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Linear Programming

1.1 Introduction to Linear Programming

In this section, we shall study optimization problems, in particular linear programming problems
(LPP) and their mathematical formulation.

1.1.1 Terminology

Decision variables: The variables responsible for optimization are called decision variables.
Decision variables are also called alternatives. In a optimization problem, these variables are to
be determined for achieving the goal.

Constraints: Constraints are restriction put on the decision variables. The restrictions are due to
availability of resources.

Objective function: The objective function is mathematical form of the goal to be optimized.
The objective function is a function of decision variables. If x1,x2, . . . ,xn are decision variables,
then the objective function has the form

z = f (x1,x2, . . . ,xn).

Optimization problem: A problem in which given objective function is to be optimized subject
to the given constraints is called an optimization problem.

Non-negativity constraints: In most of the optimization problems the decision variables will
be assumed to be non-negative. These constraints are called non-negative constraints. The
non-negativity constraints that arise are not due to availability but from the practical point of
view.

Feasible solution: Feasible solution is a solution to the optimization problem which is consistent

11



12 §1.2. A two-variable LP Model

to all constraints. There may be many feasible solutions to the given problem.

Optimal solution: The solution among all the feasible solutions for which objective function is
optimized is called optimal solution.

Definition 1.1.1. An optimization problem is said to be a linear programming problem (LPP)
if all constraints and objective function are in linear form.

1.1.2 Mathematical formulation of an optimization problem (or LPP)

Any OR model including LPP comprises of three basic components. They are decision variables,
objective function and constraints. The following are the steps for mathematical formulation
of any optimization problem.

1. Identify and declare the decision variables.
2. Identify the objective function and express it mathematically.
3. Identify the constraints and express them mathematically.

Let us see an example of optimization problem and how to formulate it mathematically.

Example 1.1.2. Formulate the following optimization problem in mathematical form.
My firm Ltd. manufactures pendrives (8 GB) and memory cards (8 GB). Each pendrive takes 3
minutes of manufacturing time and costs | 25. Each memory card takes 2 minutes of manufactur-
ing time and costs | 20. The company has 500 minutes of manufacturing time and a provision of
| 5000 per day. Ther profit per pendrive and memory card are | 5 and | 7 respectively. Maximize
the profit.

Solution. Let the number of pendrives and memory cards to be manufactured be x and y respec-
tively. Then the above problem can be formulated in mathematical form as follows:

max z = 5x+7y.

3x+2y ≤ 500
25x+20y ≤ 5000

x≥ 0, y ≥ 0

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

1.2 A two-variable LP Model

Example 1.2.1 (The Reddy Mikks Company). Reddy Mikks produces both interior and exterior
paints from two raw materials M1 and M2. The following table provides the basic data of the
problem:

A market survery indicates the the daily demand for interior paint cannot exceed that for
exterior paint by more than 1 ton. Also, the maximum daily demand for interior paint is 2 tons.

Reddy Mikks wants to determine the optimum product mix of interior and exterior paints that
maximizes the total daily profit.

PS04EMTH30 2017-18
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Tons of raw material per ton of Maximum daily
availability (tons)

Exterior paint Interior paint

Raw material, M1 6 4 24
Raw material, M2 1 2 6
Profit per ton (in |1000) 5 4

Solution. Decision variables: Here we have to determine the daily amounts of the exterior and
interior paints to be produced so as to maximize the total daily profit. So the decision variables
are

x1 = tons of exterior paint produced daily.
x2 = tons of interior paint produced daily.

Objective function: The objective of the Reddy Mikks is to determine the total daily profit from
both the paints.

Profit from exterior paint = 5x1 (thousand) |
Profit from interior paint = 4x2 (thousand) |.

If z denotes the total daily profit, then the goal of Reddy Mikks company is

Maximize z = 5x1 +4x2.

Constraints: We have the constraints due to daily usage (availability) of raw material and the
constraints due to demand. We have(

Usage of a raw material
by both the paints

)
≤

(
Maximum availability

of the raw material

)

Daily usage of raw material M1 by both paints = 6x1 +4x2 tons per day.
Daily usage of raw material M2 by both paints = 1x1 +2x2 tons per day.

Maximum daily availability of the raw materials M1 and M2 are respectively 24 tons and 6 tons.
Therefore the constraints are

6x1 +4x2 ≤ 24
x1 +2x2 ≤ 6.

The constraints due to restrictions on the product demand are as follows

x2− x1 ≤ 1
x2 ≤ 2.

Mathematical formulation: The Reddy Mikks model can be formulated mathematically as

Maximize z = 5x1 +4x2 } objective function
subject to

Dr. Jay Mehta jay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edu

mailto:jay_mehta@spuvvn.edu
jay_mehta@spuvvn.edu
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14 §1.2. A two-variable LP Model

6x1 +4x2 ≤ 24
x1 +2x2 ≤ 6
−x1 + x2 ≤ 1

x2 ≤ 2
x1,x2 ≥ 0.


constraints

Feasible solution: Any values of x1 and x2 satisfying the above constraints is a feasible solution,
otherwise it is infeasible. For example, x1 = 3 tons per day and x2 = 1 ton per day is a feasible
solution since it satisfies all the five constraints. On the other hand, observe that the x1 = 4 and
x2 = 1 is infeasible as it does not satisfy at least one constraint.

