence it is bijective.
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Thus n = iG(H) = o(G)/o(H). So, no(H) = o(G) = pαm. Recall that pα+r | o(G). So,
pα+r | no(H). But pr+1 ∤ n and so, pα | o(H). So, pα ≤ o(H).

On the other hand, for any m ∈ M1, mH ⊂ M1. So o(H) = o(mH) ≤ o(M1) = pα . This
proves that o(H) = pα . □

Dr. Jay Mehta,
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Definition 3.1.3: p-Sylow subgroup

Let G be a finite group and p be a prime such that pm|o(G) but pm+1 ∤ o(G) for some
integer m ≥ 1. Then a subgroup of G order pm is called a p-Sylow subgroup of G.

Actually the following Corollary 3.1.43.1.4 is known as the Sylow’s Theorem or First Sylow
theorem and it ensures the existence of p-Sylow subgroup.

Corollary 3.1.4

If pm|o(G), pm+1 ∤ o(G), then G has a subgroup of order pm.

Second proof of Sylow’s theorem

Now, we present the second proof of (first) Sylow’s theorem which is based on an application
of class equation and the tools that we covered in the course so far. In the second proof, we
prove the version stated in the above corollary first and then as a consequence we have the
result stated in Theorem 3.1.23.1.2.

Theorem 3.1.5: First Sylow Theorem

Let G be a finite group and p be a prime such that pm|o(G) but pm+1 ∤ o(G) for some
integer m ≥ 1. Then G has a subgroup of order pm.

In other words, if G is a finite group and p is a prime dividing o(G), then G has a
p-Sylow subgroup.

Proof. We prove the result by induction on the order of the group G.

Let o(G) = 1. Then the result is vacuously true.
Let us consider another base case where o(G) = 2. Then the only prime dividing the order of
the group G is 2. In this case G has a subgroup of order 2 which is itself. Hence, the theorem
holds in this case too.

Now, assume that the result holds for all groups with order less than o(G). Then we have to
show that the result also holds for the group G.

Let p be a prime such that pm|o(G) but pm+1 ∤ o(G) for some m ≥ 1. Then we have the
following two cases.
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Case I: G has a proper subgroup H such that pm|o(H).

Since H is a proper subgroup of G, o(H) < o(G). Also, pm|o(H) and pm+1 ∤ o(H) as
pm+1 ∤ o(G). Then by induction hypothesis, H has a subgroup K of order pm. Now, since K
is a subgroup of H and H is a subgroup of G, K is a subgroup of G. Thus, K is the required
p-Sylow subgroup of G.

Case II: pm ∤ o(H) for any proper subgroup H of G.

Recall the class equation (2.242.24) of G,

o(G) = z+∑
o(G)

o(N(a))
, (2.242.24)

where z = o(Z) and the sum is taken over one element a in each conjugate class such that
o(N(a)) < o(G). Also recall that for a ̸∈ Z, we have N(a) ̸= G. Therefore N(a) is a proper
subgroup of G, i.e. o(N(a)) < o(G). So by our assumption in this case pm|o(G) but pm ∤
o(N(a)). Therefore we must have

p
∣∣∣ o(G)

o(N(a))
.

Thus, p
∣∣∣ o(G)

o(N(a))
for every a ∈ G such that a ̸∈ Z, i.e. o(N(a))< o(G). Therefore,

p
∣∣∣ ∑

a̸∈Z

o(G)

o(N(a))
.

This implies p
∣∣∣(o(G)−∑

o(G)

o(N(a))

)
. Hence by the class equation of G, p|z. Then by

Cauchy’s theorem, Z has an element b (̸= e) of order p. Let B = ⟨b⟩ be the subgroup generated
by b. Then o(B) = p. Since B ⊂ Z, every element of B commutes with all the elements of G.
Hence, B must be normal. Therefore we can form the quotient group G′ = G/B. Now,

o(G′) =
o(G)

o(B)
=

o(G)

p
< o(G).

Since pm|o(G) but pm+1 ∤ o(G), it is clear that pm−1|o(G′) but pm ∤ o(G′). Thus, by induction
hypothesis, G′ has a subgroup P′ of order pm−1. Let

P = {x ∈ G | xB ∈ P′}.

Then P is a subgroup of G. Moreover, P′ ≈ P/B (Exercise 3.23.2). Thus,

pm−1 = o(P′) =
o(P)
o(B)

=
o(P)

p
.

Hence, o(P) = pm. Therefore, P is the required p-Sylow subgroup of G and this completes the
proof of the theorem, by induction. □

Dr. Jay Mehta,
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The second proof of the Sylow’s theorem can be adapted to obtain the following result.
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Theorem 3.1.6

Let p be a prime number and pα | o(G). Then G has a group of order pα .

Proof. Modify the (second) proof in the above theorem accordingly.
Hint: In induction, use pα |o(G) instead of pm|o(G) but pm+1 ∤ o(G). □

Dr. Jay Mehta,
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Third proof of Sylow’s theorem

The third proof of the Sylow’s theorem is framed in following steps:

1. First we prove that if G is a subgroup of a finite group M and M has a p-Sylow subgroup,
then G has a p-Sylow subgroup.

2. Next we show that for a prime p, all the symmetric groups Spr have p-Sylow subgroups.

3. Since by Cayley’s theorem, we know that every group G is isomorphic to a subgroup of
Sn for some n, we take M = Spk for sufficiently large k in step (1) and then use step (2) to
prove the existence of p-Sylow subgroup of G.

Lemma 3.1.7

Let H be a subgroup of a group G and x ∈ G. Then

1. x−1Hx and xHx−1 are subgroups of G.

2. ψ : H → x−1Hx defined by ψ(h) = x−1hx, (h ∈ H) is an onto isomorphism.

3. ϕ : H → xHx−1 defined by ϕ(h) = xhx−1, (h ∈ H) is an onto isomorphism.

Proof. Proof in seminar. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

In order to execute the first step of the proof, we begin with the following notion of double
cosets and some preliminaries.

Definition 3.1.8

Let G be a group, A,B be subgroups of G. For x,y ∈ G, define x ∼ y if y = axb for some
a ∈ A and b ∈ B.

Lemma 3.1.9

The relation ∼ defined above is an equivalence relation on G. The equivalence class of
x ∈ G is the set AxB = {axb | a ∈ A,b ∈ B}.
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Proof. First we show that the relation ∼ defined above is an equivalence relation.

Step I: ∼ is reflexive, i.e. x ∼ x for all x ∈ G.

Since A and B are subgroups of G, e ∈ A and e ∈ B. Therefore, for all x ∈ G, we write
x = exe whence x ∼ x and the relation ∼ is reflexive.

Step II: ∼ is symmetric, i.e. if x ∼ y then y ∼ x for all x,y ∈ G.

Let x ∼ y. Then y = axb for some a ∈ A and b ∈ B. Therefore we can write x = a−1yb−1.
Since A and B are subgroups of G and a ∈ A, and b ∈ B, we have a−1 ∈ A and b−1 ∈ B such
that x = a−1yb−1. Hence, y ∼ x and therefore ∼ is symmetric.

