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Preface and Acknowledgments

This lecture note of the course “Number Theory and Cryptography” offered to the M.Sc.
(Semester - III and Semester IV) students at Department of Mathematics, Sardar Patel University,
2023-24 is aimed to provide a reading material to the students, in addition to the references
mentioned in the university syllabus, so as to save time of the teacher and the students in
writing on the board and copying in the notebooks, respectively. These notes are tailor-made
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(Semester-III/IV) of the University and do not cover all the topics of Cryptography.

This note is prepared from the recommended reference books, and it is not the original
work of the author. We mostly followed the text book by “An Introduction to Mathematical
Cryptography” by J. Hoffstein, J. Pipher, and J. H. Silverman.

This is the first version of the note on Cryptography. We have strictly followed the text
in our syllabus and except a few examples, all the examples are taken from the book. Since
most of the examples, in this course, have very large numerical values, it requires computer
programming or calculator to compute the values and solve them. In the subsequent revisions,
we will try to frame new examples and exercises for which computations can be done easily
using calculators if not by hand. We also request the students and the readers to create their
own examples which can be easily computed and understood instead of using large values.

Most of the exercises were separately given to students as seminars and assignments and are
not included here. Students are advised and encouraged to solve more and more exercises from
the reference book(s). There may be a few errors/typos in this reading material. The students
and interested readers are welcomed to give their valuable suggestions, comments or point out
errors, if and whenever, they find any.

Finally, for the students who are also studying a course in computer programming, it would
be good to write (python) programs for the algorithms and cryptosystems discussed in this
course for computational purpose and for practice.

JAY MEHTA

Date: June 13, 2023
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Number Theory and Discrete Log Problem

1.1 Simple substitution ciphers

As Julius Caesar was surveying a battle from his hilltop post, he received a courier containing
the following gibberish message:
j s j r d k f q q n s l g f h p g w j f p y m w t z l m n r r n s j s y q z h n z x

Reading this message, Julius realised that there was a temporary gap in the formation of
opponent’s troops and to take this opportunity he immediately sent his troops there. How did
such gibberish junk text convey such an important message to Caesar?

In cryptography, plaintext is the text in English or our language in original readable form
and ciphertext is the gibberish junk text which is not readable to others easily. The process of
converting plaintext to ciphertext is called encryption and the process of converting ciphertext
to get back the plaintext is called decryption.

Julius Caesar shifted each letter in the message, i.e., in the ciphertext by five letters up the
alphabet. For example, j is shifted to e in the plaintext as e is followed in the alphabet by f, g,
h, i, j. Applying this procedure to the entire ciphertext, we get

j s j r d k f q q n s l g f h p g w j f p y m w t z l m n r r n s j s y q z h n z x
e n e m y f a l l i n g b a c k b r e a k t h r o u g h i m m i n e n t l u c i u s

The second line is the decrypted plaintext on which applying proper punctuation, we read
the plaintext message as

Enemy falling back. Breakthrough imminent. Lucius.

How to address the letter d in the ciphertext? There is no letter appearing five letters before
d in the alphabet. To answer this, we must wrap around to the end of the alphabet. Thus, d is
replaced by y as y is followed by z, a, b, c, d. This wrap-around effect can be seen by placing
the alphabet around a circle. The plaintext is placed on the outer wheel and is written while the
ciphertext alphabet are written in the inner wheel which is rotated by 5 as shown in the figure
below. The ciphertext is written in capital letters to distinguish it from the plaintext. To decrypt
a letter, simply find it on the inner wheel and read the the corresponding plaintext letter from
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10 §1.1. Simple substitution ciphers

the outer wheel. Similarly, to encrypt a letter, find that letter in the outer plaintext wheel and
look for the corresponding ciphertext letter in the inner wheel.

A
B

C
D E F G H

I

J
K

L
M

N
O

P
QRSTU

V

W
X

Y
Z

a b c
d

e
f

g
h

i
j

k
l

mnop
q

r
s

t
u

v
w

x
y z

Figure 1.1: A cipher wheel with an offset of five letters

Although it is unlikely that Romans would be communicating in modern English back then
but it is believed that Julius Caesar employed this early method of cryptography which is called
the Caesar cipher. It is sometimes also called the shift cipher since each letter in the alphabet is
either shifted up or down.

Cryptography is the methodology of concealing (hiding or keeping secret) the content of
messages. It has Greek origin and comes from the two Greek words kryptos which means
hidden and graphikos which means writing. The modern study of cryptography is also known
as cryptology.

In a basic communication scenario, there are two parties, Alice and Bob who wants to
communicate with each other. A third party Eve is a potential eavesdropper, a villain. In the
Caesar cipher, each letter is replaced by one specific substitute letter. However, if Bob encrypts
a message for Alice using Caesar cipher and if the encrypted message is accessible to Eve, then
it will take very little time for Eve to decrypt it as there are only 26 possible shifts.

Bob can make the encryption better by using more complicated replacement scheme which
makes the message harder to attack or reveal. For example, he could replace every occurrence
of a by z and every occurrence of y by b, and so on. This is an example of a substitution cipher
in which every letter is replaced by another letter (or a symbol). Caesar cipher is an example of
a simple substitution cipher. A substitution cipher may be considered as a rule or a function

{a, b, c, d, . . ., x, y, z} −→ {A, B, C, D, . . ., X, Y, Z}

assigning each plaintext letter in the domain to a different ciphertext letter in the range. Note

PS03EMTH55 2023-24



§1.1. Simple substitution ciphers 11

that, for the decryption to work, the encryption function must have the property that no two
plaintext letters go to the same ciphertext letter. A function with this property is called a one-one
function or an injective function.

A convenient way to describe the encryption function is to create a table by writing the
plaintext alphabet in the top row and putting each ciphertext letter below the corresponding
plaintext letter.

Example 1.1.1. A simple substitution encryption table is given below. The ciphertext alphabet
is a randomly chosen permutation of 26 letters.

a b c d e f g h i j k l m n o p q r s t u v w x y z
C I S Q V N F O W A X M T G U H P B K L R E Y D Z J

Table 1.1: Simple substitution encryption table

Let us encrypt the plaintext

Four score and seven years ago.

Look up plaintext letter in the encryption table and write the corresponding ciphertext letter
below.

f o u r s c o r e a n d s e v e n y e a r s a g o
N U R B K S U B V C G Q K V E V G Z V C B K C F U

It is then customary to write the ciphertet in five-letter blocks:

NURBK SUBVC GQKVE VGZVC BKCFU.

Decryption is a similar process. Suppose that we received the message

SCRKV WMUEV ZURNU BWGNW GWLZ

which we know was encrypted using Table 1.11.1. We can decrypt it by reversing the encryption
process, i.e., by finding each ciphertext in the second row of Table 1.11.1 and writing down the
corresponding letter from the top row. Since all the letters in the second row of the table are
mixed up and not in order, this process of decryption is somewhat inefficient. Hence, it is better
to make a decryption table in which ciphertext letters are in the lower row and are listed in the
alphabetical order and the corresponding plaintext letters written in the upper row are mixed up.
See the table below.

j r a x v g n p b z s t l f h q d u c m o e i k w y
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Table 1.2: Simple substitution decryption table

Using Table 1.21.2, we can easily decrypt the message as below.
S C R K V W M U E V Z U R N U B W G N W G W L Z
c a u s e i l o v e y o u f o r i n f i n i t y

Putting in the appropriate word breaks and punctuations, we get our plaintext as follows.

Cause I love you for infinity.

Dr. Jay Mehta jay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edu

mailto:jay_mehta@spuvvn.edu
jay_mehta@spuvvn.edu
jay_mehta@spuvvn.edu


12 §1.2. Divisibility and greatest common divisors

■

We skip the cryptanalysis of the substitution cipher in this note as it is beyond the scope of
our syllabus. We next move to some number theory part for now. Some of the topics in this
chapter is just a revision of basic number theory studied in school or college level.

1.2 Divisibility and greatest common divisors

Definition 1.2.1

Let a and b be integers b ̸= 0. We say that b divides a, or that a is divisible by b, if there is
an integer c such that

a = bc.

We denote by b | a to indicate that b divides a. We denote by b ∤ a to indicate that b does
not divide a.

Example 1.2.2. We have 847 | 485331 as 485331 = 847 ·573. On the other hand 355 ∤ 259943
as when we divide 259943 by 355, we get a remainder of 83, i.e., 259943 = 355 ·732+83. ■

Remark 1.2.3. Note that every integer is divisible by 1. The integers that are divisible by 2 are
called the even integers, and the integers that are not divisible by 2 are called the odd integers.

Every integer a ̸= 0 is divisible by itself.

There are many properties of divisibility. Some are listed in the following proposition, the
proof of which is left as an exercise for students as it is elementary.

Proposition 1.2.4

Let a,b,c ∈ Z be integers.
(a) If a | b and b | c, then a | c.
(b) If a | b and b | a, then a =±b.
(c) If a | b and a | c, then a | (b+ c) and a | (b− c).

In fact, given any integers x and y, a | (bx+ cy). In other words, if a divides b and c,
then it divides any integer linear combination of them.

Proof. Left as an exercise. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Definition 1.2.5: GCD

A common divisor of two integers a and b is a positive integer d that divides both a and b.
The greatest common divisor of a and b is the largest positive integer d such that d | a and
d | b. The greatest common divisor of a and b is denoted by gcd(a,b) or sometimes just
by (a,b).

That is d = gcd(a,b) if

PS03EMTH55 2023-24



§1.2. Divisibility and greatest common divisors 13

1. d | a and d | b.
2. If c | a and c | b, then c≤ d.

Example 1.2.6. The greatest common divisor of 12 and 18 is 6, since 6 | 12 and 6 | 18 and
there is no larger number with this property. Similarly,

gcd(748,2024) = 44.

One way to check whether this is correct or not is to list all the positive divisors of 748 and
2044.
Divisors of 748 = {1,2,4,11,17,22,34,44,68,187,374,748}.
Divisors of 2024 = {1,2,4,8,11,22,23,44,46,88,92,184,253,506,1012,2024}.

From the above two lists, we can see that the greatest common divisor is 44. However, it is
clear that this is not an efficient method to compute the GCD. Division with remainder called
the long division is the key to compute the GCD efficiently. For example,

13

17
)
230
17
60
51

9

So 230 when divided by 17 gives a quotient of 13 with a remainder 9. It means 230 can be
written as

230 = 17 ·13+9,

where the remainder 9 is strictly smaller than the divisor 17. ■

We state the result below known as the division algorithm and leave the proof as exercise.

Definition 1.2.7: Division Algorithm

Let a and b be positive integers. Then a divided by b has quotient q and remainder r means
that

a = b ·q+ r with 0≤ r < b.

The values of q and r are uniquely determined by a and b.

Exercise 1.1
Given integers a and b, with b > 0, show that there exists unique integers q and r satisfying

a = qb+ r, 0≤ r < b.

Dr. Jay Mehta jay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edu

mailto:jay_mehta@spuvvn.edu
jay_mehta@spuvvn.edu
jay_mehta@spuvvn.edu


14 §1.2. Divisibility and greatest common divisors

Exercise 1.2
Using above exercise prove the following.

If a and b are integers, with b ̸= 0, then there exists unique integers q and r satisfying

a = qb+ r, 0≤ r < |b|.

Suppose we want to find the greatest common divisor of a and b. First we divide a by b to
get

a = b ·q+ r with 0≤ r < b. (1.1)

Note that if d | a and d | b, then d | a−bq, i.e., d | r. Thus, if d is a common divisor of a and
b, then d is a common divisor of b and r. On the other hand, if e is a common divisor of b and
r, then from equation (1.11.1), it follows that e | a. Thus, a common divisor of b and r is also a
common divisor of a and b. Hence,

gcd(a,b) = gcd(b,r).

We repeat the process, dividing b by r to get quotient q′ and remainder r′ to get

b = r ·q′+ r′ with 0≤ r′ < r.

By the reason same as above, we have

gcd(b,r) = gcd(r,r′).

Continuing this process, the remainders become smaller and smaller, until eventually we get
remainder 0 at which the final value gcd(s,0) = s is equal to gcd(a,b).

We illustrate this process first with an example before describing the general method known
as the Euclidean Algorithm.

Example 1.2.8. We compute gcd(748,2044) using the Euclidean algorithm, which is nothing
but repeated application of the division algorithm. Notice how the quotient and remainder at
each step become the new a and b on the subsequent step.

2024 = 748 ·2+ 528
748 = 528 ·1+ 220
528 = 220 ·2+ 88

220 = 88 ·2+ 44 ← gcd = 44

88 = 44 ·2+ 0

■

Theorem 1.2.9: The Euclidean Algorithm

Let a and b be positive integers with a≥ b. The following algorithm computes gcd(a,b)
in a finite number of steps.

(1) Let r0 = a and r1 = b.

(2) Set i = 1.

PS03EMTH55 2023-24
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(3) Divide ri−1 by ri to get a quotient qi and remainder ri+1,

ri−1 = ri ·qi + ri+1 with 0≤ ri+1 < ri.

(4) If the remainder ri+1 = 0, then ri = gcd(a,b) and the algorithm terminates.

(5) Otherwise, ri+1 > 0, so set i = i+1 and go to Step 3.

The division step (Step 3) is executed at most

2 log2(b)+1 times.

Proof. The Euclidean algorithm consists of a sequence of divisions with remainders as shown
in the below. We have set r0 = a and r1 = b.

a = b ·q1 + r2 with 0≤ r2 < b,
b = r2 ·q2 + r3 with 0≤ r3 < r2,

r2 = r3 ·q2 + r4 with 0≤ r4 < r3,

r3 = r4 ·q2 + r5 with 0≤ r5 < r4,

...
...

...
rt−2 = rt−1 ·qt−1 + rt with 0≤ rt < rt−1,

rt−1 = rt ·qt

Then rt = gcd(a,b).

Figure 1.2: The Euclidean algorithm step by step

The ri values are strictly decreasing and as soon as they reach zero, the algorithm terminates.
This proves that the algorithm finishes in a finite number of steps. Further, at the Step 3, we
have an equation of the form

ri−1 = ri ·qi + ri+1.

This equation implies that any common divisor of ri−1 and ri is also a divisor of ri+1 and
similarly any common divisor of ri and ri+1 is also a divisor of ri−1. Hence,

gcd(ri−1,ri) = gcd(ri,ri+1) for all i = 1,2,3, . . . . (1.2)

However, eventually we get to an ri that is zero, say rt+1 = 0. Then rt−1 = rt ·qt . So

gcd(rt−1,rt) = gcd(rt ·qt ,rt) = rt .

But by equation (1.21.2), gcd(rt−1,rt) = gcd(r0,r1) = gcd(a,b). This completes the proof that
the last nonzero remainder in the Euclidean algorithm is equal to the greatest common divisor
of a and b.

Now, we estimate the efficiency of the algorithm. As remarked earlier, since the values ri are
strictly decreasing, the algorithm terminates. Since r1 = b, it terminates in at most b steps.

Dr. Jay Mehta jay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edu

mailto:jay_mehta@spuvvn.edu
jay_mehta@spuvvn.edu
jay_mehta@spuvvn.edu


16 §1.2. Divisibility and greatest common divisors

However, this is not an efficient bound. We claim that after every two iterations in Step 3, the
value of remainder is at least cut in half. That is:

Claim. ri+2 <
1
2ri for all i = 0,1,2, . . ..

We prove the claim by considering two cases.
Case I: ri+1 ≤ 1

2ri
Since the values of ri are strictly decreasing,

ri+2 < ri+1 ≤
1
2

ri.

Case II: ri+1 >
1
2ri Since the value of ri+1 is so large, when we divide ri by ri+1, we get quotient

as 1 and remainder ri+2 to write

ri = ri+1 ·1+ ri+2 with ri+2 = ri− ri+1 <
1
2

ri.

Hence, we have proved our claim that is ri+2 <
1
2ri for all i. Using this inequality repeatedly,

we get

r2k+1 <
1
2

r2k−1 <
1
4

r2k−3 <
1
8

r2k−5 < · · ·<
1
2k r1 =

1
2k b.

Hence if 2k ≥ b, then r2k+1 < 1 which forces r2k+1 equal to 0 and the algorithm to terminate.
In terms of Figure 1.21.2, the value of rt+1 is 0, so we have t + 1 ≤ 2k + 1 and thus t ≤ 2k.
Furthermore, there are exactly t division performed in Figure 1.21.2, so the Euclidean algorithm
terminates in at most 2k iterations. Choose the smallest such k, so 2k ≥ b > 2k−1.
Then (k− 1) log2 < logb ≤ k log2. Dividing by log2, we get k− 1 <

log10 b
log10 2 < k. Then by

change of base, we have k−1 < log2 b < k. Therefore,

# of iterations ≤ 2k = 2(k−1)+2 < 2log2(b)+2.

Thus, the number of divisions (at Step 3) is executed at most 2 log2(b)+1 times. This completes
the proof of the theorem. □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Remark 1.2.10. We proved that the Euclidean algorithm applied to a and b with a≥ b requires
at most 2 log2(b)+1 iterations to compute gcd(a,b). It has been proved that this estimate was
improved to 1.45log2(b)+1.68 iterations.

From the Euclidean algorithm applied on a and b, we can work our way back up the process
to obtain an interesting formula involving a, b, and gcd(a,b). Let us first illustrate it with the
following example before coming to the general result.

Example 1.2.11. Recall the Euclidean algorithm in Example 1.2.81.2.8 to compute gcd(2024,748).

2024 = 748 ·2+ 528
748 = 528 ·1+ 220
528 = 220 ·2+ 88

220 = 88 ·2+ 44 ← gcd = 44

88 = 44 ·2+ 0

PS03EMTH55 2023-24
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We let a = 2024 and b = 748. Then from the first step of the algorithm, we get

528 = a−2b.

We substitute this in the second line to get

b = (a−2b) ·1+220, so 220 =−a+3b.

Next we substitute the expressions 528 = a−2b and 220 =−a+3b into the third line to get

a−2b = (−a+3b) ·2+88, so 88 = 3a−8b.

Finally, we substitute the expressions 220 =−a+3b and 88 = 3a−8b into the last line to get

−a+3b = (3a−8b) ·2+44, so 44 =−7a+19b.

In other words,
−7 ·2024+19 ·748 = 44 = gcd(2024,748).

Thus, we have found a way to write gcd(a,b) as an integer linear combination of a and b using
the integer coefficients. ■

In general, gcd(a,b) can be written as an integer linear combination of a and b. We have the
following result called the Extended Euclidean Algorithm. It is also called Bezout’s identity
(the first part of the result) and it has many important consequences.

Theorem 1.2.12: Extended Euclidean Algorithm

Let a and b be positive integers. Then the equation

au+bv = gcd(a,b)

always has a solution in integers u and v.
If (u0,v0) is any one solution, then every solution has the form

u = u0 +
b · k

gcd(a,b)
and v = v0−

a · k
gcd(a,b)

for some k ∈ Z.

Proof. Recall Figure 1.21.2 which illustrates the Euclidean algorithm step by step. From the fist
step, we get r2 = a−b ·q1. Substituting this in the second line we get

b = (a−b ·q1) ·q2 + r3, so r3 =−a ·q2 +b · (1+q1q2).

Next substitute the expression for r2 and r3 into the third line to get

a−b ·q1 = (−a ·q2 +b(1+q1q2))q3 + r4.

After rearranging the terms, we get

r4 = a · (1+q2q3)−b · (q1 +q3 +q1q2q3).
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18 §1.2. Divisibility and greatest common divisors

Thus, r4 = a ·u+b · v, where u and v are integers. Continuing this way, at each stage we find
that ri is the sum of an integer multiple of a and an integer multiple of b. Eventually, we get

rt = a ·u+b · v.

But rt = gcd(a,b). This completes the proof of the first part.

The proof of the second part is left as a seminar exercise. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

A particular and important case of the extended Euclidean algorithm arises when the greatest
common divisor of a and b in 1. In this case, a and b are given a special name.

Definition 1.2.13

Let a and b be integers. We say that a and b are relatively prime if gcd(a,b) = 1.

Note that any equation of the form

Au+Bv = gcd(A,B)

can be reduced to the case of relatively prime numbers by dividing both sided by gcd(A,B).
Thus,

A
gcd(A,B)

u+
B

gcd(A,B)
v = 1,

where a = A/gcd(A,B) and b = B/gcd(A,B) are relatively prime and satisfying au+bv = 1.
For example, gcd(2024,748) = 44 satisfying

−7 ·2024+19 ·748 = 44.

Dividing both the sides by 44, we get

−7 ·46+19 ·17 = 1.

Thus, 2024
44 = 46 and 748

44 = 17 are relatively prime numbers with u = −7 and v = 19 as
coefficients of their integer linear combination which is equal to 1.

Exercise 1.3
Let a and b be positive integers.

(a) Suppose that there are integers u and v satisfying au+bv = 1. Prove that gcd(a,b) = 1.

(b) Suppose that there are integers u and v satisfying au+bv = 6. Is it necessarily true that
gcd(a,b) = 6? If not, give a specific counterexample, and describe in general all of the
possible values of gcd(a,b).

(c) Suppose that (u1,v2) and (u2,v2) are two solutions in integers to the equation au+bv = 1.
Prove that a divides v2− v1 and b divides u2−u1.

(d) More generally, let g = gcd(a,b) and let (u0,v0) be a solution in integers to au+bv = g.
Prove that every other solution has the form u = u0 + kb/g and v = v0− ka/g for some
integer k. (This is the second part of Theorem 1.2.121.2.12.)
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Just as in Example 1.2.81.2.8, by means of an example, we describe another algorithm to compute
the coefficients of the integer linear combinations of a and b in the case when gcd(a,b) = 1.