Step III: ∼ is transitive, i.e. if x ∼ y and y ∼ z, then x ∼ z for all x,y,z ∈ G.

Since x ∼ y, y = a1xb1 for some a1 ∈ A and b1 ∈ B. Similarly, y ∼ z gives z = a2yb2 for
some a2 ∈ A and b2 ∈ B. Then

z = a2yb2 = a2(a1xb1)b2 = (a2a1)x(b1b2).

Since A and B are subgroups of G, a2a1 ∈ A and b1b2 ∈ B. Therefore x ∼ z and hence the
relation ∼ is transitive.

Thus, ∼ is an equivalence relation. The equivalence class of any x ∈ G under ∼ is given by

[x] = {y ∈ G | x ∼ y}
= {y ∈ G | y = axb, for some a ∈ A,b ∈ B}
= {axb | a ∈ A,b ∈ B}= AxB.

Thus, the equivalence class of x ∈ G is the set AxB = {axb | a ∈ A,b ∈ B}. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Definition 3.1.10

The set AxB, i.e. the equivalence class of x ∈ G under the relation ∼, is called a double
coset of A,B in G.

If A and B are finite subgroups of G, then we determine the number of elements in the double
coset AxB of x ∈ G. We have the following lemma.

Lemma 3.1.11

If A,B are finite subgroups of a group G, then

o(AxB) =
o(A)o(B)

o(A∩ xBx−1)
.

Proof. First we show that o(AxB) = o(AxBx−1). For this, we define a map T : AxB → AxBx−1

by T (axb) = axbx−1 and show that it is one-one and onto.
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Claim 1: T is one-one.

Let a1xb1,a2xb2 ∈ AxB. Then

T (a1xb1) = T (a2xb2)⇒ a1xb1x−1 = a2xb2x−1 ⇒ a1xb1 = a2xb2.

Therefore T is one-one

Claim 2: T is onto.

Let y ∈ AxBx−1. Then y = axbx−1 for some a ∈ A and b ∈ B. Then we have axb ∈ AxB and
T (axb) = axbx−1 = y. Hence, T is onto.

Thus, we have proved that T is bijective. Consequently, we have o(AxB) = o(AxBx−1).
Now, clearly xBx−1 is a subgroup of G and o(xBx−1) = o(B). Therefore by Lemma 1.3.31.3.3,

we have

o(AxB) = o(AxBx−1) =
o(A)o(xBx−1)

o(A∩ xBx−1)
=

o(A)o(B)
o(A∩ xBx−1)

.

□
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Now, we come to the first step, i.e. we prove that if a larger group M has a p-Sylow subgroup,
then its subgroup G also has a p-Sylow subgroup. More precisely, we have the following
lemma:

Lemma 3.1.12

Let G be a finite group and suppose that G is a subgroup of the finite group M. Suppose that
M has a p-Sylow subgroup Q, then G has a p-Sylow subgroup P. In fact, P = G∩ xQx−1

for some x ∈ M.

Proof. Let pm | o(M) but pm+1 ∤ o(M) and Q be the p-Sylow subgroup of M, i.e. Q is the
subgroup of M of order pm. Let o(G) = pnt such that p ∤ t. Then we have to show that G has a
p-Sylow subgroup, i.e. G has a subgroup of order pn.

Now, consider the decomposition of the group M into double cosets given by G and Q, i.e.

M =
⋃

GxQ.

Then by previous lemma, we have

o(GxQ) =
o(G)o(Q)

o(G∩ xQx−1)
=

pnt pm

o(G∩ xQx−1)
.

Since G∩ xQx−1 is a subgroup of xQx−1, its order is pmx for some positive integer mx ≤ n.

Claim: mx = n for some x ∈ M.
Suppose if possible, mx < n for all x ∈ M, then n−mx ≥ 1 for all x ∈ M and hence

o(GxQ) =
pnt pm

pmx
= t pm+n−mx .
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Thus, pm+1|o(GxQ). Now, since M is disjoint union of (distinct) double cosets, i.e. M =⋃
GxQ, we have

o(M) = ∑o(GxQ),

where the sum is runs over one element from each double coset. Also,

pm+1|o(GxQ)⇒ pm+1
∣∣∣∑o(GxQ)⇒ pm+1|o(M)

which is a contradiction to our assumption that pm+1 ∤ o(M). Thus, mx = n for some x ∈ M.
Hence

o(G∩ xQx−1) = pn.

Thus, P = G∩xQx−1 is the subgroup of G of order pn, i.e. P is the p-Sylow subgroup of G. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Now, we investigate how large a p-Sylow subgroup of Spr should be. For this, it is necessary
to determine what power of p divides (pr)!. In this regard, we introduce the following notation.

Notation:
For a fixed prime p, let n(k) denote the highest power of a prime p which divides (pk)!, i.e.

pn(k)|(pk)! but pn(k)+1 ∤ (pk)!.

The following lemma determines n(k).

Lemma 3.1.13

n(k) = 1+ p+ · · ·+ pk−1.

Proof. Omitted □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

We shall need the following lemma.

Lemma 3.1.14

Let n,m ∈ N and m < n. Define

A = {τ ∈ Sn : iτ = i for all i > m}. (3.5)

Then A ≈ Sm.

Proof. Define ψ : Sm → A by

ψ(θ) =

(
1 2 . . . m m+1 . . . n

1θ 2θ . . . mθ m+1 . . . n

)
(3.6)

Then it is easy to verify that ψ is an onto isomorphism. Thus A ≈ Sm. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

The final preparation to give the third proof of Sylow’s theorem is the following particular
case of Sylow’s theorem.
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Lemma 3.1.15

Let p ∈ N be prime and k ∈ N. Then Spk has a p-Sylow subgroup.

Proof. Omitted. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Finally, we combine all these results to give the third proof of the Sylow’s theorem below:

Third proof of Sylow’s Theorem. Let G be a finite group and pm|o(G) but pm+1 ∤ p(G). By
Cayley’s theorem, G can be isomorphically embedded in the symmetric group Sn for some n.
Choose k large such that n < pk. Then Sn can be isomorphically embedded into Spk . Hence, G
can be isomorphically embedded in Spk .

By Lemma 3.1.153.1.15, Spk has a p-Sylow subgroup. Hence, by Lemma 3.1.123.1.12, G must have a
p-Sylow subgroup. This completes the third proof of the Sylow’s theorem. □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

The third proof yields more than what we intended to prove. The tools developed during the
course of the third proof, enables us to prove the other two parts of the Sylow’s theorem which
we present in the next section.

3.2 Other Parts of Sylow’s Theorem

In this section, we determine the number of p-Sylow subgroups for a finite group G. Precisely,
we prove the second and the third part of Sylow’s theorem also known as Second Sylow theorem
and Third Sylow theorem.

We begin by proving the second part of Sylow’s theorem which states that any two p-Sylow
subgroups are conjugate of each other.

Theorem 3.2.1: Second Sylow theorem

If G is a finite group, p a prime such that pn|o(G) but pn+1 ∤ o(G), then any two subgroups
of G of order pn are conjugate.