Example 1.2.14. Take a = 73 and b = 25. The Euclidean algorithm gives

73 = 25 ·2+ 23
25 = 23 ·1+ 2
23 = 2 ·11+ 1
2 = 1 ·2+ 0.

We set up a box, using the sequence of quotients 2,1,11, and 2 as follows:

2 1 11 2
0 1 ∗ ∗ ∗ ∗
1 0 ∗ ∗ ∗ ∗

The rule to fill in the remaining entries in as follows:

New Entry = (Number of Top) · (Number to the Left)
+ (Number Two Spaces to the Left).

Thus, the two leftmost ∗’s (in the third column) are

2 ·1+0 = 2 and 2 ·0+1 = 1,

so now our box looks as follows:

2 1 11 2
0 1 2 ∗ ∗ ∗
1 0 1 ∗ ∗ ∗

Then the next two leftmost ∗’s (in the fourth column) are

1 ·2+1 = 3 and 1 ·1+0 = 1,

and then the next column entries are

11 ·3+2 = 35 and 11 ·1+1 = 12,

and the final entries are

2 ·35+3 = 73 and 2 ·12+1 = 25.

The completed box becomes

2 1 11 2
0 1 2 3 35 73
1 0 1 1 12 25
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20 §1.3. Modular arithmetic

Note that the last column repeats the values of a and b. More importantly, the next to last
column gives the values of −v and u in that order. Thus, in the example, we find that

73 ·12−25 ·35 = 1.

■

The general algorithm of the above example is given in Figure 1.21.2.

If a and b are relatively prime and if q1,q2, . . . ,qt is the sequence of quotients obtained
from applying the Euclidean algorithm to a and b (as in Figure 1.21.2), then the box has the
following form.

q1 q2 · · · qt−1 qt
0 1 P1 P2 · · · Pt−1 a
1 0 Q1 Q2 · · · Qt−1 b

The entries in the box are calculated using the initial values

P1 = q1, Q1 = 1, P2 = q2 ·P1 +1, Q2 = q2 ·Q1,

and then, for i≥ 3, using the formulas

Pi = qi ·Pi−1 +Pi−2 and Qi = qi ·Qi−1 +Qi−2.

The final four entries in the box satisfy (How?)

a ·Qt−1−b ·Pt−1 = (−1)t .

Multiplying both sides by (−1)t gives the solution u = (−1)tQt−1 and v = (−1)t+1Pt−1
to the equation au+bv = 1.

Figure 1.3: Solving au+bv = 1 using the Euclidean algorithm

1.3 Modular arithmetic

Definition 1.3.1

Let m≥ 1 be an integer. We say that the integers a and b are congruent modulo m if their
difference a−b is divisible by m, i.e., m | a−b. We denote it by

a≡ b (mod m).

The number m is called the modulus.

Example 1.3.2. We have

17≡ 7 (mod 5), since 5 divides 10 = 17−7.
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On the other hand,

19 ̸≡ 6 (mod 11), since 11 does not divide 13 = 16−6.

We convert the time/hours in our digital clock using congruences modulo 12 as

6+9 = 15≡ 3 (mod 12) and 2−3 =−1≡ 11 (mod 12).

■

Note the numbers satisfying a≡ 0 (mod m) are the numbers that are divisible by m, i.e., the
multiples of m.
The following result states some of the properties of congruences which indicates that congru-
ences behave like equalities.

Proposition 1.3.3

Let m≥ 1 be an integer.

(a) If a1 ≡ a2 (mod m) and b1 ≡ b2 (mod m), then

a1±b1 ≡ a2±b2 (mod m) and a1 ·b1 ≡ a2 ·b2 (mod m).

(b) Let a be an integer. Then

a ·b≡ 1 (mod m) for some integer b if and only if gcd(a,m) = 1.

Further if a ·b1 ≡ a ·b2 ≡ 1 (mod m), then b1 ≡ b2 (mod m). We say that b is the
(multiplicative) inverse of a modulo m. (We say “the” inverse instead of “an” inverse,
because any two inverses are congruent modulo m.)

Proof. (a) Seminar exercise.

(b) First assume that gcd(a,m) = 1. Then by the Extended Euclidean algorithm, there exists
integers u and v such that au+mv = 1. Then au−1 =−mv. Then au−1 is divisible by
m. So by the definition of congruence, au−1≡ 0 (mod m) or au≡ 1 (mod m). Thus,
we can take b = u.

Conversely, assume that a has an inverse modulo m, say b. That is, a ·b≡ 1 (mod m).
This means that ab−1 = cm for some integer c. Then ab− cm = 1. Let d = gcd(a,m).
Then d | a and d | m. Then d | ab− cm, i.e., d | 1. Since d is a positive integer, d = 1.
Thus, gcd(a,m) = 1.

It remains to show that the inverse b is unique modulo m. Suppose that a ·b1 ≡ a ·b2 ≡ 1
(mod m). Then

b1 ≡ b1 ·1≡ b1 · (a ·b2)≡ (b1 ·a) ·b2 ≡ 1 ·b2 ≡ b2 (mod m).

□
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

By Proposition 1.3.31.3.3 (b)(b), if gcd(a,m) = 1, then there exists an inverse b of a modulo m. Thus,
a−1 = 1

a makes sense the in integers modulo m. In face, a−1 is the unique integer b modulo m
satisfying the congruence a ·b≡ 1 (mod m).
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22 §1.3. Modular arithmetic

Example 1.3.4. Take m = 5 and a = 2. Since gcd(2,5) = 1, there exists inverse of 2 modulo
5. The inverse of 2 modulo 5 is 3, since 2 ·3 ≡ 1 (mod 5). So 2−1 ≡ 3 (mod 5). Similarly,
gcd(4,15) = 1 and so 4−1 exists modulo 15. In fact, 4 · 4 ≡ 1 (mod 15), i.e., 4 is its own
inverse modulo 15.
We can also work with fractions a

d modulo m provided that the denominator is relatively prime
to m. For example, we can compute 5/7 modulo 11. Observe that 7 ·8≡ 1 (mod 11) and so
7−1 ≡ 8 (mod 11). Then

5
7
= 5 ·7−1 ≡ 5 ·8≡ 40≡ 7 (mod 11).

■

Remark 1.3.5. In the above example, we computed the inverse modulo m by trial and error
method. However, if m is large, then computing a−1 modulo m can be more challenging. Note
that we showed that inverses exists by using the extended Euclidean algorithm. But in order to
actually determine integers u and v such that au+mv = gcd(a,m), we can apply the Euclidean
algorithm or we can use the more efficient box method.
If a divided by m has quotient q and remainder r, then it can be written as

a = m ·q+ r with 0≤ r < m.

This show that a≡ r (mod m) for some integer r between 0 and m−1. Thus, if we work with
integers modulo m then it enough to use the integers 0 ≤ r < m and we have the following
definition.

Definition 1.3.6

We write
Z/mZ= {0,1,2, . . . ,m−1}

and call Z/mZ the ring of integers modulo m.
Note that whenever we perform addition or multiplication in the ring Z/mZ, we divide the
result by m and take the remainder to obtain an element in Z/mZ.

Figure 1.41.4 illustrates the ring Z/5Z by giving the addition and multiplications tables modulo 5.

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Figure 1.4: Addition and multiplication tables modulo 5
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Definition 1.3.7

Proposition 1.3.31.3.3 (b)(b) tells that a has an inverse modulo m if and only if gcd(a,m) = 1.
Numbers that have inverses are called units. We denote the set of all units by

(Z/mZ)∗ = {a ∈ Z/mZ : gcd(a,m) = 1}
= {a ∈ Z/mZ : a has an inverse modulo m}.

The set (Z/mZ)∗ is called the group of units modulo m.

Note that if a1 and a2 are units modulo m, then a1a2 is also a unit (Why?). So when we multiple
two units, we always get a unit. However, this is not true with addition. That is, if we add two
units, then we often do not get a unit.

Example 1.3.8. The group of units modulo 24 is

(Z/24Z)∗ = {1,5,7,11,13,17,19,23}.

The multiplication table for (Z/24Z)∗ is shown in Figure 1.51.5. ■

Example 1.3.9. The group of units modulo 7 is

(Z/7Z)∗ = {1,2,3,4,5,6},

since every number between 1 and 6 is relatively prime to 7. The multiplication table for
(Z/7Z)∗ is shown in Figure 1.51.5. ■

· 1 5 7 11 13 17 19 23
1 1 5 7 11 13 17 19 23
5 5 1 11 7 17 13 23 19
7 7 11 1 5 19 23 13 17

11 11 7 5 1 23 19 17 13
13 13 17 19 23 1 5 7 11
17 17 13 23 19 5 1 11 7
19 19 23 13 17 7 11 1 5
23 23 19 17 13 11 7 5 1

Unit groups modulo 24

· 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

Unit groups modulo 7

Figure 1.5: The unit groups (Z/24Z)∗ and (Z/7Z)∗
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24 §1.3. Modular arithmetic

The number of elements in the unit group modulo m is very important in many of the cryptosys-
tems that we will study. Therefore this quantity is important and so we give it a name in the
following definition.

Definition 1.3.10

Euler’s phi function also sometimes known as Euler’s totient function is the function φ(m)
defined by the rule

φ(m) = #(Z/mZ)∗ = #{0≤ a < m : gcd(a,m) = 1}.

For example, as seen in Examples 1.3.81.3.8 and 1.3.91.3.9, we have φ(24) = 8 and φ(7) = 6.

1.3.1 Modular Arithmetic and Shift Ciphers
Recall that the Caesar (or shift) cipher works by shifting each letter in the alphabet by a fixed
number of letters. We describe a shift cipher mathematically by assigning a number to each
letter as in Table 1.31.3.

a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Table 1.3: Assigning numbers to letters

Then a shift cipher with shift k takes a plaintext letter corresponding to number p and assigns
it to the ciphertext letter corresponding to the number p+ k mod 26. Note that the use of
modular arithmetic simplifies the description of the shift cipher. The shift amount serves as
both the encryption and the decryption key. Encryption is given by the formula

(Ciphertext Letter) ≡ (Plaintext Letter) + (Secret Key) (mod 26),

and the decryption works by shifting in the opposite direction.

(Plaintext Letter) ≡ (Ciphertext Letter) - (Secret Key) (mod 26).

If we take

p = Plaintext Letter, c = Ciphertext Letter, k = Secret Key,

then
c≡ p+ k (mod 26)︸ ︷︷ ︸

Encryption

and p≡ c− k (mod 26)︸ ︷︷ ︸
Decryption

.

1.3.2 The Fast Powering Algorithm
In certain cryptosystems like RSA and Diffie-Hellman cryptosystems, Alice and Bob are
required to compute large powers of some number g modulo some other number N, where N
may have hundreds of digits. The naive way to compute gA is by repeated multiplication of g.
That is

g1 ≡ g (mod N), g2 ≡ g ·g1 (mod N), g3 ≡ g ·g2 (mod N),
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g4 ≡ g ·g3 (mod N), g5 ≡ g ·g4 (mod N), . . . .

It is clear that gA ≡ gA (mod N). But if A is large, then this algorithm is impractical to
implement. Thus, we need a better way to compute gA (mod N). The idea is to use the binary
expansion of the exponent A to convert the calculation of gA into a succession of squarings and
multiplications. Before we describe the method, consider the following example for a better
idea and understanding.

Example 1.3.11. Compute 3218 (mod 1000). ■

Solution. The fist step is to write 218 are a sum of powers of 2.

2 218
2 109 0
2 54 1 21

2 27 0
2 13 1 23

2 6 1 24

2 3 0
2 1 1 26

2 0 1 ↑ 27

Thus, 218 = (11011010)2 and so we can write

218 = 2+23 +24 +26 +27.

Then 2218 becomes

3218 = 32+23+24+26+27
= 32 ·323

·324
·326
·327

. (1.3)

Note that it is relatively easy to compute the sequence of values

3,32,322
,323

,324
, . . . ,

since each number in the sequence is the square of the preceding one. Further, since we only
need these values modulo 1000, we need not store more than the last three digits. Table 1.41.4 lists
all the powers of 3 modulo 1000 upto 327

. It requires only 7 multiplications although 327
= 3128

is a very large exponent. This is because each successive entry in the table is equal to the square
of the previous entry.

i 0 1 2 3 4 5 6 7
32i

(mod 1000) 3 9 81 561 721 841 281 961

Table 1.4: Successive square powers of 3 modulo 1000

We use expression (1.31.3) to determine which powers from Table 1.41.4 are needed to compute 3218.
Thus,

3218 = 32 ·323
·324
·326
·327

≡ 9 ·561 ·721 ·281 ·961 (mod 1000)
≡ 489 (mod 1000).

□
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Note that in computing the product 9 ·561 ·721 ·281 ·961, after each multiplication we reduce it
to modulo 100 so that we never have to deal with very large numbers. Also note that it took us
only 11 multiplications to compute 3218 (mod 1000) which is very much efficient as compared
to the naive method.
The method described in Example 1.3.111.3.11 is known as the Fast Powering Algorithm and the
Square-and-Multiply Algorithm. We now describe the algorithm formally as follows.

The Fast Powering Algorithm

Step 1. Compute the binary expansion of A as

A = A0 +A1 ·2+A2 ·22 +A3 ·23 + · · ·+Ar ·2r with A0, . . . ,Ar ∈ {0,1},

where we may assume that Ar = 1.

Step 2. Compute the powers g2i
(mod N) for 0≤ i≤ r by successive squaring,

a0 ≡ g (mod N)

a1 ≡ a2
0 ≡ g2 (mod N)

a2 ≡ a2
1 ≡ g22

(mod N)

a3 ≡ a2
2 ≡ g23

(mod N)

... ≡ ...
...

ar ≡ a2
r−1 ≡ g2r

(mod N).

Each term is the square of the previous one, so this requires r multiplications.

Step 3. Compute gA (mod N) using the formula

gA = gA0+A1·2+A2·22+A3·23+···+Ar·2r

= aA0 · (g2)A1 ·
(
g22)A2 ·

(
g23)A3 · · ·

(
g2r)Ar

≡ aA0
0 ·a

A1
1 ·a

A2
2 ·a

A3
3 · · ·a

Ar
r (mod N). (1.4)

Note that the quantities a0,a1, . . . ,ar were computed in Step 2. Thus, the product (1.41.4)
can be computed by looking up the values of the ai’s whose exponent Ai is 1 and then
multiplying them together. This requires at most another r multiplications.

Running Time. It takes at most 2r multiplications modulo N to compute gA. Since A≥ 2r, we
see that it takes at most 2 log2(A) multiplications modulo N to compute gA. Thus, even
if A is very large, say A≈ 21000, it is easy for a computer to do the approximately 2000
multiplications needed to compute 2A modulo N.

Efficiency Issues. There are various ways in which the square-and-multiply algorithm can be
made somewhat more efficient, in particular regarding eliminating storage requirements.
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1.4 Prime numbers, unique factorization, and finite fields

We have seen that we can add, subtract, and multiply integers modulo m. However, division
by a is possible in Z/mZ only if gcd(a,m) = 1. But if m is prime, then we can divide by every
nonzero element of Z/mZ.

Definition 1.4.1

An integer p is called a prime if p≥ 2 and if the only positive integers dividing p are 1
and p.

For example, the first ten primes are 2,3,5,7,11,13,17,19,23,29, while the thousand-th prime
is 7919 and the million-th prime is 15485863. The fact that there are infinitely many primes
was known in ancient Greece and appears as a theorem in Euclid’s Elements.
A number greater 1 is called composite if it is not a prime. A prime p is defined in terms of
numbers that divide p. The following proposition gives a useful property of primes.

Proposition 1.4.2

Let p be a prime number, and suppose that p divides the product ab of two integers a and
b. Then p divides at least one of a and b.
More generally, if p divides a product of integers, say

p | a1a2 · · ·an,

then p divides at least one of the individual ai.

Proof. If p | a, then we are done. If p ∤ a, then gcd(a, p) = 1. Then by the extended Euclidean
algorithm (Theorem 1.2.121.2.12), there exist integers u and v such that au+ pv = 1. Multiplying
both sides of the equation by b, we get

abu+ pbv = b. (1.5)

By our assumption p | ab. Also p | pbv. So p divides both the terms on the left hand side of
equation (1.51.5). Hence, it divides the right hand side, i.e., p | b.
Now we prove the general statement. Let p | a1a2 · · ·an. We write the product as a1(a2 · · ·an)
and let a = a1 and b = a2 · · ·an. Then by the above argument, p | a1 or p | a2 · · ·an. If p | a1,
then we are done. If p | a2 · · ·an, then write the product as a2(a3 · · ·an). Again by the above
argument, p | a2 or p | a3 · · ·an. Continuing in this way, we eventually find some ai such that
p | ai. □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Note that the above proposition is not true for the composite numbers. For example, 6 | 3 ·10
but neither 6 divides 3 nor 6 divides 10.
As an application of Proposition 1.4.21.4.2, we prove that every integer greater than 1 can be
essentially uniquely expressed as a product of primes.
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Theorem 1.4.3: The Fundamental Theorem of Arithmetic

Let a≥ 2 be an integer. Then a can be factored as a product of prime numbers

a = pe1
1 · p

e2
2 · p

e3
2 · · · p

er
r .

Further, other than rearranging the order of primes, this factorization into prime powers is
unique.

Proof. Prove (as an exercise) that every a≥ 2 can be written as a product of primes.

We prove the uniqueness. Suppose a has two factorizations into product of primes, say,

a = p1 p2 · · · ps = q1q2 · · ·qt , (1.6)

where pi and q j are all primes, not necessarily distinct, and without the loss of generality assume
s≤ t. Since p1 | a, p1 divides the product q1q2 · · ·qt . Since p1 is prime (by Proposition 1.4.21.4.2),
p1 divides qi for some i. Rearranging the order of the qi if necessary, we may assume that
p1 | q1. Since p1 and q1 are both prime, we must have p1 = q1. Cancelling them from both the
sides in equation (1.61.6), we get

p2 p3 · · · ps = q2q3 · · ·qt .

Repeating this process s times, we get the equation of the form

1 = qt−sqt−s+1 · · ·qt .

Since q j’s are primes, this is not possible. Hence, it follows that t = s and that t = s and the
factorizations of a in (1.61.6) were identical up to rearranging the order of the factors. □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Definition 1.4.4

The fundamental theorem of arithmetic (Theorem 1.4.31.4.3) says that in the factorization of
positive integer a into primes, each prime p appears to a particular power. We denote this
power by ordp(a) and call it the order (or exponent) of p in a.
For convenience, we set ordp(1) = 0 for all primes.

For example, the factorization of 1728 is 1728 = 26 ·33, so ord2(1728) = 6, ord3(1728) = 3,
and ordp(1728) = 0 for all primes p≥ 5.
Using the ordp notation, the factorization of a can be written as

a = ∏
primes p

pord
p (a).

Note that the product makes sense (that is, it is finite) since ordp(a) is zero for all but finitely
many primes.
It is useful to view ordp as a function

ordp : {1,2,3, . . .}→ {0,1,2,3, . . .}. (1.7)

Now we prove that if p is a prime, then every nonzero number modulo p has an inverse.
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Proposition 1.4.5

Let p be a prime. Then every nonzero element a in Z/pZ has a multiplicative inverse, that
is, there is a number b satisfying

ab≡ 1 (mod p).

We denote this value of b by a−1 mod p, or if p has already been specified, then simply
by a−1.

Proof. This proposition is a special case of Proposition 1.3.31.3.3 (b)(b) where the modulus m is the
prime p, since if a ∈ Z/pZ is nonzero, then gcd(a, p) = 1.
Then by Proposition 1.3.31.3.3 (b)(b), it has an inverse (modulo p). □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

The above proposition can be restated by saying that if p is prime, then

(Z/pZ)∗ = {1,2,3, . . . , p−1}.

In other words, all nonzero elements in (Z/pZ) are units and when 0 is removed from (Z/pZ),
then the remaining elements are closed under multiplication.

Remark 1.4.6. The extended Euclidean algorithm gives us an efficient computational method
to compute a−1 mod p. We simply solve the equation

au+ pv = 1

in integers u and v, and then u = a−1 mod p.

Definition 1.4.7

If p is prime, then the set Z/pZ of integers modulo p with its addition, subtraction,
multiplication, and division rules is an example of a field.
The field Z/pZ of integers modulo p has only finitely many elements. It is a finite field
and is often denoted by Fp. Thus, Fp and Z/pZ denote the same object. Similarly, we
denote by F∗p, the group of units (Z/pZ)∗.

Although Z/pZ and Fp are used to denote the same object, the equality of elements is different
in both of them. For a,b ∈ Fp, they are equal if a = b, while for a,b ∈ Z/pZ, by equality of a
and b we mean equivalence modulo p, i.e., a≡ b (mod p).

1.5 Powers and Primitive Roots in Finite Fields
In cryptography, it is often required to raise the elements of the finite field Fp to high powers.
We have seen how to do this using the powering algorithm described in an earlier section. In
this section, we investigate powers of Fp from a purely mathematical point of view. We prove a
fundamental result due to Fermat and state and important property of the group of units in F∗p.
We begin with an example. The following table lists the powers of 1,2,3, . . . ,6 modulo 7.
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11 ≡ 1 12 ≡ 1 13 ≡ 1 14 ≡ 1 15 ≡ 1 16 ≡ 1
21 ≡ 2 22 ≡ 4 23 ≡ 1 24 ≡ 2 25 ≡ 4 26 ≡ 1
31 ≡ 3 32 ≡ 2 33 ≡ 6 34 ≡ 4 35 ≡ 5 36 ≡ 1
41 ≡ 4 42 ≡ 2 43 ≡ 1 44 ≡ 4 45 ≡ 2 46 ≡ 1
51 ≡ 5 52 ≡ 4 53 ≡ 6 54 ≡ 2 55 ≡ 3 56 ≡ 1
61 ≡ 6 62 ≡ 1 63 ≡ 6 64 ≡ 1 65 ≡ 6 66 ≡ 1

Table 1.5: Powers of numbers modulo 7

From the above table, we can observe an interesting pattern in its last column. We have

a6 ≡ 1 (mod 7) for every a = 1,2, . . . ,6.

However, this is true only if a is not a multiple of 7 because if 7 divides a, then a≡ 0 (mod 7).
Then for all the powers n of a, we have an ≡ 0 (mod 7). Hence, we have

a6 ≡
{

1 (mod 7) if 7 ∤ a,
0 (mod 7) if 7 | a.

Theorem 1.5.1: Fermat’s Little Theorem

Let p be a prime number and a be any integer. Then

ap−1 ≡
{

1 (mod p) if p ∤ a,
0 (mod p) if p | a.

Proof. If p divides a, then a ≡ 0 (mod p). Then for all the powers n of a, we have an ≡ 0
(mod p). So let us assume that p ∤ a. Consider the following list of numbers.

a, 2a, 3a, . . . , (p−1)a reduced modulo p. (1.8)

Claim. All the p−1 numbers in the above list are distinct.
Suppose if possible ja≡ ka (mod p) for some j and k with 1≤ j,k ≤ p−1. Without the loss
of generality, we may assume that j ≥ k. Then

( j− k)a≡ 0 (mod p).

Thus, p | ( j− k)a. Since p is prime, p | j− k or p | a. But by our assumption p ∤ a. Therefore,
p | j− k. Since 1≤ j,k ≤ p−1 and j ≥ k, we have 0≤ j− k ≤ p−2. Since p | j− k, the only
possibility is j− k = 0. This means j = k and that all the numbers in the list (1.81.8) are distinct.
Further, they are all nonzero as p does not divide 1,2, . . . , p−1 and a.
Since there are p−1 distinct nonzero numbers modulo p in the list 1.81.8, we have

{a,2a, . . . ,(p−1)a}= {1,2, . . . , p−1}.

Thus, multiplying all the numbers in (1.81.8), we get

a ·2a ·3a · · ·(p−1)a≡ 1 · ·2 ·3 · · ·(p−1) (mod p).

This gives ap−1(p−1)!≡ (p−1)! (mod p). Since p ∤ (p−1)!, it has an inverse in Fp. Hence,
cancelling (p−1)! from both the sides, we get

ap−1 ≡ 1 (mod p).

This completes the proof of the Fermat’s little theorem. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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There are many proofs of the Fermat’s little theorem. One using group theory is the quickest
by observing that the set of nonzero elements of Fp forms a group F∗p of order p−1. So by
Lagrange’s theorem, order of every element of F∗p divides p−1.

Example 1.5.2. The number p = 15485863 is prime, so by Fermat’s little theorem

215485862 ≡ 1 (mod 15485863).

Thus without doing any computing, we know that the number 215485862− 1 is a multiple of
15485863 even though it might have more than two million digits. ■

Remark 1.5.3. If p ∤ a, then by the Fermat’s little theorem,

ap−1 ≡ 1 (mod p).

Since a is nonzero modulo p, its inverse a−1 exists modulo p. Multiplying by a−1 on both the
sides, we get

a−1 ≡ ap−2 (mod p).

By the fast factoring algorithm seen earlier we can compute ap−2. Thus we have a reasonably
efficient method to compute inverses modulo p.

Example 1.5.4. We compute the inverse of 7814 modulo 17449 in two ways. First,

7814−1 ≡ 781417447 ≡ 1284 (mod 17449).

Second, we use the extended Euclidean algorithm to solve

7814u+17449v = 1.

The solution is (u,v) = (1284,−575). So 7814−1 ≡ 1284 (mod 17449). ■

Example 1.5.5. Consider the number m = 15485207. Using the powering algorithm and
computer, we get

2m−1 = 215485206 ≡ 4136685 (mod 15485207).

If m were prime, then by Fermat’s little theorem, we must have 2m−1 ≡ 1 (mod m). But instead
of 1 we got 4136685. This tells us that m = 15485207 is not a prime (even without knowing its
factors). ■

By Fermat’s little theorem, if a is an integer and p ∤ a, then ap−1 ≡ 1 (mod p). However, for
some a, there may be smaller powers (smaller than p−1) that are congruent to 1. We define
this as the order of a modulo p.

Definition 1.5.6

Let a be an integer and p be a prime such that p ∤ a. The order of a modulo p is the smallest
exponent (or smallest power) k ≥ 1 such that

ak ≡ 1 (mod p).
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Proposition 1.5.7

Let p be a prime and let a be an integer not divisible by p. Suppose that an ≡ 1 (mod p).
Then the order of a modulo p divides n. In particular, the order of a divides p−1.

Proof. Let k be the order of a modulo p. Then by the definition, k is the smallest exponent such
that ak ≡ 1 (mod p). We are given an ≡ 1 (mod p). Dividing n by k, we get

n = kq+ r with 0≤ r < k.

Then
1≡ an ≡ akq+r ≡

(
ak)q ·ar ≡ 1q ·ar ≡ ar (mod p).

But r < k and k is the smallest positive power such that ak ≡ 1 (mod p). Thus, r = 0 and so
n = kq. Hence, k | n.
Finally, by the Fermat’s little theorem, ap−1 ≡ 1 (mod p). Then k divides p−1. □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Theorem 1.5.8: Primitive Root Theorem

Let p be a prime number. Then there exists an element g ∈ F∗p whose powers give every
element of F∗p, i.e.,

F∗p = {1,g,g2,g3, . . . ,gp−2}.

Proof. Exercise. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Definition 1.5.9

Let p be a prime. An element g ∈ F∗p is called a primitive root modulo p or a primitive
root of Fp or generator of F∗p if

{

g0

q
1
q

gp−1

,g,g2,g3, . . . ,gp−2}= F∗p.

Primitive roots are the elements of F∗p having order p−1.

Example 1.5.10. 2 is a primitive root in the field F11 as

20 = 1 21 = 2 22 = 4 23 = 8 24 = 5
25 = 10 26 = 9 27 = 7 28 = 3 29 = 6.

Thus, all the 10 nonzero elements of F11 are generated by the power of 2. However, 2 is not a
primitive root in F17 as
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20 = 1 21 = 2 22 = 4 23 = 8 24 = 16
25 = 15 26 = 13 27 = 9 28 = 1.

Note that we got back to 1 before obtaining all the 16 nonzero values modulo 17. It turns out
that 3 is a primitive root for 17 since

30 = 1 31 = 3 32 = 9 33 = 10 34 = 13 35 = 5
36 = 15 37 = 11 38 = 16 39 = 14 310 = 8 311 = 7
312 = 4 313 = 12 314 = 2 315 = 6.

■

Remark 1.5.11. If p is large, then the finite field Fp has many primitive roots. The precise
number of primitive roots in Fp is φ(p−1), where φ is the Euler’s phi function. For example,
one can check that

{2,3,8,10,11,14,15,18,19,21,26,27}

is the complete list of primitive roots in F29 and it agrees with the formula φ(28) = 12.
More generally, if k | p−1, then there are exactly φ(k) elements of F∗p having order k.

1.6 The Discrete Logarithm Problem
The discrete logarithm problem is a mathematical problem which is very important in cryptog-
raphy. It arises in many settings, for example in modulo p setting which is described in this
section and there is an elliptic curve version also.
Let p be a large prime. By the primitive root theorem (Theorem 1.5.81.5.8), there is a primitive root
g in the field Fp. Hence, every nonzero element of Fp is equal to some power of g. In particular,
by Fermat’s little theorem, gp−1 = 1 and no smaller positive power of g is equal to 1. Thus,

1,g,g2,g3, . . . ,gp−2 ∈ F∗p

is a complete list of elements in F∗p.

Definition 1.6.1: The Discrete Logarithm Problem (DLP)

Let g be a primitive root for Fp and let h be a nonzero element of Fp. The Discrete
Logarithm Problem (DLP) is the problem of finding an exponent x such that

gx ≡ h (mod p).

The number x is called the discrete logarithm of h to the base g and is denoted by logg(h).

Remark 1.6.2. The discrete logarithm problem is a well-posed problem. It is the problem
of finding a power x of g such that gx = h. However, if there is one solution, then there are
infinitely many solutions. By Fermat’s little theorem, gp−1 ≡ 1 (mod p). Hence, if x is a
solution of gx = h, then x+ k(p−1) is also a solution for every k, because

gx+k(p−1) = gx ·
(
gp−1)k ≡ h ·1k ≡ h (mod p).
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Thus, logg(h) is defined only up to adding or subtracting multiples of p−1, i.e., modulo p−1.
In other words, logg(h) is defined modulo p−1 and therefore sometimes we refer to it as “the”
discrete logarithm for the integer x between 0 and p−2 satisfying gx ≡ h (mod p).
It is not difficult to verify that logg gives a well-defined function

logg : F∗p→
Z

(p−1)Z
. (1.9)

Remark 1.6.3. Note that in the above definition of the discrete logarithm problem, we used
a primitive root g in Fp. This is not strictly necessary. One can define the discrete logarithm
problem for any g ∈ F∗p and for any h ∈ F∗p.
More generally, instead of taking nonzero elements of a finite field Fp and raising them to
powers or multiplying them, we can take elements of any group and use the group law instead
of multiplication. This leads to a more general form of the discrete logarithm problem.

Definition 1.6.4: DLP for group

Let G be a group with binary operation (group law) ∗. The Discrete Logarithm Problem
for G is to determine, for any two given elements g and h in G, an integer x satisfying

g∗g∗g∗ · · · ∗g︸ ︷︷ ︸
x times

= h.
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Discrete Logarithm Problem based Cryptosys-
tems

2.1 Diffie-Hellman Key Exchange

The Diffie-Hellman key exchange algorithm solves the following problem.
Alice and Bob want to share a secret key for use in a symmetric cipher, but their only means of
communication is insecure. Every information they exchange is observed by their adversary,
an eavesdropper, Eve. How is it possible for Alice to share a key with Bob without making it
available to Eve?

At first look, this seems to be an impossible task but the solution to this problem is provided by
Diffie and Hellman using the difficulty of the discrete logarithm problem for F∗p.

The first step is for Alice and Bob to agree on a large prime p and a nonzero integer g modulo
p. Alice and Bob make the values of p and g public, for example, they might post these values
on their websites. So it is accessible and known to everyone including Eve. For security and
other reasons, it is best if the value of g is chosen such that its order in F∗p is a large prime.

The next step for Alice is to pick a secret integer a that she does not reveal to anyone. At the
same time Bob picks his secret integer b. Alice and Bob use their secret integers to compute

A≡ ga (mod p)︸ ︷︷ ︸
Alice computes this

and B≡ gb (mod p)︸ ︷︷ ︸
Bob computes this

.

Next, they exchange these computed values, i.e., Alice sends A to Bob and Bob sends B to
Alice. Note that Eve gets to see the values of A and B, since they are sent over an insecure
channel of communication.
Finally, Alice and Bob again use their secret integers to compute

A′ ≡ Ba (mod p)︸ ︷︷ ︸
Alice computes this

and B′ ≡ Ab (mod p)︸ ︷︷ ︸
Bob computes this

.
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The values A′ and B′ that they compute are actually the same since

A′ ≡ Ba ≡
(
gb)a ≡ gab ≡

(
ga)b ≡ Ab ≡ B′ (mod p).

This common value is their exchanged key. The Diffie-Hellman key exchange algorithm is
summarized in Table 2.12.1

Public parameter creation
A trusted party chooses and publishes a (large) prime p
and an integer g having large prime order in F∗p

Private computations
Alice Bob

Choose a secret integer a.
Compute A≡ ga (mod p).

Choose a secret integer b.
Compute B≡ gb (mod p).

Public exchange of values
Alice sends A to Bob −−−−−−−−−−−−−−→ A
B ←−−−−−−−−−−−−−− Bob sends B to Alice

Further private computations
Alice Bob

Compute the number Ba (mod p). Compute the number Ab (mod p).
The shared secret value is Ba ≡

(
gb)a ≡ gab ≡

(
ga)b ≡ Ab (mod p).

Table 2.1: Diffie-Hellman key exchange

Example 2.1.1. Alice and Bob agree to use the prime p = 941 and the primitive root g = 627.
Alice chooses the secret key a = 347 and computes A = 390≡ 627347 (mod 941). Similarly,
Bob chooses the secret key b = 781 and computes B = 691≡ 627781 (mod 941).
Alice sends Bob the number 390 and Bob sends Alice the number 691. Both of these trans-
missions are done over an insecure or open channel, so both A = 390 and B = 691 should be
considered as public knowledge. The numbers a = 347 and b = 781 are not transmitted and
remain secret. Then Alice and Bob are both able to compute the number

470≡ 627347·781 ≡ Ab ≡ Ba (mod 941),

and so 470 is their shared secret.
Suppose that Eve sees this entire exchange. She can obtain Alice’s and Bob’s shared secret if
she can solve either of the congruences

627a ≡ 390 (mod 941) or 627b ≡ 691 (mod 941),

since then she will know one of their secret exponents. So far it is known that this is the only
way for Eve to find the secret shared value without the assistance of Alice or Bob. ■

In this example, the numbers are too small and they do not offer Alice and Bob any real security
as Eve’s computer will take a very little time to check all the possible powers of 627 modulo
941. Current guidelines suggest that Alice and Bob choose a prime p having approximately
1000 bits (that is p ≈ 21000) and an element g whose order is prime and approximately p/2.
Then Eve will face a truly difficult task.
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In general Eve’s dilemma is that she knows the values of A and B and so she knows the values
of ga and gb. She also knows the values of g and p. So if she can solve DLP, then she can find
a and b, after which it is easy for her to compute the shared secret key gab or Alice and Bob.
Thus, it seems that Alice and Bob are safe provided that Eve is unable to solve DLP. However,
this is not the case. The security of Alice’s and Bob’s shared secret key rests on the difficulty of
the following problem which is potentially easier than DLP.

Definition 2.1.2: The Diffie-Hellman Problem (DHP)

Let p be a prime number and g be an integer. The Diffie-Hellman Problem (DHP) is the
problem of computing the value of gab (mod p) from the known values of ga (mod p)
and gb (mod p).

If is clear that DHP is no harder than the DLP. If Eve can solve the DLP, then she can compute
Alice and Bob’s secret exponents a and b from the intercepted values A = ga and B = gb, and
then it is easy for her to compute their shared secret key gab. (In fact, Eve needs to compute only
one of a and b.) However, the converse is not known. That is, suppose Eve has an algorithm
that efficiently solves the DHP, then whether she can efficiently solve DLP or not is not known.

2.2 The Elgamal Public Key Cryptosystem
In the previous section, we saw the Diffie-Hellman key exchange algorithm which pro-
vides a method of sharing a secret key publicly. However, it does not achieve the full
goal of being a public key cryptosystem, since a cryptosystem permits exchange of
specific information, not just a random string of bits. The first natural development of
a public key cryptosystem after Diffie-Hellman is a system developed by Taher Elgamal in 1985.

For the Elgamal PKC, Alice needs a large prime number p for which the discrete logarithm
problem in F∗p is hard. She also needs an element g modulo p. Alice can choose p and g herself
or they may be preselected or supplied by some trusted party like an industry or government
agency.
Alice chooses a secret number a as her private key. She then computes

A≡ ga (mod p).

Alice publishes her public key A and keeps her private key a secret to herself.
Now suppose Bob wants to encrypt a message using Alice’s public key A. We will assume that
Bob’s message m is an integer between 2 and p. To encrypt m, Bob randomly chooses another
number k modulo p. Bob chooses this k to encrypt one, and only one, message, and then Bob
discards it. The number k is called an ephemeral key, since it exists only for the purposes of
encrypting a single message.
Bob takes his plaintext message m, ephemeral key k, and Alice’s public key A and uses them to
compute the two quantities

c1 ≡ gk (mod p) and c2 ≡ mAk (mod p).

Note that g and p are public parameters and so Bob also knows their values. Bob’s ciphertext,
i.e., encryption of m, is the pair of numbers (c1,c2) which he sends to Alice.
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Now, Alice decrypts the message. Since Alice knows a, she can compute the quantity

x≡ ca
1 (mod p).

Then she computes x−1 (mod p) and multiplies it by c2 to get the plaintext m as follows:

x−1 · c2 ≡ (ca
1)
−1 · c2 (mod p), since x≡ ca

1 (mod p),

≡ (gak)−1 · (mAk) (mod p), since c1 ≡ gk,c2 ≡ mAk (mod p),

≡ (gak)−1 · (m(ga)k) (mod p), since A≡ ga (mod p),

≡ m (mod p), since the gak terms cancel out.

The Elgamal public key cryptosystem is summarized in Table 2.22.2.
Eve will try to decrypt the message in the following way.
Eve knows the public parameters p and g, and she also knows the value of A ≡ ga (mod p)
because Alice’s public key A is public knowledge. If Eve can solve the discrete logarithm
problem, then she can find a and decrypt the message. Otherwise it seems to be difficult for
Eve to find the plaintext.

Public parameter creation
A trusted party chooses and publishes a large prime p and an
element g modulo p of (large) prime order.

Alice Bob
Key creation

Choose private key 1≤ a≤ p−1.
Compute A = ga (mod p).
Publish the public key A.

Encryption
Choose plaintext m.
Choose random element k.
Use Alice’s public key A
to compute c1 = gk (mod p)
and c2 = mAk (mod p).
Send ciphertext (c1,c2) to Alice.

Decryption
Compute (ca

1)
−1 · c2 (mod p).

This quantity is equal to m.

Table 2.2: Elgamal key creation, encryption, and decryption

Example 2.2.1. Alice uses the prime p = 467 and the primitive root g = 2. She chooses
a = 153 to be her private key and computes her public key

A≡ ga ≡ 2153 ≡ 224 (mod 467).

Bob decides to send the message m = 331 to Alice. He chooses a random ephemeral key
k = 197, and he computes two numbers

c1 ≡ gk ≡ 2197 ≡ 87 (mod 467) and c2 ≡ mAk ≡ 331 ·224197 ≡ 57 (mod 467).
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Bob sends the ciphertext pair (c1,c2) = (87,57) to Alice. Using her secret key a = 153, Alice
computes

x≡ ca
1 ≡ 87153 ≡ 367 (mod 467), and then x−1 ≡ 14 (mod 467).

Finally, she computes
c2x−1 ≡ 57 ·14≡ 331 (mod 467)

and recovers the plaintext message m. ■

Remark 2.2.2. In the Elgamal cryptosystem, the plaintext is an integer m between 2 and p−1,
while the ciphertext consists of two integers c1 and c2 between 2 and p−1. Thus, in general,
it takes twice as many bits to write down the ciphertext as it does to write down plaintext.
Therefore, we say that Elgamal has a 2-to-1 message expansion.

The important question here is the following. Is Elgamal system as difficult as the Diffie-
Hellman? In other words, is Elgamal system as hard for Eve to attack as the Diffie-Hellman?
Or otherwise, unknowingly while giving a method of encrypting the messages, has the Elgamal
system created a back door that makes it easy to decrypt messages without solving the Diffie-
Hellman?
In modern cryptography, for any cryptosystem, one of the important goal is to identify the
underlying hard problem (for example Diffie-Hellman) and to prove that the cryptosystem is
at least as hard to attack as the underlying problem. In this case, we would like to prove that
anyone who can decrypt arbitrary ciphertexts created by Elgamal encryption can also solve the
Diffie-Hellman problem. More precisely, we have the following result.

Proposition 2.2.3

Fix a prime p and base g to use for the Elgamal encryption. Suppose that Eve has access
to an oracle that decrypts arbitrary Elgamal ciphertexts using arbitrary Elgamal public
keys. Then she can use the oracle to solve the Diffie-Hellman problem.

Proof. In the Diffie-Hellman problem, Eve is given the two values

A≡ ga (mod p) and B≡ gb (mod p),

and she is required to compute the value of gab (mod p). Note that Eve knows the values of
both A and B although she knows neither a nor b.
Now suppose Eve can consult an Elgamal oracle. This means that Eve can send the oracle a
prime p, a base g, a purported (not necessarily true) public key A, and a purported ciphertext
(c1,c2). From the Table 2.22.2, the oracle returns the quantity

(ca
1)
−1 · c2 (mod p)

to Eve. If Eve wants to solve the Diffie-Hellman problem, then she would choose c1 = B = gb

and c2 = 1 and send this input to the oracle. The oracle would return (gab)−1 (mod p), and
then Eve can take the inverse modulo p to get gab (mod p), thereby solving the Diffie-Hellman
problem.
Even if the oracle is smart and does not decrypt ciphertexts having c2 = 1, Eve can still fool the
oracle by sending it random-looking ciphertexts as follows.
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She chooses an arbitrary c2 and tells the oracle that the public key is A and that the cipher text
is (B,c2). The oracle returns to her the supposed plaintext m that satisfies

m≡ (ca
1)
−1 · c2 ≡ (Ba)−1 · c2 ≡ (gab)−1 · c2 (mod p).