Proof. Let A,B be two p-Sylow subgroups of G, i.e. o(A) = pn = o(B). We want to show that
A and B are conjugate, i.e. A = gBg−1 for some g ∈ G.

Now, decompose G into double cosets of A and B, i.e. write G as a disjoint union of double
cosets as follows:

G =
⋃

AxB.

Then

o(AxB) =
o(A)o(B)

o(A∩ xBx−1)
.

If A ̸= xBx−1 for every x ∈ G, then since (A∩ xBx−1) is a proper subgroup of A, we have
o(A∩ xBx−1) = pm, where m < n. Thus,

o(AxB) =
o(A)o(B)

pm =
p2n

pm = pn+(n−m).
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Thus, pn+1|o(AxB) for every x ∈ G and since o(G) = ∑o(AxB), we get pn+1|o(G) which is
a contradiction as pn+1 ∤ o(G). Hence, A = xBx−1 for some x ∈ G. Thus, any two p-Sylow
subgroups are conjugate. □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

As a consequence of the second Sylow theorem, we can say that for any prime p a unique
p-Sylow subgroup is normal.

Corollary 3.2.2

A unique p-Sylow subgroup is normal.

Proof. Let G be a finite group and P be a p-Sylow subgroup of G. Then for every x ∈ G, xPx−1

is also a subgroup of G and o(xPx−1) = o(P). Thus, xPx−1 is also a p-Sylow subgroup of G,
for all x ∈ G. Since G has unique p-Sylow subgroup P, we must have

P = xPx−1,∀ x ∈ G.

Hence, P is normal. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Since p-Sylow subgroups are conjugate, we can now determine the number of p-Sylow
subgroups of a finite group G. This number is given by the following lemma, the proof of which
is similar to the proof of Theorem 2.4.52.4.5.

Lemma 3.2.3

The number of p-Sylow subgroups in G is equal to
o(G)

o(N(P))
, where P is any p-Sylow

subgroup of G. In particular, this number is a divisor of o(G).

Proof. Let P be the collection of all p-Sylow subgroups of G and P ∈ P be any p-Sylow
subgroup of G. Since any two p-Sylow subgroups are conjugate to each other, every element of
P can be written of the form xPx−1 for some x ∈ G.

Let N(P) denote the normalizer of P. Define φ : P → G/N(P) by

φ(xPx−1) = N(P)x.

To prove this result, we show that φ is well-defined, one-one and onto.

For any two p-Sylow subgroups xPx−1,yPy−1 ∈ P , for some x and y in G, we have

xPx−1 = yPy−1 ⇔ Px−1y = x−1yP

⇔ x−1y ∈ N(P)
⇔ N(P)x = N(P)y

xPx−1 = yPy−1 ⇒ N(P)x = N(P)y shows that φ is well-defined and N(P)x = N(P)y ⇒
xPx−1 = yPy−1 shows that φ is one-one.

To show that φ is onto, let N(P)x ∈ G/N(P). Then since o(xPx−1) = o(P), xPx−1 is a
p-Sylow subgroup, i.e. xPx−1 ∈ P and φ(xPx−1) = N(P)x. Thus, φ is onto. □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Theorem 3.2.4: Third Sylow theorem

Let p be a prime. The number of p-Sylow subgroups of G is of the form 1+ kp.

Proof. Let P be a p-Sylow subgroup of G with o(P) = pn. So, we have pn+1 ∤ o(G).
Decompose G into double cosets of P and P, i.e. G =

⋃
PxP. Also,

o(PxP) =
o(P)2

o(P∩ xPx−1)
.

If P∩ xPx−1 ̸= P, then P∩ xPx−1 is a proper subgroup of P and hence o(P∩ xPx−1)≤ pn−1.
Therefore, pn+1|o(PxP).

Now, P∩xPx−1 ̸= P ⇒ xP ̸= Px ⇒ x ̸∈ N(P). Then the above statement can be rewritten as,
if x ̸∈ N(P) then pn+1|o(PxP). However, if x ∈ N(P), i.e. Px = xP, then PxP = P2x = Px and
so o(PxP) = o(Px) = o(P) = pn. Therefore,

o(G) = ∑
x∈N(P)

o(PxP)+ ∑
x ̸∈N(P)

o(PxP),

where each sum runs over one element from each double coset.
Observe that if x ∈ N(P) then PxP = Px and so the first sum in the above expression is

∑
x∈N(P)

o(Px) over distinct cosets of P in N(P). Thus, the first sum is o(Px) · o(N(P))
o(P) = o(N(P)).

Now, the second sum is over x ̸∈ N(P) and so as remarked earlier pn+1|o(PxP) for each term
in the second sum. Therefore

pn+1
∣∣∣ ∑

x ̸∈N(P)
o(PxP).

Then we can write the second sum as

∑
x ̸∈N(P)

o(PxP) = pn+1u (for some u).

Therefore, o(G) = o(N(P))+ pn+1u and so

o(G)

o(N(P))
= 1+

pn+1u
o(N(P))

. (3.7)

Now, N(P) being a subgroup of G, o(N(P))|o(G). But pn+1 ∤ o(G) and so pn+1 ∤ o(N(P)).

Hence, p
∣∣∣ pn+1u
o(N(P))

. Then, the above equation can be written as

o(G)

o(N(P))
= 1+ kp.

By above lemma, we know that the number of p-Sylow subgroups of G is o(G)
o(N(P)) . Thus, the

number of p-Sylow subgroups of G is for the form 1+ kp for some non-negative integer k. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Sylow’s theorem, particularly second and third part, has many applications to finite groups.
For instance, in certain cases we can determine, just from the order of the group, whether
the given group is abelian or not, whether it is simple or not. So before we begin with the
concluding section of this chapter on the applications of the Sylow theorem, we define simple
group and solvable group in the following section.

3.3 Applications of Sylow’s theorem

Definition 3.3.1

A group G is said to be simple if it does not have any proper normal subgroup.

To demonstrate application of second and third Sylow theorems, we present two examples
below. In the first example we show that the group of given order is abelian and in the second
example we show that the group of given order cannot be simple.

Example 3.3.2. Show that the group of order 20499 = 112 ×132 is abelian.

Solution. Let G be a group of order 112×132. We determine the number of 11-Sylow subgroups
and 13-Sylow subgroups in G. By Theorem 3.2.43.2.4, we know that, the number of 11-Sylow
subgroups in G is of the form 1+11k. Also by Lemma 3.2.33.2.3, this number divides o(G). Thus,

1+11k | 112 ·132.

Note that (1+11k,112) = 1 and therefore 1+11k | 133. Thus, k must be 0. Hence, the number
of 11-Sylow subgroup in G is 1+11k = 1 (∵ k = 0) . Thus G has unique 11-Sylow subgroup,
say A, i.e. o(A) = 112. Then by Corollary 3.2.23.2.2, A is normal.

Similarly, the number of 13-Sylow subgroup 1+13k | 112 ·132. But (1+13k,132) = 1 and
hence 1+13k | 112. Thus, k must be 0. Hence G has a unique 13-Sylow subgroup, say B. Then
o(B) = 132 and again by Corollary 3.2.23.2.2, B is normal.

We know that any group of order p2, where p is prime, is abelian. Hence, A and B are
abelian. Now, we determine the o(AB). For this, first we show that A∩B = {e}. Let x ∈ A∩B,
then o(x) | o(A) and o(x) | o(B). Hence, o(x) | (o(A),o(B)) = (112,132) = 1 and so x = e.
Therefore,

o(AB) =
o(A)o(B)
o(A∩B)

= 112 ×132 = o(G).

Thus G = AB, where A and B are abelian. Finally, to show that G is abelian, it suffices to show
that elements of A and B commute.

Let a ∈ A and b ∈ B. Since A is normal, aba−1b−1 = a(ba−1b−1) ∈ A. Similarly, since B is
normal, aba−1b−1 = (aba−1)b−1 ∈ B. Thus,

ba−1b−1 ∈ A∩B = {e}.

Thus, ba−1b−1 = e ⇒ ab = ba and hence A and B commutes. Thus, any group of order 112 ·132

is abelian. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Example 3.3.3. Show that a group of order 72 cannot be simple.
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Solution. Let G be a group with o(G) = 72 = 2332. We determine the number of 3-Sylow
subgroups of G. Let this number be n3 = 1+ 3k. We know that n3 | o(G) = 72. But (1+
3k,32) = 1 and therefore, 1+3k | 23. Then either k = 0 or k = 1. If k = 0, then n3 = 1, i.e. G
has a unique 3-Sylow subgroup and hence it is normal. Then G cannot be simple.

However, if k = 1 then n3 = 4, i.e. the number 3-Sylow subgroups in G is 4. Let N be the
normalizer of the 3-Sylow subgroup. Then by Lemma 3.2.33.2.3, the number of 3-Sylow subgroups
in G is equal to index of the normalizer of a 3-Sylow subgroup. Thus, iG(N) = 4.

Now, 72 ∤ 4!, i.e. o(G) ∤ iG(N)!. Hence by Corollary 2.2.42.2.4, N must contain a non-trivial
normal subgroup of G. Thus, G cannot be simple. □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Exercises

Exercise 3.1
Show that the converse of Lagrange’s theorem does not hold.

Exercise 3.2
Let G be a group and H be a normal subgroup of G. Let G′ = G/H and K′ be a subgroup of

G′. Let K = {x ∈ G | xH ∈ K′}. Then prove the following:

1. K is a subgroup of G.

2. K′ ≈ K/H.

3. K =
⋃

xH∈K′
xH.

Exercise 3.3
In Lemma 3.1.153.1.15, verify the following:

1. Property (2) of σ defined in the lemma.

2. σT σ−1 = T .

3. P (defined in lemma) is a subgroup of Spk .

Exercise 3.4
If o(G) = pq for distinct primes p and q, p < q such that p ∤ (q−1) then G is cyclic.

Exercise 3.5
Find the number and discuss the nature of all possible p-Sylow subgroups in a group of order

225.
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Exercise 3.6
Find the possible number of 11-Sylow subgroups, 7-Sylow subgroups and 5-Sylow subgroups

in a group of ofer 52 ·7 ·11.

Exercise 3.7
Show that in a group G of order 30, a 3-Sylow subgroup or a 5-Sylow subgroup of G must be

normal.

Exercise 3.8
Show that a group of order 108 cannot be simple.

Exercise 3.9
Show that any group of order 1986, 42 or 200 cannot be simple.

Exercise 3.10
If G is S3 and A = ((1,2)) in G, find all the double cosets AxA of A in G.

Exercise 3.11
Discuss the number and nature of the 3-Sylow subgroups and 5-Sylow subgroups of a group

of order 32 ·52.

Exercise 3.12
If G is a group of order 231, prove that the 11-Sylow subgroup is in the center of G.

Exercise 3.13
If G is of order p2q, p,q primes, prove that G has a non-trivial normal subgroup, i.e., G cannot

be simple.
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Fundamental Theorem of Finite Abelian Groups

In this unit, we shall study the following.
Direct products and Fundamental theorem of finite abelian groups.

4.1 Direct Products

In this section we shall define the notions of external direct product and internal direct product
of groups. Eventually we will show that both of them are isomorphic and henceforth we shall
address it only as direct product of groups without using the word internal or external.

Before we can give the formal definitions of direct products, we state the following exercises
solving which will bring us in the position to state these definitions.

Exercises 4.1.1. 1. Let A and B be any two groups. Show that their Cartesian product

G = A×B = {(a,b) | a ∈ A,b ∈ B}

is a group under the operation (componentwise multiplication) given by

(a1,b1)(a2,b2) := (a1a2,b1b2), ∀ (a1,b1),(a2,b2) ∈ G.

We call the group G = A×B as the external direct product of groups A and B.

2. Let Ā = {(a, f ) ∈ G | a ∈ A} ⊂ G = A×B, where f is the unit element of B. Show that
Ā is a subgroup of G. Similarly, B̄ = {(e,b) ∈ G | b ∈ B}, where e is the unit element of
A is a subgroup of G.

3. Show that Ā is isomorphic to A.
Hint: Show that φ : A → Ā defined by φ(a) = (a, f ) is an isomorphism of A onto Ā.
Similarly, B̄ is isomorphic to B.

4. Show that Ā is normal in G. Similarly, B̄ is normal in G.
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5. Show that G = ĀB̄, i.e. every g ∈ G can be written as g = āb̄ with ā ∈ Ā and b̄ ∈ B̄. Also
show that such expression of g = āb̄ is unique.

In this case, we call the group G = ĀB̄ the internal direct product of normal subgroups Ā
and B̄.

Now we are in a position to define external direct product and internal direct product of
groups. The definitions are same as in the above exercises but instead of two groups, we define
for n groups where n > 1.

Definition 4.1.2: External Direct Product

Let G1,G2, . . . ,Gn be any n groups. Let

G = {(g1,g2, . . . ,gn) | gi ∈ Gi}

be the Cartesian product of G1,G2, . . . ,Gn, i.e. set of all ordered n-tuples. Then G is a
group with componentwise multiplication defined by

(g1,g2, . . . ,gn)(g′1,g
′
2, . . . ,g

′
n) = (g1g′1,g2g′2, . . . ,gng′n).

We call this group G the external direct product of groups G1,G2, . . . ,Gn.

Remark 4.1.3. 1. The product in the ith component in the above product is carried out in
the group Gi.

2. The unit element in the group G defined above as the external direct product is given by
(e1,e2, . . . ,en), where ei is the unit element in the group Gi. The inverse of the element
(g1,g2, . . . ,gn) in G is given by (g−1

1 ,g−1
2 , . . . ,g−1

n ), i.e.

(g1,g2, . . . ,gn)
−1 = (g−1

1 ,g−1
2 , . . . ,g−1

n ).