After the oracle returns the value of m to Eve, she finds the value of gab by simply computing

m−1 · c2 ≡ gab (mod p).

Note that, with the help of oracle, although Eve has computed gab (mod p), she has done it
without knowing the value of a or b. Thus, she has solved only the Diffie-Hellman problem and
not the discrete logarithm problem. □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Conversely, show that access to a Diffie-Hellman oracle breaks the Elgamal PKC (see Exer-
cise 2.12.1).

Definition 2.2.4

An attack in which Eve has access to an oracle that decrypts arbitrary ciphertexts is known
as a chosen ciphertext attack.

Exercise 2.1
Suppose that Eve is able to solve the Diffie-Hellman problem, i.e., if Eve is given two powers
gu and gv mod p, then she is able to compute guv mod p. Show that Eve can break the
Elgamal PKC.
The above proposition shows that the Elgamal system is secure against the chosen ciphertext
attack. More precisely, it says that the Elgamal system is secure if one assumes that the
Diffie-Hellman problem is hard.

2.3 How hard is the discrete logarithm problem?
Let G be a group and g,h ∈ G. The discrete logarithm problem is the problem to determine
the exponent x such that gx = h. What do we mean by the difficulty or the hardness of this
problem? When do we say that this problem is “hard”? A natural measure of hardness of the
problem is the approximate number of operations necessary for a person or a computer to solve
the problem using the most efficient and currently known method.

Definition 2.3.1: Order Notation

Let f (x) and g(x) be functions of x taking values that are positive. We say that “ f is big-O
of g” and write

f (x) = O(g(x))

if there are positive constants c and C such that

f (x)≤ cg(x) for all x≥C.

In particular, we write f (x) = O(1) if f (x) is bounded for all x≥C.
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The following proposition gives a method that can be used to prove that f (x) = O(g(x)).

Proposition 2.3.2

If the limit

lim
x→∞

f (x)
g(x)

exits (and is finite), then f (x) = O(g(x)).

Proof. Let L be the limit. By definition of limit, for any ε > 0 there is a constant Cε such that∣∣∣∣ f (x)
g(x)
−L
∣∣∣∣< ε for all x >Cε .

Taking ε = 1, we get
f (x)
g(x)

< L+1 for all x >C1.

Therefore, f (x)< (L+1)g(x) for all x>C1. Hence by definition, f (x)=O(g(x)) with c= L+1
and C =C1. □
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Example 2.3.3. We have 2x3−3x2 +7 = O(x3) since

lim
x→∞

2x3−3x2 +7
x3 = 2.

Similarly, we have x2 = O(2x) since (by applying L’Hôpital’s rule twice)

lim
x→∞

x2

2x = 0.

Note that we can have f (x) = O(g(x)) even if the limit f (x)
g(x) does not exist. For example, the

limit

lim
x→∞

(x+2)cos2(x)
x

does not exist, but
(x+2)cos2(x) = O(x)

since (x+2)cos2(x)≤ x+2≤ 2x for all x≥ 2. ■

Exercise 2.2
Verify the following examples of the big-O notation.
(a) x2 +

√
x = O(x2).

(b) 5+6x2−37x5 = O(x5).
(c) k300 = O(2k).
(d) (lnk)375 = O(k0.001).
(e) k22k = O(e2k).
(f) N102N = O(eN).
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Suppose that we are trying to solve a certain type of mathematical problem, where the input to
the problem is a number whose size may vary. For example, consider the Integer Factorization
Problem whose input is a number N and whose output is a prime factor of N. We are interested
in knowing how long it takes to solve the problem in terms of the size of the input. Usually, the
size of the input is measured by the number of bits, since that is how much storage it will take
to record the input.

Definition 2.3.4

Suppose that there is a constant A ≥ 0, independent of the size of the input, such that
if the input is O(k) bits long, then it takes O(kA) steps to solve the problem. Then the
problem is said to be solvable in polynomial time. If we take A = 1, then the problem is
solvable in linear time, and if we take A = 2, then the problem is solvable in quadratic
time. Polynomial times algorithms are considered to be fast algorithms.

If there is a constant c > 0 such that for inputs of size O(k) bits, there is an algorithm
to solve the problem in O(eck) steps, then the problem is solvable in exponential time.
Exponential-time algorithms are considered to be slow algorithms.

Intermediate between polynomial-time algorithms and exponential-time algorithms are
subexponential-time algorithms. They have the property that for every ε > 0, they are
solvable in Oε(eεk) steps. This notation means that the constants c and C appearing in the
definition of the order notation are allowed to depend on ε .

As a general rule in cryptography, problems that are solvable in polynomial time are considered
to be “easy” while problems that are solvable in exponential-time are considered to be “hard”,
and problems with subexponential-time are considered lying in between. However, this is true
only when the variables are very large. Depending on the big-O constants and on the size of
input, an exponential problem may be easier than a polynomial problem. We understand these
concepts by considering the discrete logarithm problem in various groups.

Example 2.3.5. Consider the discrete logarithm problem gx = h in F∗p. If the prime p is chosen
between 2k and 2k+1, then g, h, and p all require at most k bits (binary digits), so the problem
can be stated in O(k)-bits. (Note that O(k) is same as O(log2 p).)
If we solve the DLP using trial-and-error method, then it takes O(p) steps to solve the problem.
Since O(p) = O(2k), this algorithm takes exponential time. ■

Example 2.3.6. Consider the discrete logarithm problem in the group Fp, where the group
operation is addition. The DLP in this context is finding a solution x to the congruence

x ·g≡ h (mod p),

where g and h are given elements of Z/pZ. We can solve this congruence using the extended
Euclidean algorithm to find g−1 (mod p) and then x≡ g−1 ·h (mod p). This takes O(p) steps.
So there is a linear-time algorithm to solve DLP in the additive group Fp. This is a very
fast algorithm. So the DLP in Fp with addition is not a good choice for one-way function in
cryptography.
The discrete logarithm problems in different groups may have different levels of difficulty
for finding their solution. In the last unit, we are going to see elliptic curves. If the elliptic
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curve group has N elements, then the best known algorithm to solve the elliptic curve discrete
logarithm problem (ECDLP) takes O(

√
N) steps. Thus, it currently takes exponential time to

solve ECDLP. ■

2.4 A Collision Algorithm for the DLP
In this section, we see a discrete logarithm algorithm due to Shanks which is an example of a
collision algorithm or meet-in-the-middle algorithm.

Proposition 2.4.1: Trivial Bound for DLP

Let G be a group and let g ∈ G be an element of order N. Then the discrete logarithm
problem

gx = h

can be solved in O(N) steps and O(1) storage, where each step consists of multiplication
by g.

Proof. We simply compute g, g2, g3, . . ., where each successive value is obtained by multiplying
the previous value by g. So we need to store only two values at a time. If a solution to gx = h
exists, then h will appear as a power of g before we reach gN .
Thus, it takes O(N) steps and O(1) storage to solve the DLP. □
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The idea behind a collision algorithm is to make two lists and look for an element that appears
in both the lists. For DLP, the running time (number of computer steps) of a collision algorithm
is a little more than O(

√
N) steps, which is a huge savings over O(N) if N is large.

Proposition 2.4.2: Shanks’s Babystep-Giantstep Algorithm

Let G be a group and let g ∈ G be an element of order N ≥ 2. The following algorithm
solves the discrete logarithm problem gx = h in O(

√
N · logN) steps using O(

√
N) storage.

(1) Let n = 1+ ⌊
√

N⌋, so in particular, n >
√

N.

(2) Create two lists,

List 1: e,g,g2,g3, . . . ,gn,

List 2: h,h ·g−n,h ·g−2n,h ·g−3n, . . . ,h ·g−n2
.

(3) Find a match between the two lists, say gi = hg− jn.

(4) Then x = i+ jn is a solution to gx = h.

Proof. We begin with some observations. First, when creating the List 2, we start by computing
the quantity u = g−n and then compile List 2 by computing h, h · u, h · u2, . . . ,h · un. Thus,
creating the two lists takes approximately 2n multiplications.
Second, assuming that a match exists, we can find a match in a small multiple of n log(n) steps
using the standard sorting and searching algorithm. So Step (3) takes O(n logn) steps. Hence
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the total running time for the algorithm is O(n logn) = O(
√

N logN). For the last step we have
used the fact that n≈

√
N and so

n logn≈
√

N log
√

N =
1
2

√
N logN.

Third, the lists in Step (2) have length n, so they require O(
√

N) storage.
To prove that the algorithm works, we have to show that Lists 1 and 2 always have a match. To
see this, let x be the unknown solution to gx = h and write x as

x = nq+ r with 0≤ r < n.

Since 1≤ x < N

q =
x− r

n
<

N
n
< n since n >

√
N.

Hence, we can rewrite the equation gx = h as

gr = h ·g−qn with 0≤ r < n and 0≤ q < n.

Thus, gr is in List 1 and h ·g−qn is in List 2, which shows that Lists 1 and 2 have a common
element. □
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Example 2.4.3. We illustrate Shanks’s babystep-giantstep method by using it to solve the
discrete logarithm problem

gx = h in F∗p with g = 3, h = 2, p = 17.

We know that the number 3 has order N = 16 (since 3 is a primitive root for F17) and so
n= ⌊

√
N⌋+1= ⌊

√
16⌋+1= 5. Then we compute u= g−n = 3−5. Note that 316≡ 1 (mod 17)

and so 311 = 316−5 ≡ 3−5 (mod 17). Therefore, u = 3−5 ≡ 311 ≡ 7 (mod 17). Then the two
lists are

List 1:
i 0 1 2 3 4 5

gi = 3i 1 3 9 27 13 5

List 2:
j 0 1 2

h · (g−n) j = 2 ·7 j 7 14 13
From the two lists we find the collision

34 ≡ 13≡ 2 · (3−5)2 ≡ 2 ·3−10 in F17.

This gives us 34 ·310 = 314 ≡ 2 (mod 17). ■

2.5 The Chinese Remainder Theorem
The Chinese remainder theorem gives the solution of a system of simultaneous linear congru-
ences. The simplest situation is a system of two linear congruences,

x≡ a (mod m) and x≡ b (mod n),

with gcd(m,n) = 1. The Chinese remainder theorem says that this system has a unique solution
modulo mn.
It was first recorded in a Chinese mathematical work in the late third or early fourth century
describing a problem of three simultaneous congruences as follows:
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We have a number of things, but we do not know exactly how many. If we
count them by threes, we have two left over. If we count them by fives, we
have three left over. If we count them by sevens, we have two left over. How
many things are there? [Sun Tzu Suan Ching (Master Sun’s Mathematical
Manual) circa 300 AD, volume 3, problem 26.]

The Chinese remainder theorem and its generalizations have many applications in number
theory and other areas of mathematics. In the next section, we will see how it is used to solve
some instances of the discrete logarithm problem. Before we state and prove the result, let us
try to understand it by an example of two simultaneous linear congruences.

Example 2.5.1. Find an integer x that simultaneously solves both of the following linear
congruences.

x≡ 1 (mod 5) and x≡ 9 (mod 11).

The set of solutions of the first congruence x≡ 1 (mod 5) are integers of the form

x = 1+5y, y ∈ Z. (2.1)

Substituting this value in the second congruence x≡ 9 (mod 11), we get

5y≡ 8 (mod 11). (2.2)

Multiplying both the sides of (2.22.2) by the inverse of 5 modulo 11. Note that the inverse exists
since gcd(5,11) = 1 (which can be computed using the extended Euclidean algorithm or the
box method). Since 5 ·9 = 45≡ 1 (mod 11), the inverse of 5 modulo 11 is 9. So multiplying
both sides of (2.22.2) by 9 we get

y≡ 9 ·8≡ 72≡ 6 (mod 11).

Substituting this value of y in equation (2.12.1), we get

x = 1+5 ·6 = 31

which is the solution to the given simultaneous system of two linear congruences. ■

The method described in the above example can be used to derive a general formula.

Theorem 2.5.2: Chinese Remainder Theorem

Let m1,m2, . . . ,mk be a collection of pairwise relatively prime integers. That is

gcd(mi,m j) = 1 for all i ̸= j.

Let a1,a2, . . . ,ak be arbitrary integers. Then the system of simultaneous congruences

x≡ a1 (mod m1), x≡ a2 (mod m2), . . . , x≡ ak (mod mk) (2.3)

has a solution x = c. Further, if x = c and x = c′ are both solutions, then

c≡ c′ (mod m1m2 · · ·mk). (2.4)
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Proof. Consider the first i simultaneous congruences. For i = 1, c1 = a1 is the solution of the
first congruence. Suppose that we have found a solution x = ci for the first i simultaneous
congruences

x≡ a1 (mod m1), x≡ a2 (mod m2), . . . , x≡ ai (mod mi). (2.5)

Then we find a solution to more more congruence, i.e., the simultaneous solution of the
following system

x≡ a1 (mod m1), x≡ a2 (mod m2), . . . , x≡ ai+1 (mod mi+1). (2.6)

Let x be of the form
x = ci +m1m2 · · ·miy.

Then clearly x satisfies all the i congruences in (2.52.5). So we need to find y such that it also
satisfies x≡ ai+1 (mod mi+1). In other words, we need to find a value of y satisfying

ci +m1m2 ·miy≡ ai+1 (mod mi+1).

Since gcd(mi+1,m1m2 ·mi) = 1, there exist integers u and v such that

mi+1u+m1m2 · · ·miv = 1.

Therefore, m1m2 · · ·miv≡ 1 (mod mi+1). Multiplying both sides by ai+1− ci, we get

m1m2 · · ·miv(ai+1− ci)≡ ai+1− ci (mod mi+1).

Therefore,
ci +m1m2 · · ·mi(v(ai+1− ci))≡ ai+1 (mod mi+1).

Taking y = v(ai+1− ci), we get the solution of the system of i+1 simultaneous linear congru-
ences in (2.62.6). This completes the proof of the existence of solution.
Now we show that if x = c and x = c′ are solutions to the system of simultaneous congruences
in (2.32.3), then c≡ c′ (mod m1m2 · · ·mk) (left as a seminar exercise). □
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Exercise 2.3

(a) Let a,b,c be positive integers and suppose that

a | c, b | c, and gcd(a,b) = 1.

Prove that ab | c.
(b) Let x = c and x = c′ be two solutions to the system of simultaneous congruences

x≡ a1 (mod m1), x≡ a2 (mod m2), . . . , x≡ ak (mod mk)

(in the Chinese remainder theorem). Prove that

c≡ c′ (mod m1m2 · · ·mk).

The proof of the Chinese remainder theorem can be converted into an algorithm for finding the
solution to a system of simultaneous congruences. We illustrate by the following example.

PS03EMTH55 2023-24



§2.5. The Chinese Remainder Theorem 47

Example 2.5.3. Solve the three simultaneous congruences

x≡ 2 (mod 3), x≡ 3 (mod 7), x≡ 4 (mod 16). (2.7)

■

Solution. The Chinese remainder theorem says that there is a unique solution modulo 336 =
3 ·7 ·16. Clearly, x = 2 is the solution to the first congruence x≡ 2 (mod 3). Then its general
solution x = 2+3y. Substituting it into the second congruence, we get

2+3y≡ 3 (mod 7).

This gives
3y≡ 1 (mod 7).

Since 3 ·5 = 15≡ 1 (mod 7), 5 is the inverse of 3. So multiplying both sides by 5 in the above
congruence, we get

y≡ 5 (mod 7).

This gives the value of x as
x = 2+3y = 2+3 ·5 = 17

as a solution to the first two congruences in (2.72.7) which is modulo 21 = 3 ·7. Thus, the general
form of the solution to the first two congruences is x = 17+21z. Substituting this value in the
third congruence x≡ 4 (mod 16), we get 17+21z≡ 4 (mod 16) which on simplifying gives

5z≡ 3 (mod 16).

Multiplying both sides by 13, which is the inverse of 5 modulo 16, we get

z≡ 3 ·13≡ 39≡ 7 (mod 16).

Finally substituting this value of z in x = 17+21z, we get the solution

x = 17+21 ·7 = 164.

All other solutions are obtained by adding and subtracting multiples of 336 to this particular
solution. □
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2.5.1 Solving Congruences with Composite Moduli
To solve a congruence with a composite modulus, we first solve several congruences modulo
primes (or prime powers) and then fit the solutions together using the Chinese remainder
theorem.
We discuss the problem of finding square roots modulo m. It is relatively easy to compute
square roots modulo a prime and for primes congruent to 3 modulo 4, it is extremely easy. This
is illustrated in the following proposition.

Proposition 2.5.4

Let p be a prime satisfying p≡ 3 (mod 4). Let a be an integer such that the congruence
x2 ≡ a (mod p) has a solution, i.e., such that a has a square root modulo p. Then

b≡ a(p+1)/4 (mod p)

is a solution, i.e., it satisfies b2 ≡ a (mod p).
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Proof. Let g be a primitive root modulo p. Then a is equal to some power of g. Since a has a
square root modulo p, it follows that a is equal to some even power of g, say a = g2k (mod p)
(see Exercise 2.42.4). Now we compute

b2 ≡ a
p+1

2 (mod p) definition of b,

≡
(
g2k) p+1

2 (mod p) since a≡ g2k (mod p),

≡ g(p+1)k (mod p)

≡ g2k+(p−1)k (mod p)

≡ a · (gp−1)k (mod p) since a≡ g2k (mod p),

≡ a (mod p) since gp−1 ≡ 1 (mod p).

Hence b is a square root of a modulo p. □
Dr. Jay Mehta,
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Note that the formula in the above proposition is valid only if a has a square root modulo p.

Exercise 2.4
Let p be an odd prime and let g be a primitive root modulo p. Prove that a has a square root
modulo p if and only if its discrete logarithm logg(a) modulo p−1 is even.

Example 2.5.5. A square root of a = 2201 modulo the prime p = 4127 is

b≡ a(p+1)/4 = 22014128/4 ≡ 22011032 ≡ 3718 (mod 4127).

To check that a has a square root modulo 4127, we compute b2 and check that

37182 = 13823524≡ 2201 (mod 4127).

■

Suppose that we want to compute a square root modulo m, where m is not necessarily a prime.
An efficient method is to factor m and compute square root modulo each of the prime (or prime
powers) factors, and then combine the solutions using the Chinese remainder theorem. See the
following example.

Example 2.5.6. We solve the congruence x2 ≡ 197 (mod 437).
The modulus 437 is factored as 437 = 19 ·23. So we first solve the two congruences

y2 ≡ 197≡ 7 (mod 19) and z2 ≡ 197≡ 13 (mod 23).

Since both 19 and 23 are congruent to 3 modulo 4, by above proposition (or by trial and error
method), we can find the square roots. We have

y≡±8 (mod 19) and z≡±6 (mod 23).

We can choose either 8 or−8 for y and either 6 or−6 for z. Choosing the two positive solutions
and using the Chinese remainder theorem to solve the simultaneous congruences

x≡ 8 (mod 19) and x≡ 6 (mod 23) (2.8)

we find that x≡ 236 (mod 437) is the desired solution. ■
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Remark 2.5.7. Note that the solution of above example is not unique. We can always take
negative solution

−236≡ 201 (mod 437)

to get a second square root of 197 modulo 437.
If the modulus is prime, then there are only two square roots (see Exercise 2.52.5). However, if
the modulus is composite, like 437 = 19 ·23, then there are two others. To find the other two
solutions, we replace 8 and 6 by their negatives in (2.82.8) in the above example. This gives us
x = 144 and x = 293. So 197 has four square roots modulo 437.

Exercise 2.5

(a) Let p be an odd prime and b be an integer with p ∤ b. Prove that either b has two square
roots modulo p or else b has no square roots modulo p. In other words, prove that the
congruence

X2 ≡ b (mod p)

has either two solutions or no solutions in Z/pZ. (What happens if p = 2? What happens
if p | b?)

(b) For each of the following values of p and b, find all the square roots of b modulo p.

(i) (p,b) = (7,2)

(ii) (p,b) = (11,5)

(iii) (p,b) = (11,7)

(iv) (p,b) = (37,3)

(c) How many square roots does 29 have modulo 35? Does this contradict the assertion in
(a)? Justify.

(d) Let p be an odd prime and let g be a primitive root modulo p. Then any number a is
equal to some power of g modulo p, say a≡ gk (mod p). Prove that a has a square root
modulo p if and only if k is even.

Remark 2.5.8. From the above example it is clear that it is relatively easy to compute square
roots modulo m if one knows how to factor m in to product of prime powers. However, if m is
so large that we are not able to factor it, then the problem to find square roots modulo m is very
difficult.
In fact, if m is a large composite number whose factorization is unknown, then it is a difficult
problem to determine whether a given number a has a square root modulo m, even without
requiring to compute the square roots. The Goldwasser-Micali public key cryptosystem is
based on the difficulty of identifying which numbers have square roots modulo m. The trapdoor
information is knowledge of the factors of m.
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2.6 The Pohlig-Hellman Algorithm
In the discrete logarithm problem, we need to solve the equation

gx ≡ h (mod p).

Recall that, as remarked earlier, if x is one solution, then x+ k(p− 1) is also a solution for
all k. So the solution x is determined only modulo p−1, i.e., we can think of the solution in
Z/(p−1)Z. This indicates that the factorization of p−1 into primes may play an important
role in the difficulty of the DLP in F∗p. In general, if G is a group and g ∈ G is an element of
order N, then solutions to gx = h in G are determined only modulo N. So the factorization of N
would appear to be relevant. This idea is the core of the Pohlig-Hellman algorithm.