3. In G = G1 ×G2 ×·· ·×Gn let Ḡi = {(e1,e2, . . . ,ei−1,gi,ei+1, . . . ,en) | gi ∈ Gi}. Then Ḡi
is a normal subgroup of G. Then Ḡi is a normal subgroup of G and is isomorphic to Gi.
Also G = Ḡ1Ḡ2 · · · Ḡn and every g ∈ G can be uniquely written as g = ḡ1ḡ2 · · · ḡn, where
ḡi ∈ Ḡi, i = 1,2, . . . ,n. (Verify!)

Here, we have realized G as an internal direct product of normal subgroups Ḡ1, Ḡ2, . . . , Ḡn.
More precisely, we have the following definition.

Definition 4.1.4: Internal Direct Product

Let G be a group and N1,N2, . . . ,Nn be normal subgroups of G such that

1. G = N1N2 · · ·Nn.

2. Every g ∈ G can be uniquely written as g = m1m2 · · ·mn, mi ∈ Ni.

Then we say that G is the internal direct product of N1,N2, . . . ,Nn.
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Example 4.1.5. Let G = K4 = {e,a,b,c} be the Klein-4 group, i.e. a2 = b2 = c2 = e and
ab = c = ba, ac = b = ca, bc = a = cb. Let H1 = {e,a} and H2 = {e,b} be two subgroups of
G of order 2. We show that G = K4 is the internal direct product of H1 and H2

Since G is abelian, H1H2 = H2H1 and hence H1H2 is a subgroup of G. Also G being abelian
implies that H1 and H2 are normal in G. Note that H1 ∩H2 = {e}. Therefore

o(H1H2) =
o(H1)o(H2)

o(H1 ∩H2)
=

2 ·2
1

= 4 = o(G).

Thus, G = H1H2. Observe that every element g ∈ G can be uniquely written as g = h1h2, where
h1 ∈ H1 and h2 ∈ H2 as follows:

e = e · e, a = a · e, b = e ·b, c = a ·b.

Hence G = K4 is internal direct product of its normal subgroups H1 and H2 defined above.

Example 4.1.6. Let G be a finite abelian group of order pα1
1 pα2

2 · · · pαk
k , where p1, p2, . . . , pk are

distinct primes and αi > 0. Then by Sylow’s theorem G has p1-Sylow subgroup P1, p2-Sylow
subgroup P2, . . . , pk-Sylow subgroup Pk. Since G is abelian, each of these Sylow subgroups are
normal. Then show that G is the internal direct product of P1,P2, . . . ,Pk (see Exercise 4.14.1).

Before we prove that external direct product and internal direct product are isomorphic, we
have the following lemma.

Lemma 4.1.7

Suppose G is the internal direct product of N1,N2, . . . ,Nn. Then Ni ∩N j = {e} for i ̸= j.
Also if a ∈ Ni, b ∈ N j then ab = ba.

Proof. Let x ∈ Ni ∩N j. Then x ∈ Ni and so x can be written as

x = e1 · · ·ei−1xei+1 · · ·e j · · ·en,

where et = e. Also x ∈ N j. Thus, viewing x as an element of N j, we can write

x = e1 · · ·ei · · ·e j−1xe j+1 · · ·en,

where et = e. Since G is internal direct product of N1,N2, . . . ,Nn, every element x ∈ G has
a unique representation of the form m1m2 · · ·mn, where mi ∈ Ni. Since x has above two
decompositions they must coincide. So the entry in Ni in each of the above decompositions of x
must be equal, for all i. Comparing the ith or the jth entry in the above two decompositions of
x, we get x = ei = e j = e. Thus, Ni ∩N j = {e} for i ̸= j.

Now, suppose that a ∈ Ni and b ∈ N j for i ̸= j. Then aba−1 ∈ N j since N j is normal ad so
aba−1b−1 ∈ N j. Also, a−1 ∈ Ni and since Ni is normal, ba−1b−1 ∈ Ni. Thus, aba−1b−1 ∈ Ni.
Therefore aba−1b−1 ∈ Ni ∩N j = {e}. Thus, aba−1b−1 = e which implies that ab = ba. □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Remark 4.1.8. The converse of the above lemma is not true. That is if K1,K2, . . . ,Kn are normal
subgroups of G such that G = K1K2 · · ·Kn and Ki ∩K j = {e} for i ̸= j then it need not be true
that G is the internal direct product of K1,K2, . . . ,Kn (see Exercise 4.24.2). An example is already
provided. Find another example yourself.

A more stronger condition is needed for it to be true (see Exercise 4.34.3). Prove this equivalent
condition for internal direct product.
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Next, we prove that external direct product is isomorphic to internal direct product. Hence-
forth, we shall use the phrase only direct product of groups and avoid the prefix external or
internal. We have the following theorem.

Theorem 4.1.9

Let G be a group and suppose that G is the internal direct product of N1,N2 . . . ,Nn. Let
T = N1 ×N2 ×·· ·×Nn. Then G is isomorphic to T .

Proof. Define the map ψ : T → G by

ψ((b1,b2, . . . ,bn)) = b1b2 · · ·bn,

where bi ∈ Ni for i = 1,2, . . . ,n. We show that ψ is an isomorphism of T onto G.
First we show that ψ is a homomorphism. Let X = (a1,a2, . . . ,an),Y = (b1,b2, . . . ,bn) ∈ T .

Then

ψ(XY ) = ψ((a1,a2, . . . ,an)(b1,b2, . . . ,bn))

= ψ((a1b1,a2b2, . . . ,anbn))

= a1b1a2b2 · · ·anbn.

Since G is the internal direct product of N1, . . . ,Nn, by above lemma, aib j = b jai for i ̸= j.
Thus,

a1b1a2b2 · · ·anbn = a1a2 · · ·anb1b2 · · ·bn

= ψ((a1,a2, . . . ,an))ψ((b1,b2, . . . ,bn))

= ψ(X)ψ(Y ).

Therefore ψ(XY ) = ψ(X)ψ(Y ) and hence ψ is a homomorphism.

Now, we show that ψ is one-one. Let X ,Y ∈ T such that

ψ(X) = ψ(Y )
⇒ ψ((a1,a2, . . . ,an)) = ψ((b1,b2, . . . ,bn))

⇒ a1a2 · · ·an = b1b2 · · ·bn,

where ai,bi ∈ Ni for i = 1,2, . . . ,n. Since G is the internal direct product of N1, . . . ,Nn every
element in G has a unique representation as product of elements from N1,N2, . . . ,Nn. Therefore,
ai = bi for all i = 1,2, . . . ,n and hence (a1,a2, . . . ,an) = (b1,b2, . . . ,bn), i.e. X = Y which
proves that ψ is one-one.

Finally, we show that ψ is onto. Let x ∈ G. Since G is the internal direct product of
N1,N2, . . . ,Nn, x = a1a2 · · ·an, where ai ∈ Ni for 1 ≤ i ≤ n. But then (a1,a2, . . . ,an) ∈ T and
ψ((a1,a2, . . . ,an)) = a1a2 · · ·an = x. Thus, ψ is onto.
Hence ψ is isomorphism of T onto G, i.e. T ≈ G. □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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4.2 Finite Abelian Groups

In this section we prove one of the main result of this chapter and in the theory of finite abelian
groups. The result states that every finite abelian group is the direct product of cyclic groups.
Before we prove this result, we see the couple of exercises given below, which will be used in
the proof of the theorem.

Example 4.2.1. Let G and G′ be two groups and φ : G → G′ be a homomorphism. Then for all
g ∈ G, o(φ(g)) | o(g).

Solution. For g ∈ G, let o(g) = m and o(φ(g)) = n. Then we have to show that n | m. Now,

(φ(g))m = φ(g)φ(g) · · ·φ(g)︸ ︷︷ ︸
m times

= φ(gm) (∵ φ is a homomorphism)

= φ(e) = e′ (∵ o(g) = m).

Thus, (φ(g))m = e′, where e′ is identity of group G′. But o(φ(g)) = n. Therefore n | m. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Example 4.2.2. Let G be a group and A1 be a subgroup of G. Then the map π : G → G/A1
defined by π(b) = b̄ = bA1, b ∈ G, is a homomorphism.

Solution. Let a,b ∈ G. Then

π(a)π(b) = āb̄ = (aA1)(bA1) = abA1 = ab = π(ab).

Thus π is a homomorphism. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 4.2.3

Every finite abelian group is the direct product of cyclic groups.

Proof. We know, by Exercise (4.14.1), that every finite abelian group is the direct product of
its Sylow subgroups. If we show that every Sylow subgroup is the direct product of cyclic
subgroups then get the desired result by combining two results. Since every Sylow subgroup
has order which is a prime power, it suffices to show that every abelian group G with o(G) = pn,
for prime p and for some n ∈ N, can written as the direct product of cyclic subgroups.

Let a1 ∈ G be an element of maximal (highest possible) order, say pn1 . Let A1 = (a1).
Then o(A1) = o(a1) = pn1 . Let b2 ∈ G be such that its image (under the map π : G → G/A1),
b̄2 = b2A1 in G/A1 has maximal order pn2 , i.e. o(b̄2) = pn2 . Then (by above two exercises) we
have o(b̄2) | o(b2) and since a1 has maximal order in G,

pn2 = o(b̄2)≤ o(b2)≤ o(a1) = pn1.

This gives n1 ≥ n2 . In order to write G has direct product of cyclic groups, we need A1 ∩
(b2) = {e}. If this is true then we proceed further. However, this may not be the case, i.e.
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A1 ∩ (b2) ̸= {e}. By our choice of b2, it is clear that (Verify!) b2
pn2 is the first power of b2 to

belong to A1, i.e. b2
pn2 ∈ A1 ∩ (b2). Then we have b2

pn2 = a1
i for some i. Therefore

a1
ipn1−n2 =

(
a1

i)pn1−n2
=
(

b2
pn2

)pn1−n2

= b2
pn1 = e.

Since o(a1) = pn1 , we have pn1 | ipn1−n2 . Now,

pn1 | ipn1−n2 ⇒ pn2 pn1 | ipn1 (∵ a | b ⇒ ac | bc)
⇒ pn2 | i (∵ ac | bc ⇒ a | b)
⇒ i = jpn2 for some j.

Substituting this value of i above, we get

b2
pn2 = a1

i = a1
jpn2 (4.1)

Take a2 = a1
− jb2 . Then a2 is an required element such that A1 ∩ (a2) = {e}. First observe

that, by equation (4.14.1)
a2

pn2 = a1
− jb2

pn2
= a1

− jpn2 b2
pn2 = e. (4.2)

Claim 1: Let A2 = (a2). Then A1 ∩A2 = {e}.

Suppose a2
t ∈ A1 for some t. Then

a2
t ∈ A1 ⇒ (a1

− jb2)
t ∈ A1

⇒ a1
− jtb2

t ∈ A1

⇒ b2
t ∈ A1 (∵ a1

− jt ∈ A1)

⇒ (b2A1)
t = b2

tA1 = A1 (where A1 is the identity in G/A1)

⇒ (b̄2)
t = A1 (∵ b̄2 = b2A1)

⇒ pn2 | t (∵ o(b̄2) = pn2)

⇒ t = spn2 for some s.

Therefore by equation (4.24.2), we have

a2
t = a2

spn2 =
(

a2
pn2

)s
= es = e.

This proves that A1 ∩A2 = {e}.

Similarly, let b3 ∈ G be such that its image b̄3 ∈ G/(A1A2) has maximal order, say o(b̄3) =
pn3 . Then as before, we have n1 ≥ n2 ≥ n3. Now, (A1A2)∩ (b3) = {e} may not be the case.
Then carrying out the same procedure as above, we obtain a3 ∈ G such that o(a3) = pn3 and
A3 ∩ (A1A2) = {e}, where A3 = (a3).

Continuing this way, we obtain cyclic subgroups A1 = (a1), A2 = (a2), . . . ,Ak = (ak) of
order pn1, pn2, . . . , pnk respectively with n1 ≥ n2 ≥ ·· · ≥ nk such that G = A1A2 · · ·Ak and
Ai ∩ (A1A2 · · ·Ai−1) = {e} for each i. Hence, (by Exercise 4.34.3) G is the direct product of cyclic
subgroups A1,A2, . . . ,Ak. □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Definition 4.2.4: Invariants

Let G is an abelian group of order pn, where p is a prime. Suppose G = A1×A2×·· ·×Ak,
where each Ai = (ai) is a cyclic group of order pni with n1 ≥ n2 ≥ ·· · ≥ nk. Then the
integers n1,n2, . . . ,nk are called the invariants of the group G.

Remarks 4.2.5.

1. If G = A1 ×A2 ×·· ·×Ak, where Ai are cyclic subgroups of order pni with n1 ≥ n2 ≥
·· · ≥ nk > 0. Then

o(G) = o(A1)o(A2) · · ·o(Ak)

⇒ pn = pn1 pn2 · · · pnk = pn1+n2+···+nk

⇒ n = n1 +n2 + · · ·+nk.

Thus, n1,n2, . . . ,nk gives a partition of n. We shall conclude this section and the unit
showing that the number of non-isomorphic abelian groups of order pn are equal to the
number of partitions of n, i.e. p(n).

2. Next we show that that invariants of a group G are unique. However the choice of the
cyclic subgroups A1,A2, . . . ,Ak and their generators a1,a2, . . . ,ak respectively, need not
be unique. Consider the following example demonstrating this.

Example 4.2.6. Let G = K4 = {e,a,b,c} be the Klein-4 group, i.e. a2 = b2 = c2 = e and
ab = c = ba, ac = b = ca, bc = a = cb. Let H1 = (a) = {e,a}, H2 = (b) = {e,b} and
H3 = (c) = {e,c} be subgroups of G of order 2.

As seen in Example 4.1.54.1.5, G = K4 can be written as the direct product of H1 and H2.
Similarly, G can also be written as the direct product of subgroups H2 and H3 or also as the
direct product of H1 and H3. Thus, decomposition of G into cyclic subgroups need not be
unique. However, (we will prove that) their orders (i.e. the invariants of G) are unique.

Definition 4.2.7

Let G be an abelian group and s be an integer. Then G(s) = {x ∈ G | xs = e}.