Theorem 2.6.1: Pohlig-Hellman Algorithm

Let G be a group, and suppose that we have an algorithm to solve the discrete logarithm
problem in G for any element whose order is a power of a prime. To be concrete, if g ∈ G
has order qe, suppose that we can solve gx = h in O(Sqe) steps.
Now let g ∈ G be an element of order N, and suppose that N factors into a product of
prime powers as

N = qe1
1 ·q

e2
2 · · ·q

et
t .

Then the discrete logarithm problem gx = h can be solved in

O

(
t

∑
i=1

Sqei
i
+ logN

)
steps (2.9)

using the following procedure:

(1) For each 1≤ i≤ t, let

gi = gN/qei
i and hi = hN/qei

i .

Notice that gi has prime power order qei
i , so use the given algorithm to solve the

discrete logarithm problem
gy

i = hi. (2.10)

Let y = yi be a solution to (2.102.10).

(2) Use the Chinese remainder theorem to solve

x≡ y1 (mod qe1
1 ), x≡ y2 (mod qe2

2 ), . . . , x≡ yt (mod qet
t ). (2.11)

Proof. The running time is clear, since for each i, 1 ≤ i ≤ t in Step (1) it takes O(Sqei
i
) steps

and Step (2), by the Chinese remainder theorem, takes O(logN) steps. Hence, the total running
time is

O(∑Sqei
i
+ logN).

Now we show that Step (1) and Step (2) gives a solution to gx = h. Let x be a solution to the
system of congruences (2.112.11). Then for each i we have

x = yi +qei
i zi for some zi. (2.12)
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Then we can compute

(gx)N/qei
i = (gyi+qei

i zi)N/qei
i from (2.122.12)

= (gN/qei
i )yi ·gNzi

= (gN/qei
i )yi since gN is the identity element,

= gyi
i by the definition of gi,

= hi from (2.102.10)

= hN/qei
i by the definition of hi.

In terms of the discrete logarithms to the base g, we can rewrite this as

N
qei

i
· x≡ N

qei
i
· logg(h) (mod N). (2.13)

Now, observe that the numbers
N
qe1

1
,

N
qe2

2
, . . . ,

N
qet

t

have no nontrivial common factor, i.e., their greatest common divisor is 1. By a repeated
application of the extended Euclidean algorithm (see Exercise 2.62.6), we can find integers
c1,c2, . . . ,ct such that

N
qe1

1
· c1 +

N
qe2

2
· c2 + · · ·+

N
qet

t
· ct = 1. (2.14)

Multiplying both sides of equation (2.132.13) by ci and taking the sum over i = 1,2, . . . , t, we get

t

∑
i=1

N
qei

i
· ci · x≡

t

∑
i=1

N
qei

i
· ci · logg(h) (mod N).

By (2.142.14), we have
x = logg(h) (mod N).

This completes the proof that x satisfies gx = h. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Exercise 2.6
Let a1,a2, . . . ,ak be integers with gcd(a1,a2, . . . ,ak) = 1, i.e., the largest positive integer

dividing all of a1,a2, . . . ,ak is 1. Prove that the equation

a1u1 +a2u2 + · · ·+akuk = 1

has a solution in integers u1,u2, . . . ,uk.
(Hint: Repeatedly apply the extended Euclidean algorithm.)

Remark 2.6.2. The Pohlig-Hellman algorithm has reduced the discrete logarithm problem
for elements of arbitrary order to the discrete logarithm problem for elements of prime power
order. A further refinement is given by the following proposition, which essentially reduce the
problem to elements of prime order.
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Proposition 2.6.3

Let G be a group. Suppose that q is a prime, and suppose that we know an algorithm that
takes Sq steps to solve the discrete logarithm problem gx = h in G whenever g has order
q. Now let g ∈ G be an element of order qe with e ≥ 1. Then we can solve the discrete
logarithm problem

gx = h in O(eSq) steps. (2.15)

Proof. We write the unknown exponent x in the following form.

x = x0 + x1q+ x2q2 + · · ·+ xe−1qe−1 with 0≤ xi < q. (2.16)

Since g is of order qe, the element gqe−1
is of order q. Raising both sides of (2.152.15) to the power

qe−1, we get

hqe−1
= (gx)qe−1

=
(

gx0+x1q+x2q2+···+xe−1qe−1
)qe−1

from (2.162.16)

= gx0qe−1
·
(

gqe
)x1+x2q+···+xe−1qe−2

=
(

gqe−1
)x0

since gqe
= 1.

Since gqe−1
is an element of order q in G, the equation(

gqe−1
)x0

= hqe−1

is a discrete logarithm problem whose base is an element of order q. By our assumption, we
can solve this problem in Sq steps. Once this is done, we know an exponent x0 with the property
that

gx0qe−1
= hqe−1

in G.

Next, raising both sides of (2.152.15) to the power qe−2, we get

hqe−2
= (gx)qe−2

=
(

gx0+x1q+x2q2+···+xe−1qe−1
)qe−2

from (2.162.16)

= gx0qe−2
·gx1qe−1

·
(

gqe
)x2+x3q+···+xe−1qe−3

= gx0qe−2
·gx1qe−1

.

Since we have already determined the value of x0 and the element gqe−1
has order q in G, to

find x1, we must solve the discrete logarithm problem(
gqe−1

)x1
=
(
h ·g−x0

)qe−2
.

Applying the given algorithm again, we can solve this in Sq steps. Hence, in O(2Sq) steps we
have determined the values for x0 and x1 satisfying

g(x0+x1q)qe−2
= hqe−2

in G.
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Similarly, we can find x2 by solving the discrete logarithm problem(
gqe−1

)x2
=
(
h ·g−x0−x1q)qe−3

.

In general, after we have determined x0, . . . ,xi−1, then the value of xo is obtained by solving(
gqe−1

)xi
=
(

h ·g−x0−x1q−···−xi−1qi−1
)qe−i−1

in G.

Each of these is a discrete logarithm problem whose base is of order q. So each of them can
be solved in Sq steps. Hence, after O(eSq) steps, we obtain an exponent x = x0 + x1q+ · · ·+
xe−1qe−1 satisfying gx = h, thus solving the original discrete logarithm problem. □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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The RSA Algorithm

3.1 Euler’s Formula and Roots Modulo pq

In the previous unit, we studies the Diffie-Hellman key exchange and the Elgamal public key
cryptosystem. They were based on the fact that it is easy to compute an mod p but difficult
to recover the exponent n provided that we know a and an mod p, i.e., the discrete logarithm
problem. Recall that, Fermat’s little theorem, which was used to analyse the security of
Diffie-Hellman and Elgamal, states that

ap−1 ≡ 1 (mod p) for all a ̸≡ 0 (mod p),

where p is a prime. Natural question one would like to ask here is that can we replace prime p
with any positive integer m? That is, is it true am−1 ≡ 1 (mod m)? The answer to this is No.
However, in this section, we shall see a generalization of Fermat’s little theorem for m = pq,
product of primes. We have the following result.

Theorem 3.1.1: Euler’s Formula for pq

Let p and q be distinct primes and let

g = gcd(p−1,q−1).

Then
a(p−1)(q−1)/g ≡ 1 (mod pq) for all a satisfying gcd(a, pq) = 1.

In particular, if p and q are odd primes, then

a(p−1)(q−1)/2 ≡ 1 (mod pq) for all a satisfying gcd(a, pq) = 1.

Proof. Let a be an integer satisfying gcd(a, pq) = 1. Then p ∤ a. Since g = gcd(p−1,q−1),
we have g | q−1. Then

a(p−1)(q−1)/g =
(

a(p−1)
)(q−1)/g

since (q−1)/g is an integer,
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≡ 1(q−1)/g (mod p) from Fermat’s little theorem,

≡ 1 (mod p).

Thus, a(p−1)(q−1)/g−1 is divisible by p. Similarly, interchanging the roles of p and q, we get
a(q−1)(p−1)/g−1 is divisible by q. Therefore, a(p−1)(q−1)/g−1 is divisible by, the lcm of p and
q, that is pq. Hence,

a(p−1)(q−1)/g ≡ 1 (mod pq) for all a satisfying gcd(a, pq) = 1.

In particular, if p and q are odd primes, then g = gcd(p−1,q−1) = 2km for some integers k
and m. Then we have

a(p−1)(q−1)/2km ≡ 1 (mod pq) for all a satisfying gcd(a, pq) = 1.

Raising to 2k−1m on both sides we get

a(p−1)(q−1)/2 ≡ 12k−1m ≡ 1 (mod pq) for all a satisfying gcd(a, pq) = 1.

□
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

As discussed earlier, Diffie-Hellman key exchange and the Elgamal public key cryptosystem,
for their security, depend on the difficulty of solving equations of the form

ax ≡ b (mod p),

where a, b, and p are known quantities, p is prime, and x is the unknown exponent. The RSA
public key cryptosystem, which we are going to discuss in the next section depend on the
difficulty of solving equations of the form

xe ≡ c (mod N),

where e, c, and N are known and x is the unknown. Thus, the security of RSA depends on the
assumption that it is difficult to take eth roots modulo N.
Note that if the modulus N is a prime, then it turns out that it is relatively easy to compute eth
roots modulo N. This is given by the next proposition.

Proposition 3.1.2

Let p be a prime and let e≥ 1 be an integer satisfying gcd(e, p−1) = 1. We know that e
has an inverse modulo p−1, say

de≡ 1 (mod p−1).

Then the congruence
xe ≡ c (mod p) (3.1)

has the unique solution x≡ cd (mod p).

Proof. If c≡ 0 (mod p), then x≡ 0 (mod p) is the unique solutions and we are done.
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So assume that c ̸≡ 0 (mod p). The congruence de ≡ 1 (mod p− 1) implies p− 1 | de− 1.
Therefore, there is an integer k such that

de−1 = k(p−1) or de = 1+ k(p−1).

Now we check that cd is a solution to xe ≡ c (mod p):

(cd)e ≡ cde (mod p) law of exponents,

≡ c1+k(p−1) (mod p) since de = 1+ k(p−1),

≡ c · (cp−1)k (mod p) law of exponents,

≡ c ·1k (mod p) by Fermat’s little theorem,
≡ c (mod p).

This completes the proof that the congruence xe ≡ c (mod p) has a solution x = cd . Now,
we prove the uniqueness of the solution. Suppose x1 and x2 are both solutions of the congru-
ence (3.13.1). We just prove that zde ≡ z (mod p) for any nonzero z. So we have

x1 ≡ xde
1 ≡ (xe

1)
d ≡ cd ≡ (xe

2)
d ≡ xde

2 ≡ x2 (mod p).

Thus, x1 and x2 are congruent modulo p and hence the congruence (3.13.1) has a unique solution.
□

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Example 3.1.3. We solve the congruence

x1583 ≡ 4714 (mod 7919),

where the modulus p = 7919 is prime.
Here e = 1583 and c = 4714. By above the proposition, we first need to solve the congruence

de≡ 1 (mod p−1) i.e., 1583d ≡ 1 (mod 7918).

Using the extended Euclidean algorithm, we find that the solution is d = 5277. Then by the
above proposition x = cd is the solution, i.e.,

x≡ 47145277 ≡ 6059 (mod 7919).

■

Remark 3.1.4. In Proposition 3.1.23.1.2, we assume that gcd(e, p−1) = 1. If this assumption is
removed, then the congruence xe ≡ c (mod p) will have a solution for some, but not for all,
values of c. Also, if it has a solution then it will have more than one solutions (see Exercise 3.13.1).

The above proposition also shows that it is easy to take eth roots if the modulus is a prime p. If
the modulus is a composite number N and if we know how to factor N, then again it is easy to
compute eth roots. The following proposition shows how to do this if N = pq is a product of
primes. The general case is left as an exercise (see Exercise 3.23.2).

Exercise 3.1
This exercise investigates what happens if we drop the assumtpion that gcd(g, p− 1) = 1

in Proposition 3.1.23.1.2. So let p be a prime, let c ̸= 0 (mod p), let e ≥ 1, and consider the
congruence

xe ≡ c (mod p).
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(a) Prove that if the above congruence has one solution, then it has exactly gcd(e, p− 1)
distinct solutions.
(Hint: Use primitive root theorem combined with the extended Euclidean algorithm.)

(b) For how many non-zero values of c (mod p) does the above congruence have a solution?

Exercise 3.2
Let N, c, and e be positive integers satisfying the conditions gcd(N,c) = 1 and

gcd(e,φ(N)) = 1.

(a) Explain how to solve the congruence

xe ≡ c (mod N),

assuming that we know the value of φ(N).
(Hint: Use the formula aφ(N) ≡ 1 (mod N) for all integers a satisfying gcd(a,N) = 1.
This result is called Euler’s theorem or Euler’s formula.)

(b) Solve the following congruences. (Use the formula φ(N) = N
r

∏
i=1

(
1− 1

pi

)
for computing

the value of φ(N).)

(i) x577 ≡ 60 (mod 1463).

(ii) x959 ≡ 1583 (mod 1625).

(iii) x133957 ≡ 224689 (mod 2134440).

Proposition 3.1.5

Let p and q be distinct primes and let e≥ 1 satisfy

gcd(e,(p−1)(q−1)) = 1.

We know that e has an inverse modulo (p−1)(q−1), say

de≡ 1 (mod (p−1)(q−1)).

Then the congruence
xe ≡ c (mod pq) (3.2)

has the unique solution x≡ cd (mod pq).

Proof. Assume that gcd(c, pq) = 1. (See Exercise 3.33.3 for other cases). The congruence de≡ 1
(mod (p−1)(q−1)) means that there is an integer k such that

de = 1+ k(p−1)(q−1).

Now we check that cd is a solution to xe ≡ c (mod pq):

(cd)e ≡ cde (mod pq) law of exponents,
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≡ c1+k(p−1)(q−1) (mod pq) since de = 1+ k(p−1)(q−1),

≡ c · (c(p−1)(q−1))k (mod pq) law of exponents,

≡ c ·1k (mod pq) by Euler’s formula,
≡ c (mod pq).

This completes the proof that the congruence xe ≡ c (mod pq) has a solution x = cd . Now, we
prove the uniqueness of the solution. Suppose x = u is a solution to (3.23.2). Then

u≡ ude−k(p−1)(q−1) (mod pq) since de = 1+ k(p−1)(q−1),

≡ (ue)d · (u(p−1)(q−1))−k (mod pq)

≡ (ue)d ·1−k (mod pq) using Euler’s formula,

≡ cd (mod pq) since u is a solution to (3.23.2).

Thus, every solution to (3.23.2) is equal to cd (mod pq) and hence the solution is unique. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Exercise 3.3
Let p and q be distinct primes and let e and d be positive integers satisfying

de≡ 1 (mod (p−1)(q−1)).

Suppose further that c is an integer with gcd(c, pq) > 1. Prove that x ≡ cd (mod pq) is a
solution to the congruence xe ≡ (mod pq), thereby completing the proof of Proposition 3.1.53.1.5.

Remark 3.1.6. Proposition 3.1.53.1.5 gives an algorithm for solving xe ≡ c (mod pq) that involves
first solving de≡ 1 (mod (p−1)(q−1)) and then computing cd (mod pq). We can make the
computations faster by using a smaller value of g. Let g = gcd(p−1,q−1) ans suppose that
we solve the congruence

de≡ 1 (mod
(p−1)(q−1)

g
)

for d. Then Euler’s formula (Theorem 3.1.13.1.1) says that a(p−1)(q−1)/g ≡ 1 (mod pq). Hence, as
in the proof of above proposition, writing de = 1+ k(p−1)(q−1)/g, we get

(cd)e = cdc = c1+k(p−1)(q−1)/g = c · (c(p−1)(q−1)/g)k ≡ c (mod pq).

Thus, using a smaller value of d, we can still find that cd mod pq is a solution to xe ≡ c
(mod pq).

3.2 The RSA Public Key Cryptosystem
Alice and Bob have the usual problem of exchanging secret information over an insecure
channel of communication. In the previous unit, we have seen that they carried out this task
using systems based on the difficulty of solving the discrete logarithm problem.
In this section, we describe the RSA public key cryptosystem which is the first invented and best
known such system. RSA is named after its inventors, Ron Rivest, Adi Shamir, and Leonard
Adleman.
The security of RSA depends on the following dichotomy:
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Setup. Let p and q be large primes, let N = pq, and let e and c be integers.

Problem. Solve the congruence xe ≡ c (mod N) for the variable x.

Easy. Bob, who knows the values of p and q, can easily solve for x as described in Proposi-
tion 3.1.53.1.5.

Hard. Eve, who does not know the values of p and q, cannot easily find x.

Dichotomy. Solving xe ≡ c (mod N) is easy for a person who possesses certain extra informa-
tion, but it is apparently hard for all other people.

The RSA public key cryptosystem is summarized in Table 3.13.1.

Bob Alice
Key creation

Choose secret prime p and q.
Choose encryption exponent e
with gcd(e,(p−1)(q−1)) = 1
Publish N = pq and e.

Encryption
Choose plaintext m.
Use Bob’s public key (N,e)
to compute c = me (mod N).
Send ciphertext c to Bob.

Decryption
Compute d satisfying
ed ≡ 1 (mod (p−1)(q−1)).
Compute m′ ≡ cd (mod N).
Then m′ equals the plaintext m.

Table 3.1: RSA key creation, encryption, and decryption

Bob’s secret key is a pair of large primes p and q. His public key is the pair (N,e), where N is
the product N = pq and e is the encryption exponent that is relatively prime to (p−1)(q−1).
Alice takes her plaintext and converts it into an integer m between 1 and N. She encrypts m by
computing

c≡ me (mod N).

The integer c is her ciphertext which she sends to Bob. It is then easy for Bob to solve the
congruence xe ≡ c (mod N) to get Alice’s message m because Bob knows the factorization
N = pq. Eve, on the other hand, may intercept the ciphertext c, but unless she knows how to
factor N, it is difficult for her to solve xe ≡ c (mod N).

Example 3.2.1. Following is an illustration of the RSA public key cryptosystem with a small
numerical example. This is not secure as the numbers are small and Eve would easily factor the
modulus N. Practical secure implementations of RSA uses moduli N with hundreds of digits.
RSA Key Creation

PS03EMTH55 2023-24



§3.2. The RSA Public Key Cryptosystem 61

• Bob chooses two secret primes p= 1223 and q= 1987. Bob computes his public modulus

N = p ·q = 1223 ·1987 = 2430101.

• Bob chooses a public encryption exponent e = 948047 with the property that

gcd(e,(p−1)(q−1)) = gcd(948047,2426892) = 1.

RSA Encryption

• Alice converts her plaintext into an integer

m = 1070777 satisfying 1≤ m < N.

• Alice uses Bob’s public key (N,e) = (2430101,948047) to compute

c≡ me (mod N), c≡ 1070777948047 ≡ 1473513 (mod 2430101).

• Alice sends the ciphertext c = 1473513 to Bob.

RSA Decryption

• Bob knows (p−1)(q−1) = 1222 ·1986 = 2426892, and so he can solve

ed ≡ (mod (p−1)(q−1)), 948047 ·d ≡ 1 (mod 2426892),

for d and find that d = 1051235.

• Bob takes the ciphertext c = 1473513 and computes

cd (mod N), 14735131051235 ≡ 1070777 (mod 2430101).

The value that he computes is Alice’s message m = 1070777.

■

Remark 3.2.2. The quantities N and e that form Bob’s public key are called the modulus and
the encryption exponent. The number d that Bob uses to decrypt Alice’s message, that is, the
number d satisfying

ed ≡ 1 (mod (p−1)(q−1)) (3.3)

is called the decryption exponent.
It is clear that encryption can be done efficiently and easily if the encryption exponent e is a
small number and decryption can be done efficiently and easily if the decryption exponent is a
small number. Bob cannot choose both of them to be small, since once one of them is selected,
the other is determined by the congruence (3.33.3).
If e = 1, then d = 1. In this case, the plaintext and the ciphertext will be same. So Bob cannot
take e to be 1. He cannot take e to be 2 because of the condition that gcd(e,(p−1)(q−1)) = 1.
So the smallest possible value for e is e = 3.
Alternately, Bob can choose d to be small and use the congruence (3.33.3) to determine e which
would be large. However, if d is smaller than N1/4, then the theory of continued fractions will
enable Eve to break RSA.
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Remark 3.2.3. Bob’s public key includes the number N = pq, which is a product of two secret
primes p and q. Proposition 3.1.53.1.5 says that if Eve knows the value of (p−1)(q−1), then she
can solve xe ≡ c (mod N), and thus decrypt the message sent to Bob. Expanding (p−1)(q−1)
gives

(p−1)(q−1) = pq− p−q+1 = N− (p+q)+1. (3.4)

Since the value of N is public, Eve knows N. Thus if Eve can find the sum p+ q, then
equation (3.43.4) gives her the value of (p−1)(q−1). Then she can decrypt the messages.
If Eve knowns p+q and pq, then it is easy for her to compute the values of p and q. She simply
uses the quadratic formula to find the roots of the polynomial

X2− (p+q)X + pq,

since its factors are (X − p)(X −q). Thus, once Bob publishes the value of N = pq, it is no
easier for Eve to find (p−1)(q−1) than to find p and q themselves.

Remark 3.2.4. We have shown that it is no easier for Eve to determine (p−1)(q−1) than it is
for her to factor N, i.e., to determine p and q themselves. However, this does not prove that Eve
must factor N to in order to decrypt Bob’s message. This is just one way to solve the problem.
The point is that what Eve really needs to do is to solve the congruence

xe ≡ c (mod N)

if there is a method or an efficient algorithm to solve such congruences without the knowledge
of (p−1)(q−1). No one knows whether such a method exists or not.