Note that G(s) is the set of all elements of G whose order divide the integer s. Since G is
abelian, it is clear that G(s) is a subgroup of G.

Lemma 4.2.8

If G and G′ are isomorphic abelian groups, then for every integer s, G(s) and G′(s) are
isomorphic.
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Proof. Let φ be an isomorphism of G onto G′. To show that G(s) and G′(s) are isomorphic,
we show that φ maps G(s) isomorphically onto G′(s). We first show that φ(G(s)) = G′(s).

For this we first show that φ(G(s))⊂ G′(s). Let y ∈ φ(G(s)). Then

y ∈ φ(G(s))⇒ φ(x) = y (for some x ∈ G(s))
⇒ xs = e (∵ x ∈ G(s))
⇒ φ(xs) = φ(e) = e′ (where e′ is identity of G′)

⇒ ys = (φ(x))s = e′ (∵ φ is homomorphism)

⇒ y ∈ G′(s).

Next we show that G′(s) ⊂ φ(G(s)). Let u′ ∈ G′(s) ⊂ G. Then by definition of G′(s),
(u′)s = e′. Since φ is onto, for u′ ∈ G there exists y ∈ G such that φ(y) = u′. Now,

(u′)s = e′ ⇒ (φ(y))s = e′ (∵ φ(y) = u′)
⇒ φ(ys) = e′ = φ(e) (∵ φ is homomorphism)

⇒ ys = e (∵ φ is one-one)
⇒ y ∈ G(s)
⇒ u′ = φ(y) ∈ φ(G(s)).

□
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Lemma 4.2.9

Let G be an abelian group of order pn, where p is prime. Suppose that G = A1 ×A2 ×
·· ·×Ak, where each Ai = (ai) is cyclic of order pni , and n1 ≥ n2 ≥ ·· · ≥ nk > 0. If m is
an integer such that nt > m ≥ nt+1 then

G(pm) = B1 ×·· ·×Bt ×At+1 ×·· ·×Ak,

where Bi is cyclic group of order pm, generated by ai
pni−m

, for i ≤ t. Also, the order of
G(pm) is pu, where

u = mt +
k

∑
i=t+1

ni.

Proof. First we show that the direct product of B1, . . . ,Bt ,At+1, . . . ,Ak is contained in G(pm).
For this we begin by showing that At+1, . . . ,Ak are all in G(pm). Since m ≥ nt+1 ≥ ·· · ≥

nk > 0, if j ≥ t +1 then

a j
pm

=
(

a j
pn j

)pm−n j

= (e)pm−n j
= e (∵ o(a j) = pn j).

Thus, a j ∈ G(pm) and hence A j ⊂ G(pm) for all j ≥ t +1.
Next we show that B1, . . . ,Bt are all in G(pm). If i ≤ t then ni > m. Therefore(

ai
pni−m

)pm

= ai
pni

= e.

PS03EMTH54 2023-24



§4.2. Finite Abelian Groups 93

Thus, for each i, the generator ai
pni−m

of subgroup Bi is in G(pm) and hence Bi ⊂ G(pm).
Since Bi are subgroups of Ai and the product A1×A2×·· ·×Ak is direct product, the product

B1 ×·· ·×Bt ×At+1 ×·· ·×Ak is also direct product. Also since B1, . . . ,Bt ,At+1, . . . ,Ak are all
in G(pm), their direct product is also in G(pm), i.e.

B1 ×·· ·×Bt ×At+1 ×·· ·×Ak ⊂ G(pm).

For the reverse inclusion, let x ∈ G(pm). Then xpm
= e. Also note that x ∈ G(pm) ⊂ G =

A1 ×·· ·×Ak. Then x can be written in the following form:

x = a1
λ1a2

λ2 · · ·ak
λk ,

where ai ∈ Ai. Since xpm
= e, we have e = xpm

= a1
λ1 pm

a2
λ2 pm · · ·ak

λk pm
. Since the product of

subgroups A1, . . . ,Ak is direct, e∈G can be uniquely written as e= e1e2 · · ·ek, where ei = e∈ Ai.
Therefore, we must have

a1
λ1 pm

= e, . . . ,ak
λk pm

= e.

Since o(ai) = pni , we have pni | pm for all i= 1,2, . . . ,k. Since m≥ nt+1 ≥ ·· · ≥ nk, for i≥ t+1,
pni | pm and hence above is true for any choice of λi for i ≥ t +1. However for i ≤ t, ni > m
and hence

pni | λi pm ⇒ pni−m | λi ⇒ λi = vi pni−m for some vi.

Substituting all these values of λi in the above expression of x, we get

x = a1
v1 pn1−m · · ·at

vt pnt−mat+1
λt+1 · · ·ak

λk ⇒ x ∈ B1 ×·· ·×Bt ×At+1 ×·· ·×Ak.

This implies G(pm)⊂ B1 ×·· ·×Bt ×At+1 ×·· ·×Ak and hence

G(pm) = B1 ×·· ·×Bt ×At+1 ×·· ·×Ak.

Since each Bi is of order pm and o(Ai) = pni , we have

o(G) = o(B1) · · ·o(Bt)o(At+1) · · ·o(Ak) = pm pm · · · pm︸ ︷︷ ︸
t times

pnt+1 · · · pnk .

Thus, if o(G(pm)) = pu, then u = mt +
k

∑
i=t+1

ni. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Corollary 4.2.10

If G is as in Lemma 4.2.94.2.9, then o(G(p)) = pk.

Proof. Applying the above lemma to the case m = 1, we get u = k. Hence, o(G(p)) = pk. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Now we conclude the section and the chapter by proving couple of results. We begin by
showing the uniqueness of invariants of an abelian group of order pn. The following is the
result.
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Theorem 4.2.11

Two abelian groups of order pn are isomorphic if and only if they have the same invariants.
In other words, if G and G′ are abelian groups of order pn and G = A1×·· ·×Ak, where

each Ai is a cyclic group of order pni , n1 ≥ ·· · ≥ nk > 0, and G′ = B′
1 ×·· ·×B′

s, where
each B′

i is a cyclic group of order phi , h1 ≥ ·· · ≥ hs > 0, then G and G′ are isomorphic if
and only if k = s and for each i, ni = hi.

Proof. First we show that if G and G′ have the same invariants then they are isomorphic. If G
and G′ have the same invariants then we have

G = A1 ×·· ·×Ak,

where each Ai = (ai) is a cyclic group of order pni , and

G′ = B′
1 ×·· ·×B′

k,

where each Bi = (b′i) is a cyclic group of order pni . Define φ : G → G′ by

φ(a1
α1 · · ·ak

αk) = (b′1)
α1 · · ·(b′k)αk .