3.3 Implementation and Security Issues
In this section, we discuss some of the security issues related to the implementation of the
cryptosystem.

Example 3.3.1 (Woman-in-the-Middle Attack). Suppose Eve is not just simply an eavesdropper
but she has full control over Alice and Bob’s communication network. In this case, she can
institute what is known as a man-in-the-middle attack. This attack is described below for
the Diffie-Hellman key exchange but it exists for most of the public key constructions (see
Exercise 3.43.4).
Recall that in the Diffie-Hellman key exchange, Alice sends A = ga to Bob and Bob sends
B= gb to Alice, where a and b are secret key of Alice and Bob respectively and the computations
takes place in the finite field Fp. Now, Eve chooses her secret exponent e and computes E = ge.
She then intercepts Alice and Bob’s communications, and instead of sending A to Bob and B to
Alice, she sends both of them the number E. Notice that Eve has exchanged the value Ae with
Alice and the value Be with Bob, while Alice and Bob believe that they have exchanged values
with each other. The man-in-the-middle attack is illustrated in Figure 3.13.1.

Alice Eve Bob

A = ga

E = ge

B = gb

E = ge

Figure 3.1: “Man-in-the-middle” attack on Diffie-Hellman key exchange
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Suppose that Alice and Bob use their supposed shared secret value as the key for a symmetric
cipher and send each other messages. For example, Alice encrypts a message m using Ea as
the symmetric cipher key. Eve intercepts this message and is able to decrypt it using Ae as the
symmetric cipher key, so she can read Alice’s message. She then encrypts it using Be as the
symmetric cipher key for sending it to Bob. Since Bob is then able to decrypt it using Eb as the
symmetric cipher key, he is unaware that there is a breach in security.
Note that in this attack even though Eve does not solve the underlying hard problem, i.e., Eve
does not solve the discrete logarithm problem or the Diffie-Hellman problem, she is able to
read Alice and Bob’s communications and they are not aware of her success. ■

Exercise 3.4
Formulate a man-in-the-middle attack, similar to the attack described in Example 3.3.13.3.1 for the
following public key cryptosystems:

(a) The Elgamal public key cryptosystem.

(b) The RSA public key cryptosystem.

Example 3.3.2. Suppose that Eve is able to convince Alice to decrypt “random” RSA messages
using her (Alice’s) private key. This is a plausible scenario, since one way for Alice to
authenticate her identity as the owner of the public key (N,e) is to show that she knows how to
decrypt messages. One says that Eve has access to an RSA oracle.
Eve can exploit Alice’s generosity as follows. Suppose that Eve has intercepted a ciphertext c
that Bob has sent to Alice. Eve chooses a random value k and sends Alice the “message”

c′ ≡ ke · c (mod N).

Alice decrypts c′ and returns the resulting message m′ to Eve, where

m′ ≡ (c′)d ≡ (ke · c)d ≡ (ke ·me)d ≡ k ·m (mod N).

Thus, Eve knows the quantity k ·m (mod N) and since she knows k, she can immediately
recover Bob’s plaintext m.
There are following two important observations.

1. Eve has decrypted Bob’s message without knowing or gaining knowledge of how to
factor N. Thus, the difficulty of the underlying mathematical problem is irrelevant.

2. Since Eve has used k to mask Bob’s ciphertext, Alice has no way to tell that Eve’s
message is in any way related to Bob’s message. Thus, Alice sees only the values ke · c
(mod N) and k ·m (mod N), which looks random to her as compared to c and m.

■

Example 3.3.3. Suppose that Alice publishes two different exponents e1 and e2 for use with her
public modulus N and that Bob encrypts a single message m using both of Alice’s exponents. If
Eve intercepts the ciphertexts

c1 ≡ me1 (mod N) and c2 ≡ me2 (mod N),
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then she can take a solution to the equation

e1 ·u+ e2 · v = gcd(e1,e2)

and use it to compute

cu
1 · cv

2 ≡ (me1)u · (me2)v ≡ me1·u+e2·v ≡ mgcd(e1,e2) (mod N).

If it happens that gcd(e1,e2) = 1, Eve has recovered the plaintext m (see Exercise 3.53.5 for a
particular numerical example). More generally, if Bob encrypts a single message using several
exponents e1,e2, . . . ,er, then Eve can recover the plaintext if gcd(e1,e2, . . . ,er) = 1.
Hence, Alice should use only one encryption exponent e for a given modulus N. ■

Exercise 3.5
Alice decides to use RSA with the public key N = 1889570071. In order to guard against

transmission errors, Alice has Bob encrypt his message twice, once using the encryption
exponent e1 = 1021763679 and once using the encryption exponent e2 = 519424709. Eve
intercepts the two encrypted messages

c1 = 1244183534 and c2 = 732959706.

Assuming that Eve also knows N and the two encryption exponents e1 and e2, use the method
described in Example 3.3.33.3.3 to help Eve recover Bob’s plaintext without finding a factorization
of N.

3.4 Primality Testing

3.4.1 Bob’s quest for large prime
As we have seen, in order for Bob to implement RSA, he needs to choose two large prime
numbers p and q. He cannot choose composite numbers because he needs to factor them to
decrypt Alice’s message and also if the composite numbers have small prime factors, then it
would be easy for Eve to find the factors of pq and break Bob’s system.
Thus in order to find large primes numbers, Bob needs a way to distinguish between prime
and composite numbers because if he knows such a way, then he can randomly choose large
numbers until he hits a prime. For example, Bob chooses the following large number

n = 31987937737479355332620068643713101490952335301

and he wants to know whether it is prime or not. First Bob tries to find the small factors and he
observes that n is not divisible by primes smaller than 1000000. So he thinks that n maybe a
prime. Next, he computes 2n−1 mod n and finds that

2n−1 ≡ 1281265953551359064133601216247151836053160074 (mod n).

The above congruence tells Bob that the number n is not prime because by Fermat’s little
theorem, if p is a prime and p ∤ a, then ap−1 ≡ 1 (mod p). Since the right hand side of the
above congruence is not 1, n is not a prime number. In this context, we have another version of
the Fermat’s little theorem given below.

PS03EMTH55 2023-24



§3.4. Primality Testing 65

Theorem 3.4.1: Fermat’s Little Theorem, Version 2

Let p be a prime number. Then

ap ≡ a (mod p) for every integer a. (3.5)

Proof. If p ∤ a, then the first version of Fermat’s little theorem implies that ap−1 ≡ 1 (mod p).
Multiplying both sides by a proves (3.53.5). On the other hand, if p | a, then both the sides of (3.53.5)
are 0 modulo p. □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Now again suppose Bob randomly chooses another large number

n = 2967952985951692762820418740138329004315165131.

After checking for smaller prime factors, Bob computes 2n mod n to find that

2n ≡ 2 (mod n).

Does this mean, by Fermat’s little theorem version 2 (Theorem 3.4.13.4.1), that n is prime? The
answer is No! Fermat’s little theorem only works one way and the converse is not true. That is
if p is a prime then

ap ≡ a (mod p).

However, note that 341 = 11 ·31 but still the congruence (3.53.5) holds as we have

2341 ≡ 2 (mod 341).

The fact that the congruence 2n ≡ 2 (mod n) holds makes it more likely that n could be a prime
number for if n was composite, then there are high changes for the value of 2n mod n to turn
out different from 2. That is if 2n ̸≡ 2 (mod n), then n is definitely composite. This leads us to
the following definition.

Definition 3.4.2

Fix an integer n. We say that an integer a is a witness for (the compositeness of) n if

an ̸≡ a (mod n).

As we observed before, by Fermat’s little theorem (version 2), a single witness for n is enough
to prove that n is composite. Thus, to check whether n is prime of not Bob tries a lot of number
a1,a2,a3, . . .. If any one of them is a witness for n, then Bob knows that n is composite, and if
none of them is a witness for n, then Bob suspects, still not certain, that n is prime.
Observe that the number 561 is composite as 561 = 3 ·11 ·17, yet it has no witnesses. That is

a561 ≡ a (mod 561) for every integer a.

One can check that for all a = 0,1,2, . . . ,560, one has a561 ≡ a (mod 561).
Composite numbers having no witnesses are called Carmichael numbers. They are named
after R. D. Carmichael who listed 15 such numbers in his paper published in 1910. Although
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Carmichael numbers are rare, in 1994, Alford, Granville, and Pomerance proved that there are
infinitely many Carmichael numbers.
Evidently, Bob needs a better test for compositness of a number, something stronger than the
Fermat’s little theorem. The following property of prime numbers is used to formulate the
Miller-Rabin test which says that every composite number has a large number of (Miller-Rabin)
witnesses.

Proposition 3.4.3

Let p be an odd prime and write

p−1 = 2kq with q odd.

Let a be any number not divisible by p. Then one of the following two conditions is true:

(i) aq is congruent to 1 modulo p.

(ii) One of aq, a2q, a4q, . . . ,a2k−1q is congruent to −1 modulo p.

Proof. By Fermat’s little theorem, ap−1 ≡ 1 (mod p). Thus, we know that the last number in
the following list of numbers is ap−1 = a2kq ≡ mod p.

aq,a2q,a4q, . . . ,a2k−1q,a2kq.

Further, each number in the list is the square of the previous one. Therefore, one of the two
possibilities must occur:

(i) The first number in the list is congruent to 1 modulo p, i.e., aq ≡ 1 mod p.

(ii) Some number in the list is not congruent to 1 modulo p, but when it is squared, it becomes
congruent to 1 modulo p. But the only number satisfying both

b ̸≡ 1 (mod p) and b2 ≡ 1 (mod p)

is −1. So one of the numbers in the list is congruent to −1 modulo p.

This completes the proof of the proposition. □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Definition 3.4.4

Let n be an odd number and write n− 1 = 2kq with q odd. An integer a satisfying
gcd(a,n) = 1 is called a Miller-Rabin witness for (the compositeness of) n if both of the
following conditions are true:

(a) aq ̸≡ 1 (mod n).

(b) a2iq ̸≡ −1 (mod n) for all i = 1,2, . . . ,k−1.

PS03EMTH55 2023-24



§3.4. Primality Testing 67

It follows from Proposition 3.4.33.4.3 that if a is a Miller-Rabin witness for n, then n is definitely
a composite number. This leads to the Miller-Rabin test for composite numbers described in
Table 3.23.2 below.

Input. Integer n to be tested, integer a as potential witness.
1. If n is even or 1 < gcd(a,n)< n, return Composite.
2. Write n−1 = 2kq with q odd.
3. Set a = aq (mod n).
4. If a≡ 1 (mod n), return Test Fails.
5. Loop i = 0,1,2, . . . ,k−1

6. If a≡−1 (mod n), return Test Fails.
7. Set a = a2 mod n.

8. End i loop.
9. Return Composite.

Table 3.2: Miller-Rabin test for composite numbers

Now suppose Bob wants to check whether a large number n is prime or not. To do this, he runs
the Miller-Rabin test using a bunch of randomly selected values of a. Note that this is better
than using the Fermat’s little theorem test because there are no Carmichael-like numbers for the
Miller-Rabin test. In fact, every composite number has a lot of Miller-Rabin witnesses which is
described in the following proposition.

Proposition 3.4.5

Let n be an odd composite number. Then at least 75% of the numbers a between 1 and
n−1 are Miller-Rabin witness for n.

Now suppose Bob chooses a large number n and runs the Miller-Rabin test for n for say
10 different values of a. If any a value if a Miller-Rabin witness for n, then clearly n is
composite. But suppose none of the a values chosen by Bob is a Miller-Rabin witness for n.
Proposition 3.4.53.4.5 tells that if n is composite, then there are at least 75% chances of getting
a witness. Since Bob has found no witness in 10 tries, the probability of n being composite
is at most (25%)10 which is approximately 10−6. If Bob uses 100 different values of a, and
if none of them is a witness for n, then the probability for n to be composite is less than
(25%)100 ≈ 10−6.

Example 3.4.6. We take the Miller-Rabin test for n = 561 and a = 2. Recall that n = 651 is a
Carmichael number. We factor

n−1 = 560 = 24 ·35

and then we compute

235 ≡ 263 (mod 561),

22·35 ≡ 2632 ≡ 166 (mod 561),

24·35 ≡ 1662 ≡ 67 (mod 561),

28·35 ≡ 672 ≡ 1 (mod 561).

The first number 235 mod 561 is neither 1 nor −1, and the other number in the lists are not
equal to −1. So 2 is a Miller-Rabin witness which shows that 561 is composite. ■
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Example 3.4.7. Take n = 172947529 and factor n−1 to get

n−1 = 172947528 = 23 ·21618441.

We apply the Miller-Rabin test with a = 17 and find that

1721618441 ≡ 1 (mod 172947529).

Thus, 17 is not a Miller-Rabin witness for n. Next, we try a = 3 and find that

221618441 ≡−1 (mod 172947529).

So a = 3 also fails to be a Miller-Rabin witness for n. At this point, we might think that n is
prime. But if we take a = 23, then we find that

2321618441 ≡ 40063806 (mod 172947529),

232·21618441 ≡ 2257065 (mod 172947529),

234·21618441 ≡ 1 (mod 172947529).

Thus, 23 is a Miller-Rabin witness for n and n = 172947529 turns out to be a composite number.
In fact, note that, n is a Carmichael number but it is not so easy to factor n by hand. ■

3.4.2 The Distribution of the Set of Primes
If Bob chooses a large number at random, what is the likelihood that it is prime? The answer to
this question is given by one of the most famous and important result of Number Theory which
is called the prime number theorem. First, we have the following definition.

Definition 3.4.8

For any number X , let

π(X) = (# of primes p satisfying 2≤ p≤ X).

For example, π(10) = 4, since the primes between 2 and 10 are 2, 3, 5, and 7.

Theorem 3.4.9: The Prime Number Theorem

lim
X→∞

π(X)

X/ ln(X)
= 1.

Proof. Beyond the scope of our syllabus (and our text). □
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Example 3.4.10. How many primes are there between 900000 and 1000000? The prime
number theorem says that

(Number of primes between 900000 and 1000000)

= π(1000000)−π(900000)≈ 1000000
ln1000000

− 900000
ln900000

= 6737.62 . . . .

It turns out that there are exactly 7224 primes between 900000 and 1000000. ■
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For cryptographic purposes, we need even larger primes. For example, we need primes having
approximately 300 decimal digits or almost equivalently, primes that are 1024 bits in length.
Note that 21024 ≈ 10308.25.
How many primes p satisfy 21023 < p < 21024. The prime number theorem gives

# of 1024 bit primes = π(21024)−π(21023)≈ 21024

ln1024
− 21023

ln1023
≈ 21013.53.

So there should be a lot of primes in this interval.
Intuitively, the prime number theorem says that if we look at all the numbers between 1 and
X , then the proportion of them that are primes is approximately 1/ ln(X). In other words, the
prime number theorem says:

A randomly chosen number N has probability 1/ ln(N) of being prime. (3.6)

Clearly a number is either prime or composite. What (3.63.6) describes is that how many primes
one expects to find in an interval around N.

Remark 3.4.11. There are many deep open questions concerning the distribution of prime
numbers. One of the most important and famous such result is the Riemann hypothesis. The
Riemann zeta function ζ (s) is defined by the series

ζ (s) =
∞

∑
n=1

1
ns ,

which converges when s is a complex number with real part greater than 1. IT has an analytic
continuation to the entire complex plane with a simple pole at s = 1 and no other poles. The
Riemann hypothesis says that if ζ (σ + it) = 0 with σ and t real and 0 ≤ σ ≤ 1, then in fact
σ = 1

2 .
Note that ζ (s) is also equal to the product

ζ (s) = ∏
p prime

(
1− 1

ps

)−1

.

So ζ (s) incorporates information about the set of prime numbers.

3.4.3 Primality Proofs Verses Probabilistic Tests
The Miller-Rabin test is a powerful and practical method for finding large numbers that are
“probably prime”. Proposition 3.4.53.4.5 says that every composite number has many Miller-Rabin
witnesses. So after 50 or 100 repetitions of Miller-Rabin test, if one doesn’t find a witness then
the number n is highly likely to be prime. However, there is no certainty in this.
Suppose Bob is not satisfied with the evidence provided by the Miller-Rabin test and he wants
to make sure that the number n is prime. For this he checks whether n is divisible by any of the
numbers 2, 3, 4 . . . upto

√
n. If none of them divides n, then n is definitely prime. Unfortunately,

if n is large, say n≈ 21000, then it is almost impossible task as the running time of this naive
method is O(

√
n) which means that it is an exponential-time algorithm, since

√
n is exponential

in the number of bits required to write down the number n.
It would be better if we have a polynomial-time algorithm that proves primality. If a generalized
version of the Riemann hypothesis is true, then the following proposition says that this can be
done (we see this without proof).
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Proposition 3.4.12

If a generalized version of the Riemann hypothesis is true, then every composite number n
has a Miller-Rabin witness a for its compositeness satisfying

a≤ 2(lnn)2.

Thus, we need to apply the Miller-Rabin test using every a smaller than 2(lnn)2. If some a
proves n is composite, then it is composite, otherwise by the above proposition, n is prime.
Unfortunately, the proof of the above proposition assumes that the generalized Riemann
hypothesis is true, and no one has yet been able to prove the original Riemann hypothesis. After
many years of research, in 2002, M. Agarwal, N. Kayal, and N. Saxena found a polynomial-time
algorithm for primality test. We have the following result which we see without proof.

Theorem 3.4.13: AKS Primality Test

For every ε > 0, there is an algorithm that conclusively determines whether a given number
n is prime in no more than O((lnn)6+ε) steps.

Since AKS algorithm is much slower than the Miller-Rabin test, in practice, most people
willingly accept that a number is prime if it passes the Miller-Rabin test for say 50− 100
randomly chosen values of a.

3.5 Pollard’s p−1 Factorization Algorithm
In the previous section, we saw that it is a bit easy to check whether a large number is (probably)
prime or not. This is beneficial for the RSA cryptosystem since it requires large primes in order
to operate.
Conversely, the security of RSA relies on the difficulty of factoring large numbers. The paradox
of RSA is that in order to make the RSA more efficient, we want to use the modulus N = pq
as small as possible. On the other hand, if an opponent can factor N, then messages can be
decrypted easily and our system is not secure. It is thus important to understand how hard it is
to factor large numbers, and in particular, to understand the capabilities of different algorithms
that are currently used for factorization.
In this section, we study an algorithm called Pollard’s p−1 method which is very efficient for
certain types of numbers. Pollard’s method shows that there are insecure RSA moduli which
appear to be secure at the first glance. That is why the study of Pollard’s method is important. In
addition, this method provides the inspiration for Lenstra’s elliptic curve factorization method.
We are given a number N = pq and our task is to determine the prime factors p and q. Suppose
that we manage to find an integer L with the property that

p−1 divides L and q−1 does not divide L.

This means that there are integers i, j, and k with k ̸= 0 satisfying

L = i(p−1) and L = j(q−1)+ k.
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Let us consider what happens if we take a randomly chosen integer a and compute aL. By
Fermat’s little theorem, we have

aL = ai(p−1) = (ap−1)i ≡ 1i ≡ 1 (mod p),

aL = a j(q−1)+k = ak(aq−1) j ≡ ak ·1 j ≡ ak (mod q).

Since the exponent k is not equal to 0, it is unlikely that ak will be congruent to 1 modulo q.
Thus, with very high probability, i.e., for most choices of a, we find that

p divides aL−1 and q does not divide aL−1.

This means that we can recover p by the simple gcd computation

p = gcd(aL−1,N),

where N = pq.
The question is can we find such an exponent L which is divisible by p−1 but not by q−1?
Pollard’s observation is that if p−1 happens to be a product of many small primes, then it will
divide n! for some value of n which is not too large. Thus, for each number n = 2,3,4, . . . we
choose a value of a and compute

gcd(an!−1,N).

In practice, we simply take a = 2. If the gcd is equal to 1, then we go on to the next value of
n. If the gcd equals N anytime, then we are unfortunate. But then a different value of a will
probably work. If we get a number strictly between 1 and N, then we have a nontrivial factor of
N and we are done.

Remark 3.5.1. Before coming to the Pollard’s idea, we make the following two important
remarks.
The first point is the quantity an!−1 will be too large. Even for a = 2 and for quite moderate
values of n, say n = 100, it is not feasible to compute an!−1 exactly. Note that the number 2100

has more than 10157 digits. But fortunately, we need not compute this number exactly. We are
only interested in the greatest common divisor of an!−1 and N. So it suffices to compute

an!−1 (mod N)

and then take the gcd with N. Thus, we never need to work with numbers larger than N.
Second, we do not even need to compute the exponent n! every time. Assuming that we have
already computed an! mod N in the previous step, we can compute the next value as

a(n+1)! ≡
(
an!)n+1

(mod N).

This leads to the algorithm describe in Table 3.33.3 below.
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Input. Integer N to be factored.
1. Set a = 2 (or some other convenient value).
2. Loop j = 2,3,4, . . . upto a specified bound.

3. Set a = a j mod N.
4. Compute d = gcd(a−1,N)†.
5. If 1 < d < N then success, return d.

6. Increment j and loop again at Step 2.

† For added efficiency, choose an appropriate k and
compute the gcd in Step 4 only every kth iteration.

Table 3.3: Pollard’s p−1 factorization algorithm

Remark 3.5.2. The fast powering algorithm studied in Unit 1 gives a method for computing
ak mod N in at most 2 log2 k steps, where each step is a multiplication modulo N. Stirling’s
formula says that if n is large, then n! is approximately equal to (n/e)n. So we can compute
an! mod N in 2n log2(n) steps. Thus, it is feasible to compute an! mod N for reasonably large
values on n.