Then we show that φ is an isomorphism of G onto G′. First we show that φ is homomorphism.
Let g = a1

α1 · · ·ak
αk , h = a1

β1 · · ·ak
βk ∈ G. Then

φ(gh) = φ

(
(a1

α1 · · ·ak
αk)(a1

β1 · · ·ak
βk)

)
= φ

(
a1

α1+β1 · · ·ak
αk+βk

)
(∵ G is direct product, by Lemma 4.1.74.1.7)

= (b′1)
α1+β1 · · ·(b′k)

αk+βk (by definition of φ)

=
(
(b′1)

α1 · · ·(b′k)αk
)(

(b′1)
β1 · · ·(b′k)

βk
)

(∵ G′ is direct product, by Lemma 4.1.74.1.7)

= φ(g)φ(h).

To show that φ is one-one, let φ(g) = φ(h), i.e. (b′1)
α1 · · ·(b′k)αk = (b′1)

β1 · · ·(b′k)β1 . Since G′

is direct product of subgroups B′
i, by uniqueness of representation of every element of G′, we

must have αi = βi for all i = 1,2, . . . ,k and hence a1
α1 · · ·ak

αk = a1
β1 · · ·ak

βk ⇒ g = h.
Clearly, φ is onto because if g′ = (b′1)

α1 · · ·(b′k)αk ∈ G′ for some α1,α2, . . . ,αk, then g =
a1

α1 · · ·ak
αk ∈ G and φ(g) = g′.

Conversely suppose G = A1 ×·· ·×Ak, G′ = B′
1 ×·· ·×B′

s, Ai = (ai), B′
i = (b′i) be cyclic

groups of orders pni and phi respectively, where n1 ≥ ·· · ≥ nk > 0 and h1 ≥ ·· · ≥ hs > 0.
Assume that G and G′ are isomorphic, then we have to show that k = s and ni = hi for all i.

Since G and G′ are isomorphic, G(pm) and G′(pm) are isomorphic for any integer m ≥ 0
and in particular, they have the same order. Considering m = 1 by above Corollary, we have

o(G(p)) = o(G′(p))⇒ pk = ps ⇒ k = s.

Hence, we conclude that the number of invariants for G and G′ is the same. Finally we show
that, in fact, they all coincide.
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Let t be the first integer such that nt ̸= ht .Without loss of generality assume that nt > ht .
Let m = ht , and H = {xpm | x ∈ G} and H ′ = {(x′)pm |x′ ∈ G′} be subgroups of G and G′

respectively. Since G and G′ are isomorphic, H and H ′ are isomorphic (see Exercise 4.54.5). Since
nt > m = ht , assume that nr > m ≥ nr+1 for some r ≥ t. Since G is direct product of Ai’s, we
get

H =C1 ×·· ·×Ct ×·· ·×Cr,

where Cr =
(
ai

pm)
is cyclic of order pni−m. Thus, the invariants of H are n1−m, n2−m, . . . ,nr−

m and the number of invariants is r ≥ t. Similarly since ht−1 > m ≥ ht and since G′ is direct
product of B′

i’s, we get
H ′ = D′

1 ×·· ·×D′
t−1,

where D′
i =

(
(b′i)

pm)
is cyclic of order phi−m. Thus, the invariants of H ′ are h1 −m, h2 −

m, . . . ,ht−1 −m and the number of invariants is t −1.
But as H and H ′ are isomorphic, they must have the same number of invariants. Thus r ≥ t

is not possible and hence nt ̸= ht is not possible. This implies there does not exists i such that
ni ̸= hi, i.e. ni = hi for all i. □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

As an immediate consequence of the above theorem, we have

Theorem 4.2.12

The number of non-isomorphic abelian groups of order pn, where p is prime, equals p(n),
i.e. the number of partitions of n.

Proof. From the definition of invariants, it is clear (as remarked earlier) that a given set of
invariants gives a partition of n.

On the other hand, let n1 ≥ ·· · ≥ nk > 0, n = n1 + · · ·+nk be a partition of n. Then let Ai be
the cyclic group of order pni and G = A1 ×·· ·×Ak. Then G is an abelian group of order pn

with invariants n1, . . . ,nk. Thus, a partition of n gives a group G of order pn having the same
invariants as in the partition.

Finally by above theorem we know that two different partitions of n (i.e. two different
set of invariants) give rise to non-isomorphic groups of order pn. Hence, the number of
non-isomorphic abelian groups of order pn is equal to the number of partitions of n. □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Remarks 4.2.13.

1. Notice that the number of non-isomorphic abelian groups of order pn depends only on
the exponent n and not the prime p. For instance, the number of non-isomorphic abelian
groups of order 24, 34 or 54 is same, i.e. p(4) = 5 (as 4 = 4,3+1,2+2,2+1+1,1+
1+1+1).

However, this is not the case with 44 as 4 is not a prime. But 44 = (22)4 = 28. Thus, the
number of non-isomorphic abelian groups of order 44 is p(8) = 22.

2. Since every finite abelian group is a direct product of its Sylow subgroups, we can say
that two finite abelian groups are isomorphic if and only if their corresponding Sylow
subgroups are isomorphic. Finally, we have the following Corollary.

Dr. Jay Mehta jay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edu

mailto:jay_mehta@spuvvn.edu
jay_mehta@spuvvn.edu
jay_mehta@spuvvn.edu


96 Exercises

Corollary 4.2.14

The number of non-isomorphic abelian groups of order n = p1
α1 · · · pr

αr , where pi are
distinct primes and each αi > 0, is p(n) = p(α1)p(α2) · · · p(αr).

Exercises

Exercise 4.1
Show that G is isomorphic to the direct product of its Sylow subgroups.

Exercise 4.2
Give an example of a group G and normal subgroups N1, . . . ,Nn such that G = N1 · · ·Nn and

Ni ∩N j = {e} for i ̸= j but G is not the internal direct product of N1, . . . ,Nn.

Exercise 4.3
Prove that G is the internal direct product of the normal subgroups N1, . . . ,Nn if and only if

1. G = N1 · · ·Nn.
2. Ni ∩ (N1N2 · · ·Ni−1Ni+1 · · ·Nn) = {e} for i = 1,2, . . . ,n.

Exercise 4.4
If G is an abelian group of order pn, p a prime and n1 ≥ n2 ≥ ·· · ≥ nk > 0, are the invariants

of G, then show that the maximal order of any element in G is pn1 .

Exercise 4.5
Let G and G′ be two abelian groups of order pn and s be a positive integer. Let H = {xs |x ∈ G}
and H ′ = {(x′)s |x′ ∈ G′} be subgroups of G and G′ respectively. If G and G′ are isomorphic
then show that H and H ′ are isomorphic.

Exercise 4.6
Prove that if a finite abelian group has subgroups of order m and n respectively, then it has a

subgroup of order equal to least common multiple of m and n. [Hint: Use Theorem 4.2.34.2.3].

Exercise 4.7
Describe all the finite abelian groups of order

1. 26. 2. 116. 3. 75. 4. 24 ·34.
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Exercise 4.8
Show how to obtain all abelian groups of order 23 ·34 ·5.

Exercise 4.9
Let G is an abelian group of order pn with invariants n1 ≥ ·· · ≥ nk > 0 and H ̸= {e} is a

subgroup of G. Show that if h1 ≥ ·· · ≥ hs > 0 are invariants of H, then k ≥ s and hi ≤ ni for
each i = 1,2, . . . ,s.
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