Example 3.5.3. Use Pollard’s p−1 method to factor N = 13927189.

Starting with gcd(29!−1,N) and taking successively larger factorials in the exponent we find
that

29!−1≡ 13867883 (mod 13927189), gcd(29!−1,13927189) = 1,

210!−1≡ 5129508 (mod 13927189), gcd(210!−1,13927189) = 1,

211!−1≡ 4405233 (mod 13927189), gcd(211!−1,13927189) = 1,

212!−1≡ 6680550 (mod 13927189), gcd(212!−1,13927189) = 1,

213!−1≡ 6161077 (mod 13927189), gcd(213!−1,13927189) = 1,

214!−1≡ 879290 (mod 13927189), gcd(214!−1,13927189) = 3823.

The last line gives a nontrivial factor p = 3823 of N. This factor is prime and the other factor
q = N/p = 13927189/3823 = 3643 is also prime.
The reason that an exponent of 14! worked in this case is that p−1 factors into a product of
small primes,

p−1 = 3822 = 2 ·3 ·72 ·13.

The other factor q−1 = 3642 = 2 ·3 ·607, which is not a product of small primes. ■

Example 3.5.4. Let us consider one more example using larger numbers. Let N =
168441398857. Then

250!−1≡ 114787431143 (mod N) gcd(250!−1,N) = 1,

251!−1≡ 36475745067 (mod N) gcd(251!−1,N) = 1,

252!−1≡ 67210629098 (mod N) gcd(252!−1,N) = 1,

253!−1≡ 8182353513 (mod N) gcd(253!−1,N) = 350437.
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So using 253!− 1 gives the prime factor p = 350437 of N. The other prime factor of N is
q = N/p = 480661. Note that p−1 is a product of small prime factors,

p−1 = 350436 = 22 ·3 ·19 ·29 ·53.

■

Remark 3.5.5. Note that it is easy for Bob and Alice to avoid dangers of Pollard’s p−1 method
when creating RSA keys. They simply check that their chosen secret primes p and q have the
property that neither p−1 nor q−1 can be factored into small primes. From cryptographic
point of view it is an important lesson. Most of the times people would not expect, at first
glance, that factorization properties of p− 1 and q− 1 should have to do anything with the
difficulty of factoring pq.
Thus, the moral is that even if we build a cryptosystem based on a seemingly hard problem such
as integer factorization, we must be wary of special cases of the problem like this that are easier
to solve than the general case. We have already seen an example of this in the Pohlig-Hellman
algorithm for the discrete logarithm problem.

Remark 3.5.6. Suppose that p and q are randomly chosen primes of about the same size.
Pollard’s method works if at least one of p− 1 and q− 1 factors entirely into a product of
small prime powers. Clearly p−1 is even and so we can take out one factor of 2. But then the
quantity 1

2(p−1) should behave more or less like a random number of size approximately 1
2 p.

This leads to the following question:

What is the probability that a randomly chosen integer of size
approximately n divides B!?

Note that, in particular, if n divides B!, then every prime ℓ dividing n must satisfy ℓ ≤ B. A
number whose prime factors are all less than or equal to B is called a B-smooth number. It is
thus natural to ask for the probability that a randomly chosen integer of size approximately n is
a B-smooth number or not. We can also ask the following:

Given n, how large should we choose B so that a randomly chosen
integer of size approximately n has a reasonably good probability
of being a B-smooth number?

The efficiency (or lack) of all modern methods of integer factorization is largely determined by
the answer to this question.
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Elliptic Curve Cryptography

4.1 Elliptic Curves
An elliptic curve is the set of solutions to an equation of the form

Y 2 = X3 +AX +B.

Equations of this form are called Weierstrass equations. Two examples of elliptic curves are
given below and shown in Figure 4.14.1.

E1 : Y 2 = X3−3X +3 and E2 : Y 2 = X3−6X +5.

E1 : Y 2 = X3−3X +3 E2 : Y 2 = X3−6X +5

Figure 4.1: Two examples of elliptic curves

An amazing property of elliptic curves is that there is a natural way to add two points on
the curve to get a third point. Let P and Q be two points on an elliptic curve E as shown in
Figure 4.24.2. We start by drawing the line L through P and Q. This line L intersects E at three
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points, namely P, Q, and one other point R. We take that point R and reflect it across the X-axis
(i.e., we multiply its Y -coordinate by −1) to get a new point R′. The point R′ is called the “sum
of P and Q” and we denote this addition law by ⊕. Thus, we write

P⊕Q = R′.

P

Q
R

P⊕Q = R′
E

L

Figure 4.2: The addition law on an elliptic curve

Example 4.1.1. Let E be the elliptic curve

Y 2 = X3−15X +18. (4.1)

The points P = (7,16) and Q = (1,2) are on the curve E. The line L connecting them is given
by the equation (using y−y1

y2−y1
= x−x1

x2−x1
),

L : Y =
7
3

X− 1
3
. (4.2)

In order to find the points where E and L intersect, we substitute (4.24.2) in (2.72.7) and solve for X .
Thus, we have (

7
3

X− 1
3

)2

= X3−15X +18,

49
9

X2− 14
9

X +
1
9
= X3−15X +18,

0 = X3− 49
9

X2− 121
9

X +
161
9

.

We need to find the roots of this cubic polynomial. In general, this may be a difficult task but
since we already know that P and Q are in the intersection E ∩L, we already know two roots,
which are X = 7 and X = 1. Then it is easy to find the other factor and we find that

X3− 49
9

X2− 121
9

X +
161
9

= (X−7) · (X−1) ·
(

X +
23
9

)
,

so the third point of intersection of L and E has X-coordinate equal to −23
9 . Next we find the

Y -coordinate by substituting X =−23
9 in (4.24.2). This gives R =

(
−23

9 ,−
170
27

)
. Finally, we reflect

this point across X-axis to get

P⊕Q =

(
−23

9
,
170
27

)
.

■
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What happens if we want to add the point to itself? Visualize the line L connecting P and Q and
the point Q sliding along to curve, getting closer and closer to P and finally coinciding with P.
What happens to the line L in that case? In the limit as Q approaches P, the line L becomes the
tangent line to E at P. Thus in order to add a point P to itself, we take L to be the tangent to E
at the point P as shown in Figure 4.34.3. Then the line L intersects E at P and at one other point R.
Then as before, we take the reflection of R across X-axis to get the point 2P = P⊕P = R′. In
some sense, the line L intersects E at three points, where we count it intersecting E at the point
P twice.

P
R

2P = P⊕P = R′
E

L

L is tangent to E at P

Figure 4.3: Adding a point to itself

Example 4.1.2. Let E be the elliptic curve Y 2 = X3− 15X + 18 as in equation (4.14.1) and P
be the point P = (7,16) as in the above example. We compute P⊕P. The slope of E at P is
computed by differentiating equation (4.14.1),

2Y
dY
dX

= 3X2−15, so
dY
dX

=
3X2−15

2Y
.

Substituting the coordinates of P = (7,16) gives the slope λ = 33
8 . So the tangent line to E at

the point P is given by the equation

L : Y =
33
8

X− 103
8

(4.3)

Now substituting (4.34.3) in (4.14.1) for E, we get(
33
8

X− 103
8

)2

= X3−15X +18,

X3− 1089
64

X2 +
2919
32

X− 9457
64

= 0,

(X−7)2 ·
(

X− 193
64

)
= 0.

Since the X-coordinate of P, X = 7, appears as a double root of the cubic polynomial, it becomes
easy to factor the cubic polynomial. Finally, substituting X = 193

64 into equation (4.34.3) for L, we
get Y =−223

512 . Then changing the sign of the Y -coordinate, we get

P⊕P =

(
193
64

,
223
512

)
.

■
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Now, what if we want to add a point P = (a,b) to its reflection about the X-axis P′ = (a,−b)?
The line L through P and P′ is the vertical line x = a and it intersects E in only two points P and
P′ as shown in Figure 4.44.4. There is no third point of intersection. The way out is to create an
extra point O which is called the “point at infinity”. This point O does not exist in the XY -plane,
but we consider that it lies on the vertical line. We then set

P⊕P = O.

P = (a,b)

P′ = (a,−b)E

L

O
Vertical lines have no
third intersection
point with E

Figure 4.4: Adding a point to itself

We also need to state how to add O to an ordinary point P = (a,b) on E. The line L joining
P and O is the vertical line through P, since O lies on the vertical lines, and that vertical line
intersects E at the points P, O, and P′ = (a,−b). To add P to O, we reflect P′ across the X-axis,
which gives us back P. In other words, P⊕O= P. Thus, the point O acts like zero (i.e., identity
element) for the elliptic curve addition.

Example 4.1.3. Let E be the elliptic curve Y 2 = X3−15X +18 as in the above example and
consider the point T = (3,0) on E. Note that the tangent line to E at the point T is the vertical
line X = 3. Hence, if we add T to itself, we get T ⊕T = O. ■

Definition 4.1.4

An elliptic curve E is the set of solutions to a Weierstrass equation

E : Y 2 = X3 +AX +B,

together with an extra point O, where the constants A and B must satisfy

4A3 +27B2 ̸= 0.

The addition law on E is defined as follows:
Let P and Q be two points on E. Let L be the line connecting P and Q, or the tangent line to E
at P if P = Q. Then the intersection of E and L consists of three points P, Q, and R, counted
with appropriate multiplicities and with the understanding that O lies on every vertical line.
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Writing R = (a,b), the sum of P and Q is defined to be the reflection R′ = (a,−b) of R across
the X-axis. This sum is denoted by P⊕Q, or sometimes simply by P+Q.
Further if P = (a,b), we denote the reflected point by ⊖P = (a,−b), or simply by −Pl and
we define P⊖Q (or P−Q) to be P⊕ (⊖Q). Similarly, repeated addition is represented as
multiplication of a point by an integer,

nP = P+P+P+ · · ·+P︸ ︷︷ ︸
n copies

.

Remark 4.1.5. Note that in the definition of elliptic curves, we have a condition 4A3+27B2 ̸= 0.
The quantity ∆E = 4A3 + 27B2 is called the discriminant of E. The condition ∆E ̸= 0 is
equivalent to the condition that the cubic polynomial X3 +AX +B have no repeated roots, i.e.,
if we factor X3 +AX +B completely as

X3 +AX +B = (X− e1)(X− e2)(X− e3),

where e1,e2,e3 are allowed to be complex numbers, then

4A3 +27B2 ̸= 0 if and only if e1,e2,e3 are distinct.

(See Exercise 4.14.1). The curves with ∆E = 0 have singular points and the addition law does not
work well on such curves. That is why the condition ∆E ̸= 0 is included in the definition of an
elliptic curve.

Exercise 4.1
Suppose that the cubic polynomial X3 +AX +B factors as

X3 +AX +B = (X− e1)(X− e2)(X− e3).

Prove that 4A3 +27B2 = 0 if and only if two (or more) of e1, e2, and e3 are the same.
(Hint: Multiply out the right hand side and compare coefficients to relate A and B to e1, e2, and
e3).

Theorem 4.1.6

Let E be an elliptic curve. Then the addition law on E has the following properties:

(a) P+O= P = O+P for all P ∈ E. [Identity]
(b) P+(−P) = O for all P ∈ E. [Inverse]
(b) (P+Q)+R = P+(Q+R) for all P,Q,R ∈ E. [Associative]
(b) P+Q = Q+P for all P,Q ∈ E. [Commutative]

In other words, the addition law makes the points of E into an abelian group.

Proof. As discussed earlier, the identity law (a) and the inverse law (b) are true because O lies
on all vertical lines. The commutative law (d) is easy to verify, since the line that goes through
P and Q is same as the line that goes through Q and P. So the order of the points does not
matter.
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The associative law (c) can be verified geometrically by putting all the lines needed and check
that it is true. There are many ways to prove the associative law, but none of the proofs are easy.
From the following theorem, the associative law can be verified by a direct calculations from
the explicit formulas derived for the addition law. □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Next, we find the explicit formulas to enable us to easily add and subtract points on an elliptic
curve. The derivation of these formulas uses elementary analytic geometry, some differential
calculus to find a tangent line, and a certain amount of algebraic manipulation. We state the
following theorem in the form of an algorithm and give a brief proof of the same.

Theorem 4.1.7: Elliptic Curve Addition Algorithm

Let
E : Y 2 = X3 +AX +B

be an elliptic curve and let P1 and P2 be points on E.

(a) If P1 = O, then P1 +P2 = P2.

(b) Otherwise, if P2 = O, then P1 +P2 = P1.

(c) Otherwise, write P1 = (x1,y1) and P2 = (x2,y2).

(d) If x1 = x2 and y1 =−y2, then P1 +P2 = O.

(e) Otherwise, define λ by

λ =


y2−y1
x2−x1

if P1 ̸= P2,

3x2
1+A
2y1

if P1 = P2,

and let
x3 = λ

2− x1− x2 and y3 = λ (x1− x3)− y1.

Then P1 +P2 = (x3,y3).

Proof. Parts (a) and (b) are clear. Part (d) is the case where the line passing through P1 and P2
is vertical. So P1 +P2 = O. Note that if y1 = y2 = 0, then the tangent line is vertical, so this
case works too.
For part (e), we note that if P1 ̸= P2, then λ is the slope of the line passing through P1 and
P2 and P1 = P2, then λ is the slope of the tangent line at P1 = P2. In either case, the line L is
given by the equation Y = λX +ν , where ν = y1−λx1. Substituting the equation for L into
the equation for E, we get

(λX +ν)2 = X3 +AX +B,

so
X3−λ

2X2 +(A−2λν)X +(B−ν
2) = 0.

We know that this cubic has x1 and x2 as two of its roots. If we denote the third root by x3, then
it factors as

X3−λ
2X2 +(A−2λν)X +(B−ν

2) = (X− x1)(X− x2)(X− x3).
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Now multiplying out the right hand side and comparing the coefficient of X2 on both sides, we
get

−x1− x2− x3 =−λ
2.

Therefore, we get x3 = λ 2−x1−x2, and then the Y -coordinate of the third intersection point of
E and L is given by λx3+ν . Finally, in order to find P1+P2, we reflect across the X-axis, which
means that the Y -coordinate has to be replaced by its negative. This completes the proof. □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

In the next section, we shall study elliptic curve over finite fields.

4.2 Elliptic Curves over Finite Fields
In order to apply elliptic curves to cryptography, we need to study elliptic curves whose points
have coordinates in a finite field Fp.

Definition 4.2.1

Let p≥ 3 be a prime. An elliptic curve over Fp is an equation of the form

E : Y 2 = X3 +AX +B with A,B ∈ Fp satisfying 4A3 +27B2 ̸= 0.

The set of points on E with coordinates in Fp is the set

E(Fp) = {(x,y) : x,y ∈ Fp satisfy y2 = x3 +Ax+B}∪{O}.

Example 4.2.2. Consider the elliptic curve

E : Y 2 = X3 +3X +8 over the field F13.

We can find the points of E(F13 by substituting in all the possible values of X = 0,1,2, . . . ,12
and checking for which X values the quantity X3 +3X +8 is a square modulo 13. For example,
putting X = 0 gives 8, and 8 is not a square modulo 13. Next, we try X = 1. This gives
1+3+8 = 12 and it turns out that 12 is a square modulo 13. In fact, it has two square roots,

52 ≡ 12 (mod 13) and 82 ≡ 12 (mod 13).

This gives us two points (1,5) and (1,8) in E(F13). Continuing this way, we can find a complete
list.

E(F13) = {O,(1,5),(1,8),(2,3),(2,10),(9,6),(9,7),(12,2),(12,11)}.

Thus, E(F13) consists of nine points. ■

Let P = (x1,y1) and Q = (x2,y2) be points on E(Fp). We define the sum P+Q to be the point
(x3,y3) obtained by applying the elliptic curve addition algorithm (Theorem 4.1.74.1.7). Note that in
this algorithm, the only operations used are addition, subtraction, multiplication, and division
involving the coefficients of E and the coordinates of P and Q. Since those coefficients and
coordinates are in the field Fp, we end up with a point (x3,y3) whose coordinates are in the
field Fp. However, it is not completely clear that (x3,y3) is a point in E(Fp).
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Theorem 4.2.3

Let E be an elliptic curve over Fp and let P and Q be points in E(Fp).

(a) The elliptic curve addition algorithm (Theorem 4.1.74.1.7) applied to P and Q yields a
point in E(Fp). We denote this point by P+Q.

(b) This addition law on E(Fp) satisfies all of the properties listed in Theorem 4.1.64.1.6
(i.e., properties of the addition law on elliptic curves). In other words, this addition
law makes E(Fp) into a finite group.

Proof. The formulas in Theorem 4.1.74.1.7 (e) are derived by substituting the equation of a line into
the equation for E and solving for X . So the resulting point is automatically a point on E, i.e.,
it is a solution to the equation defining E. This shows why (a) is true, although when P = Q
(Justify!).
For (b), the identity law follows from the addition algorithm steps (a) and (b), the inverse law
is clear from the addition algorithm Step (d), and the commutative law is easy, since a brief
examination of the addition algorithm shows that switching the two points leads to the same
result.
Unfortunately, the associative law is not so clear. It is possible to verify the associative
law directly using the addition algorithm formulas, although there are many special cases to
consider. □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Example 4.2.4. Let E : Y 2 = X3 +3X +8 be the elliptic curve over F13. We use the addition
algorithm (Theorem 4.1.74.1.7) to add the points P = (9,7) and Q = (1,8) in E(F13). Step (e) of
that algorithm tells us to first compute

λ =
y2− y1

x2− x1
=

8−7
1−9

=
1
−8

=
1
5
= 8,

where the computations are being performed in the field F13. So−8 = 5 and 1
5 = 5−1 = 8. Next

we compute
ν = y1−λx1 = 7−8 ·9 =−65 = 0.

Finally, the addition algorithm tells us to compute

x3 = λ
2− x1− x2 = 64−9−1 = 54 = 2,

y3 = − (λx3 +ν) =−8 ·2 =−16 = 10.

This completes the computation of

P+Q = (1,8)+(9,7) = (2,10) in E(F13).

Similarly, we can use the addition algorithm to add P = (9,7) to itself. We have

λ =
3x2

1 +A
2y1

=
3 ·92 +3

2 ·7
=

246
14

= 12 and ν = y+1−λx1 = 7−12 ·9 = 3.

Then

x3 = λ
2− x1− x2 = (12)2−9−9−9 and y3 =−(λx3 +ν) =−(12 ·9+3) = 6.

So P+P = (9,7)+(9,7) = (9,6) in E(F13). Similarly, we can add any pair of points in E(F13).
The results of the addition law are listed in Table 4.14.1. ■
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O (1,5) (1,8) (2,3) (2,10) (9,6) (9,7) (12,2) (12,11)
O O (1,5) (1,8) (2,3) (2,10) (9,6) (9,7) (12,2) (12,11)

(1,5) (1,5) (2,10) O (1,8) (9,7) (2,3) (12,2) (12,11) (9,6)
(1,8) (1,8) O (2,3) (9,6) (1,5) (12,11) (2,10) (9,7) (12,2)
(2,3) (2,3) (1,8) (9,6) (12,11) O (12,2) (1,5) (2,10) (9,7)
(2,10) (2,10) (9,7) (1,5) O (12,2) (1,8) (12,11) (9,6) (2,3)
(9,6) (9,6) (2,3) (12,11) (12,2) (1,8) (9,7) O (1,5) (2,10)
(9,7) (9,7) (12,2) (2,10) (1,5) (12,11) O (9,6) (2,3) (1,8)
(12,2) (12,2) (12,11) (9,7) (2,10) (9,6) (1,5) (2,3) (1,8) O

(12,11) (12,11) (9,6) (12,2) (9,7) (2,3) (2,10) (1,8) O (1,5)

Table 4.1: Addition table for E : Y 2 = X3 +3X +8 over F13

It is clear that the set of points E(Fp) is a finite set since there are finitely many possibilities for
the X and the Y -coordinate. There are p possibilities for X , and then for each X , the equation

Y 2 = X3 +AX +B

shows that there are at most two possibilities for Y (see Exercise 2.52.5). Adding in the extra point
O, this shows that #E(Fp) has at most 2p+1 points. However, this estimate is considerably
large than the actual size.
A famous result of Hasse, which was later generalized by Weil and Deligne, gives an estimate
for the number of points in E(Fp).

Theorem 4.2.5: Hasse

Let E be an elliptic curve over Fp. Then

#E(Fp) = p+1− tp with tp satisfying |tp| ≤ 2
√

p.

Definition 4.2.6

The quantity
tp = p+1−#E(Fp)

appearing in the above theorem is called the trace of Frobenius for E/Fp.

Example 4.2.7. Let E be given by the equation

E : Y 2 = X3 +4X +6.

We can think of E as an elliptic curve over Fp for different finite fields Fp and count the number
of points in E(Fp). Table 4.24.2 lists the results for the first few primes, together with the value of
tp and the value of 2

√
p. ■
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p #E(Fp) tp 2
√

p
3 4 0 3.46
5 8 −2 4.47
7 11 −3 5.29
11 16 −4 6.63
13 14 0 7.21
17 15 3 8.25

Table 4.2: Number of points and trace of Frobenius for E : Y 2 = X3 +4X +6

4.3 The Elliptic Curve Discrete Logarithm Problem
(ECDLP)

In Unit 2, we studied the discrete logarithm problem (DLP) in the finite field F∗p. In order to
create a cryptosystem based on the DLP for F∗p, Alice publishes two numbers g and h, and her
secret is the exponent x which is the solution of the congruence

h≡ gx (mod p).

Viewing g and h as elements of the group F∗p, Eve needs to find an x such that

h≡ g ·g ·g · · ·g︸ ︷︷ ︸
x multiplications

(mod p).

In other words, Eve needs to determine how many times g must be multiplied to itself in order
to get h.
With this formulation, it is clear that Alice can do the same thing with the group of points E(Fp)
of an elliptic curve E over a finite field Fp. She chooses and publishes two points P and Q in
E(Fp), and her secret is an integer n such that

Q = P+P+P+ · · ·+P︸ ︷︷ ︸
n additions on E

= nP.

Then Eve needs to find out how many times P must be added to itself in order to get Q. Note that
although the “addition law” on an elliptic curve is denote with a plus sign, the actual addition on
E is a complicated operation. So this elliptic curve analogue of the discrete logarithm problem
maybe quite difficult to solve.

Definition 4.3.1: ECDLP

Let E be an elliptic curve over the finite field Fp and let P and Q be points in E(Fp). The
Elliptic Curve Discrete Logarithm Problem (ECDLP) is the problem of finding an integer
n such that Q = nP. By analogy with the discrete logarithm problem for F∗p, we denote
this integer n by

n = logP(Q)

and we call n the elliptic discrete logarithm of Q with respect to P.
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Remark 4.3.2. Note that the definition of logP(Q) is not precise. First difficulty is that there
may be points P,Q ∈ E(Fp) such that A is not a multiple of P. In that case, logP(Q) is not
defined. However, for cryptographic purposes, Alice chooses a public point P and her private
integer n and computes Q = nP for publishing. So in practical applications, logP(Q) exists and
its Alice’s secret.

The second difficulty is that if there is one value of n satisfying Q = nP, then there are many
such values. To see this, first note that there exists a positive integer s such that sP =O. This is
because the points P,2P,3P, . . . cannot be all distinct as E(Fp) is finite. Hence, there are integer
k > j such that kP = jP, and so we have s = k− j. The smallest such s≥ 1 is called the order
of P. Thus, if s is the order of P and n0 is an integer such that Q = n0P, then the solutions to
Q = nP are the integers n = n0 + is with i ∈ Z (see Exercise 4.24.2).
This means that logP(Q) is really an element of Z/sZ, i.e., logP(Q) is an integer modulo s,
where s is the order of P. An advantage of defining these values to be in Z/sZ is that the elliptic
discrete logarithm then satisfies

logP(Q1 +Q2) = logP(Q1)+ logP(Q2) for all Q1,Q2 ∈ E(Fp). (4.4)

The fact that the discrete logarithm for E(Fp) satisfies (4.44.4) means that it respects the addition
law when the group E(Fp) is mapped to the group Z/sZ. In other words, we say that the map
logP defines a group hoomorphism

logP : E(Fp)→ Z/sZ.

Exercise 4.2
Let E be an elliptic curve over Fp and let P and Q be points in E(Fp). Assume that Q is a

multiple of P and let n0 > 0 be the smallest solution to Q = nP. Also let s > 0 be the smallest
solution to sP = O. Prove that every solution to Q = nP looks like n0 + is for some i ∈ Z.
(Hint: Write n as n = is+ r for some 0≤ r < s and determine the value of r.)

Example 4.3.3. Consider the elliptic curve

E : Y 2 = X3 +8X +7 over F73.

The points P = (32,53) and Q = (39,17) are both in E(F73), and it is easy to verify that

Q = 11P, so logP(Q) = 11.

Similarly, R = (35,47) ∈ E(F73) and S = (58,4) ∈ E(F73), and after some computations we
find that they satisfy R = 37P and S = 28P. So

logP(R) = 37 and logP(S) = 28.

Finally, we mention that #E(F73) = 82, but P satisfies 41P = O. Thus, P has order 41 = 82
2 . So

only half of the points in E(F73) are multiples of P. For example, (20,65) is in E(F73) but it
does not equal to any multiple of P. ■
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4.3.1 The Double-and-Add Algorithm
In cryptography, in order to use the function

Z→ E(Fp) given by n 7→ nP

we need to efficiently compute nP from the known values n and P. If n is large, then we do not
want to compute nP by computing P, 2P, 3P, . . ..
The most efficient way to compute nP is very similar to the square-and-multiply algorithm (fast
factoring algorithm) which was used for Diffie-Hellman and Elgamal public key cryptosystems.
However, since the operation on an elliptic curve is addition instead of multiplication, we call it
“double-and-add” algorithm instead of “square-and-multiply”.
The underlying idea is same as before. We first write n in binary form as

n = n0 +n1 ·2+n2 ·4+n3 ·8+ · · ·+nr ·2r with n0,n1, . . . ,nr ∈ {0,1}.

We assume that nr = 1. Next we compute the following quantities:

Q0 = P, Q1 = 2Q0, Q2 = 2Q1, . . . , Qr = 2Qr−1.

Notice that Qi is simply twice the previous Qi−1. So

Qi = 2iP.

These points are referred to as 2-power multiples of P, and computing them requires r doublings.
Finally, we compute nP using at most r additional additions,

nP = n0Q0 +n1Q1 +n2Q2 + · · ·+nrQr.

This addition of two points in E(Fp) is referred as a point operation. Thus, the total time to
compute nP is at most 2r point operations in E(Fp). Note that n≥ 2r and so it takes no more
than 2log2(n) point operations to compute nP. This makes it feasible to compute nP even for
very large values of n. The double-and-add algorithm is summarized in Table 4.34.3 below.

Input. Point P ∈ E(Fp) and integer n≥ 1.
1. Set Q = P and R = O.
2. Loop while n > 0.

3. If n≡ 1 (mod 2), set R = R+Q.
4. Set Q = 2Q and n = ⌊n/2⌋.
5. If n > 0, continue with the loop at Step 2.

6. Return the point R, which equals nP.

Table 4.3: The double-and-add algorithm for elliptic curves

Example 4.3.4. Use the Double-and-Add algorithm to compute nP in E(Fp) for

n = 947, E : Y 2 = X3 +14X +19, p = 3623, P = (6,730).

The binary expansion of n is

n = 947 = 1+2+24 +25 +27 +28 +29.
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The step by step calculation which requires 9 doublings and 6 additions is given in Table 4.44.4
below.

Step i n Q = 2iP R
0 947 (6,730) O

1 473 (2521,3601) (6,730)
2 236 (2277,502) (2149,196)
3 118 (3375,535) (2149,196)
4 59 (1610,1851) (2149,196)
5 29 (1753,2436) (2838,2175)
6 14 (2005,1764) (600,2449)
7 7 (2425,1791) (600,2449)
8 3 (3529,2158) (3247,2849)
9 1 (2742,3254) (932,1204)

10 0 (1814,3480) (3492,60)

Table 4.4: Computing 947 · (6,730) on Y 2 = X3 +14X +19 modulo 3623

■

Remark 4.3.5. There is an addition technique that can be used to further reduce the time
required to compute nP. The idea is to write n using sums and differences of powers of 2.
This technique is advantageous because there are fewer terms and so fewer point additions are
required to compute nP. Also note that subtracting two points on an elliptic curve is as easy as
adding them because −(x,y) = (x,−y). This is different from F∗p, where computing a−1 takes
more time than multiplying two elements.
Consider the following example which illustrates the above idea. In Example 4.3.44.3.4, we saw that

947 = 1+2+24 +25 +27 +28 +29.

So it takes 15 operations (9 doublings and 6 additions) to compute 947P. But instead if we
write

947 = 1+2−24−26 +210,

then we can compute
947P = P+2P−24P−26P+210P

using 10 doublings and 4 additions, a total of 14 point operations.
Writing a number n as a sum of positive and negative powers of 2 is called a ternary expansion
of n.
How much savings is expected? Suppose that n is a large number and let k = ⌊logn⌋+1. In the
worst case, if n has the form 2k−1, then computing nP using binary expansion of n requires 2k
point operations (k doublings and k additions), since

2k−1 = 1+2+22 + · · ·+2k−1.

But if we allow ternary expansions, then the following propositions proves that computing nP
does not require more than 3

2k+1 point operations (k+1 doublings and 1
2k additions).

This was the worst case scenario. On an average, for most n, we can compute nP in about
4
3k+1 steps (k+1 doublings and 1

3k additions).
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Proposition 4.3.6

Let n be a positive integer and let k = ⌊logn⌋+1, which means that 2k > n. Then we can
always write

n = u0 +u1 ·2+u2 ·4+u3 ·8+ · · ·+uk ·2k (4.5)

with u0,u1, . . . ,uk ∈ {−1,0,1} and at most 1
2k of the ui nonzero.

Proof. Writing n in binary,

n = n0 +n1 ·2+n2 ·4+ · · ·+nk−1 ·2k−1 with n0, . . . ,nk−1 ∈ {0,1}.

Working from left to right, look for the first occurrence of two or more consecutive nonzero ni
coefficients. For example, suppose that

ns = ns+1 = · · ·= ns+t−1 = 1 and ns+t = 0

for some t ≥ 2. In other words, the quantity

2s +2s+1 + · · ·+2s+t−1 +0 ·2s+t (4.6)

appears in the binary expansion of n. Observe that

2s +2s+1 + · · ·+2s+t−1 +0 ·2s+t = 2s(1+2+4+ · · ·+2t−1) = 2s(2t−1).

So we can replace (4.64.6) with
−2s +2s+t .

Repeating this procedure, we end up with an expansion of n of the form (4.54.5) in which no two
consecutive ui are nonzero. (Note that although the original binary expansion went up to only
2k−1, the new expansion might go up to 2k.) □

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

4.3.2 How Hard is the ECDLP?
The collision algorithms can be easily adapted to any group. In order to solve Q = nP, Eve
chooses random integers j1, . . . , jr and k1, . . . ,kr between 1 and p and makes two list of points:

List #1. j1P, j2P, j3P, . . . , jrP,
List #2. k1P+Q,k2P+Q,k3P+Q, . . . ,krP+Q.

As soon as she finds a match (i.e., a collision) between the two lists, she is done. This is because
if juP = kvP+Q, then Q = ( ju− kv)P provides the solution. The naive collision algorithm
requires quite a lot of storage for the two lists. However, there are algorithms that solve the
ECDLP for E(Fp) in O(

√
p) steps.

The main and important reason that elliptic curves are used in cryptography is the fact that there
are no general algorithms known that solve the ECDLP in fewer than O(

√
p) steps. In other

words, the fastest known algorithms to solve the ECDLP are no better than the generic usual
algorithms that works equally well to solve the discrete logarithm problem in any group. That
is,
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The fastest known algorithm to solve
ECDLP in E(Fp) takes approximately√

p steps.

Thus, the ECDLP appears to be much more difficult than the DLP. However, we know that,
there are some primes p for which the DLP in F∗p is comparatively easy. Recall, for example, if
p−1 is a product of small primes, then the Pohlig-Hellman algorithm gives a quick solution to
the DLP in F∗p. In a similar way, there are some elliptic curves and some primes for which the
ECDLP in E(Fp) is comparatively easy.

4.4 Elliptic Curve Cryptography (ECC)

In this section, we see two applications of elliptic curves to cryptography which are the Diffie-
Hellman key exchange and the Elgamal public key cryptosystem.

4.4.1 Elliptic Diffie-Hellman Key Exchange

Alice and Bob agree to use a particular elliptic curve E(Fp) and a particular point P ∈ E(Fp).
Alice chooses a secret integer nA and Bob chooses a secret integer nB. They compute the
associated multiples

Alice computes this︷ ︸︸ ︷
QA = nAP and

Bob computes this︷ ︸︸ ︷
QB = nBP .

Then they exchange the values QA and QB. Alice then uses her secret multiplier to compute
nAQB, and Bob similarly uses his secret integer nB to compute nBQA. They now have shared
the secret value

nAQB = (nAnB)P = nBQA,

which they can use as a key to communicate privately via a symmetric cipher. Table 4.54.5
summarizes elliptic Diffie-Hellman key exchange.
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Public parameter creation
A trusted party chooses and publishes a (large) prime p,
an elliptic curve E over Fp, and a point P in E(Fp)

Private computations
Alice Bob

Choose a secret integer nA.
Computes the point QA = nAP.

Choose a secret integer nB.
Computes the point QB = nBP.

Public exchange of values
Alice sends QA to Bob −−−−−−−−−−−−−−→ QA
QB ←−−−−−−−−−−−−−− Bob sends QB to Alice

Further private computations
Alice Bob

Computes the point nAQB. Computes the point nBQA.
The shared secret value is nAQB = nA(nBP) = nB(nAP) = nBQA.

Table 4.5: Diffie-Hellman key exchange using elliptic curves

Example 4.4.1. Alice and Bob decide to use elliptic Diffie-Hellman with prime the p = 3851,
the elliptic curve E : Y 2 = X3 +324X +1287, and the point P = (920,303) ∈ E(F3851).
Alice and Bob choose respective secret values nA = 1194 and nB = 1759, and then

Alice computes QA = 1194P = (2067,2178) ∈ E(F3851),

Bob computes QB = 1759P = (3684,3125) ∈ E(F3851).

Alice sends QA to Bob and Bob sends QB to Alice. Finally, they compute

Alice computes nAQB = 1194(3684,3125) = (3347,1242) ∈ E(F3851),

Bob computes nBQA = 1759(2067,2178) = (3347,1242) ∈ E(F3851).

Bob and Alice have exchanged the secret point (3347,1242). As explained in Remark 4.4.34.4.3
they should discard the y-coordinate and take only the value x = 3347 as a shared secret value.
For Eve to discover Alice and Bob’s shared secret key, one ways is to solve the ECDLP

nP = QA.

If Eve can solve this problem, then she can find nA and can use it to compute nAQB. There might
be some other way for Eve to compute their shared secret without actually solving the ECDLP.
The precise problem Eve needs to solve is the elliptic analogue of the classical Diffie-Hellman
problem described in Unit 2. ■

Definition 4.4.2: ECDHP

Let E(Fp) be an elliptic curve over a finite field Fp and let P ∈ E(Fp). The Elliptic Curve
Diffie-Hellman Problem is the problem of computing the value of n1n2P from the known
values of n1P and n2P.
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Remark 4.4.3. Elliptic Diffie-Hellman key exchange requires Alice and Bob to exchange points
on an elliptic curve. A point Q in E(Fp) consists of two coordinates Q = (xQ,yQ), where xQ
and yQ are elements of the finite field Fp. So it seems that Alice must send Bob two numbers in
Fp. However, those two numbers modulo p do not contain as much information as two asbitrary
numbers, since they are related by the formula

y2
Q = x3

Q +AxQ +B in Fp.

Note that Eve knows A and B, so if she can guess the correct value of xQ, then there are only
two possible values of yQ. In practice, it is not too difficult for Eve to actually compute the two
values of yQ.
Thus, there is no point for Alice to send both the coordinates of QA to Bob since the y-coordinate
does not contain much addition information. Thus, Alice sends Bob only the x-coordinate of
QA. Bob then computes and uses one of the two possible y-coordinates. If he chooses the
correct y-coordinate, then he is using QA. If he chooses the incorrect y-coordinate (which is
nothing but the negative of the correct y-coordinate), then he is using −QA. Thus, in any case,
Bob ends up computing one of

±nBQA =±(nAnB)P.

Similarly, Alice ends up computing one of±(nAnB)P. Then Alice and Bob use the x-coordinate
as their shared secret value, since the x-coordinate is the same regardless of which y they use.

Example 4.4.4. Alice and Bob decide to exchange another shared secret value using the
following public parameters (same as in the previous example).

p = 3851, E : Y 2 = X3 +324X +1287, P = (920,303) ∈ E(F3851).

However, this time they want to send fewer bits to one another. Alice and Bob choose their new
secret integers nA = 2489 and nB = 2286 respectively. As before, they compute

Alice computes QA = nAP = 2489(920,303) = (593,719) ∈ E(F3851),

Bob computes QB = nBP = 2286(920,303) = (3681,612) ∈ E(F3851).

However, rather than sending both the coordinates, Alice sends only xA = 593 to Bob and Bob
sends only xB = 3681 to Alice.
Alice substitutes xB = 3681 into the equation for E and finds that

y2
B = x3

B +324xB +1287 = 36813 +324 ·3681+1287 = 997.

Note that the calculations are performed in F3851. Alice needs to compute a square root of 997
modulo 3851. This is not hard to do, especially for prime p≡ 3 (mod 4). By Proposition 2.5.42.5.4,
she knows that b(p+1)/4 is a square root of b modulo p. So Alice sets

yB = 997(3851+1)/4 = 997963 ≡ 612 (mod 3851).

It happens that she gets the same point QB = (xB,yB) = (3681,612) that Bob used, and she
computes nAQB = 2489(3681,612) = (509,1108).
Similarly, Bob substitutes xA = 593 into the equation for E and takes a square root,

y2
A = x3

A +324xA +1287 = 5933 +324 ·593+1287 = 927,
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yA = 927(3851+1)/4 = 927963 ≡ 3132 (mod 3851).

Bob then uses the point Q′A = (593,3132), which is not Alice’s point QA. Bob computes
nBQ′A = 2286(593,3132) = (509,2743). Thus, Bob and Alice end up with points that are
negatives of one another in E(Fp) but this is all right as their shared secret value is the x-
coordinate x = 509 which is same for both points. ■

4.4.2 Elliptic Elgamal Public Key Cryptosystem
In this section, we see the elliptic curve analogue of the classical Elgamal public key cryptosys-
tem.
Alice and Bob agree to use a particular prime p, an elliptic curve E, and a point P ∈ E(Fp).
Alice chooses a secret multiplier nA and publishes the point QA−nAP as her public key. Bob’s
plaintext is a point M ∈ E(Fp). He chooses an integer k to be his random element and computes

C1 = kP and C2 = M+ kQA.

He sends the two points (C1,C2) to Alice. Then Alice computes

C2−nAC1 = (M+ kQA)−nA(kP) = M+ k(nAP)−nA(kP) = M.

Thus, Alice recovers the plaintext M The elliptic Elgamal public key cryptosystem is summa-
rized in Table 4.64.6 below.

Public parameter creation
A trusted party chooses and publishes a (large) prime p,
an elliptic curve E over Fp, and a point P in E(Fp)

Alice Bob
Key creation

Choose private key nA.
Compute QA = nAP in E(Fp).
Publish the public key QA.

Encryption
Choose plaintext M ∈ E(Fp).
Choose random element k.
Use Alice’s public key QA to
compute C1 = kP ∈ E(Fp)
and C2 = MkQA ∈ E(Fp).
Send ciphertext (C1,C2) to Alice.

Decryption
Compute C2−nAC1 ∈ E(Fp).
This quantity is equal to M.

Table 4.6: Elliptic Elgamal key creation, encryption, and decryption

In principle, the elliptic Elgamal cryptosystem works fine, but there are some practical difficul-
ties.

1. There is no obvious way to attach a plaintext message to points in E(Fp).
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2. The elliptic Elgamal cryptosystem has 4-to-1 message expansion, as compared to the
2-to-1 message expansion ratio of the classical Elgamal cryptosystem using Fp.

The reason that elliptic Elgamal has a 4-to-1 message expansion lies in the fact that the plaintext
M is a single point in E(Fp). By Hasse’s theorem (Theorem 4.2.54.2.5) there are approximately p
different points in E(Fp). Hence, there are only p different plaintexts. However, the ciphertext
(C1,C2) consists of four numbers modulo p, since each point in E(Fp) has two coordinates.
Various methods have been proposed to solve these problems. The difficulty of associating
plaintexts to points can be overcome by choosing M randomly and using it as a mask for the
actual plaintext. One such method, which also decreases message expansion, is the Menezes-
Vanstone variant of the elliptic Elgamal public key cryptosystem, known as the MV-Elgamal
cryptosystem.
Another natural way to improve message expansion is to send only the x-coordinate of C1 and
C2, as done in the Diffie-Hellman key exchange. Unfortunately, since Alice must compute the
difference C2−nAC1, she needs the correct values of both the x-and y-coordinates of C1 and C2.
Note that the points C2−nAC1 and C2 +nAC1 are quite different. However, the x-coordinate
of a point determines the y-coordinate up to change of sign, so Bob can send one extra bit, for
example

Extra bit =

{
0 if 0≤ y < 1

2 p,
1 if 1

2 p < y < p

(see Exercise 4.34.3). In this way, Bob needs to send only the x-coordinates of C1 and C2, plus two
extra bits. This idea is sometimes referred to as point compression.

Exercise 4.3
A shortcoming of using an elliptic curve E(Fp) for cryptography is the fact that it takes two
coordinates to specify a point in E(Fp). However, as discussed briefly earlier, the second
coordinate actually conveys very little additional information.

(a) Suppose that Bob wants to send Alice the value of a point R ∈ E(Fp). Explain why it
suffices for Bob to send Alice the x-coordinate of R = (xR,yR) together with the single bit

βR =

{
0 if 0≤ yR < 1

2 p,
1 if 1

2 p < yR < p

(You may assume that Alice is able to efficiently compute square roots modulo p. This is
certainly true, for example, if p≡ 3 (mod 4), then it is given by Proposition 2.5.42.5.4).

(b) Alice and Bob decide to use the prime p = 1123 and the elliptic curve

E : Y 2 = X3 +54X +87.

Bob sends Alice the x-coordinate x = 278 and the bit β = 0. What point is Bob trying to
convey to Alice? What about if instead Bob sent β = 1?
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