The goal of the problem is to find the optimum (i.e. the best) feasible solution that maximizes
the total daily profit z. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Example 1.2.2. An electronic company produces two components C1 and C2 used in manufac-
turing of a TV set. Each unit C1 costs | 25 in labor and | 25 for the required material. Each
unit C2 costs | 125 in labor and | 75 in material. The company’s labor and material expenses
are to be paid in cash. The selling price of C1 is | 150 and that of C2 is | 350 per unit. Due to
strong monopoly of the company for these components, it is assumed that the company can sell
at the prevailing prices as many units as it produces. The product capacity is however limited
to two considerations. First is, at the beginning of a period the company has an initial balance
of | 20000. Second, the company has available in each period 4000 hours of machine time and
2800 hours of assembly time. The production of each unit of C1 requires 6 hours of machine
time and 4 hours of assembly time. Machine time and assembly time for each of C2 are 4 hours
and 6 hours respectively.

Formulate the problem as an LPP to maximize the profit of the company. Also express the
problem in tabular form.

Solution. Tabular form of the given LPP:

Resources/Constraints Components Availability

C1 C2

Machine time 6 4 4000 hours
Assembly time 4 6 2800 hours
Budget 50 200 | 20000
Selling price 150 350
Profit 100 150

Decision variables: Here the problem is to maximize the profit. The profit is earned by producing
components C1 and C2. Thus, the decision variables are

x1 = number of units of component C1
x2 = number of units of component C2.

PS04EMTH30 2017-18
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Objective function: The quantity to be maximized is the profit. The profit on one unit of
component C1 is given by selling price - production cost = 150− 50 = 100 |. Similarly, the
profit on one unit of component C2 is | 150. Hence the objective function is given by

Maximize z = 100x1 +150x2.

Constraints: One unit of component C1 consumes 6 hours of machine time while one unit of C2
consumes 4 hours of machine time. The total availability of machine time is 4000 hours. Hence
the constraint is

6x1 +4x2 ≤ 4000.

Similarly, the constraint due to assembly time is

4x1 +6x2 ≤ 2800.

One unit of C1 costs | 50 and one unit of component C2 costs | 200. The availability of funds is
| 20000. Hence, the constraint is given by

50x1 +200x2 ≤ 20000.

Finally, the non-negativity constraints are:

x1, x2 ≥ 0.

Hence, the given problem can be formulated mathematically as

Maximize z = 100x1 +150x2

subject to the constraints
6x1 +4x2 ≤ 4000
4x1 +6x2 ≤ 2800

50x1 +200x2 ≤ 20000
x1,x2 ≥ 0.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

1.3 Graphical Method

1.3.1 Graphical method for solving LPP

Graphical method is useful only when then number of decision variables is two. For a Linear
Programming Problem (LPP) in two variables x1 and x2 the constraints are linear inequalities
two variables. We first convert these inequalities into equalities by replacing the inequality sign
by equality sign. Now each equality can be ploted as a straight line in x1x2-plane. This divides
the plane into three parts.

1. The region in which constraint is satisfied with the given inequality.
2. The region in which constraint is not satisfied.
3. The straight line itself where the equality is satisfied. Here constraint is satisfied if it is in

the form which includes equality also.
Let us consider couple of examples to demonstrate the graphical representation of an LPP.

Dr. Jay Mehta jay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edu
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16 §1.3. Graphical Method

Definition 1.3.1. The region in which all the constraints are satisfied is called the feasible
region.

Example 1.3.2. Express the problem in Example 1.2.21.2.2 graphically i.e.

Maximize z = 100x1 +150x2

subject to
6x1 +4x2 ≤ 4000
4x1 +6x2 ≤ 2800

50x1 +200x2 ≤ 20000
x1,x2 ≥ 0.

Solution.

100 200 300 400 500 600 700

200

400

600

800

1,000

6x1 +4x2 =
4000

4x1 +6x2 = 2800

50x1 +200x2 = 20000

0

A
B

x1

x 2

The constraints can be repre-
sented with the help of straight
lines. For the given problem, we
plot the lines

6x1 +4x2 = 4000
4x1 +6x2 = 2800

50x1 +200x2 = 20000

From the graphical representation
it is clear that all the constraints
are satisfied in the triangular re-
gion covered by4 OAB which is
the feasible region.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Example 1.3.3. Determine the feasible region for the following optimization problem

Minimize z = 20x1 +40x2.

subject to
36x1 +6x2 ≥ 108
3x1 +12x2 ≥ 36

20x1 +10x2 ≥ 100
x1, x2 ≥ 0.

Solution. We plot the lines 36x1 + 6x2 = 108,3x1 + 12x2 = 36 and 20x1 + 10x2 = 100. Since
36x1+6x2≥ 108, the region in which this constraint is satisfied is the unbounded region as shown
in Figure (a). Similarly, the regions in which constraints 3x1+12x2 ≥ 36 and 20x1+10x2 ≥ 100
are satisfied are shown in Figure (b) and Figure (c) respectively.

The feasible region, i.e. the solution space is the unformulated, unbounded region which is the
region above the union of line-segments AB,BC,CD in the first quadrant (due to non-negativity
constraint).

PS04EMTH30 2017-18
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Dr. Jay Mehta,
Department of
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Sardar Patel
University.

Definition 1.3.4. The corner points of the feasible region in the graphical representation of an
optimization problem are called extremum points.

If the feasible region is bounded, i.e. if it is a polygon then the corner points are the vertices of
the polygon.
The graphical method to solve an LPP includes the following steps.

1. Identify the decision variable, objective function and constraints. If the problem has
only two decision variables, then the graphical method can be used.

2. Express the objective function and constraints mathematically.
3. Represent the constraints graphically and identify the feasible region.
4. If the feasible region is a bounded polygon then the extremum of the objective function

lies on any of the vertices.
5. Evaluate the objective function on the vertices and choose the vertex which has the

maximum (i.e. most) or the minimum (i.e. least) value as the desired solution.
6. If the feasible region is an unbounded region, then there are two cases.
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18 §1.3. Graphical Method

(a) Maximization Problem: The solution does not exists because in the feasible
region the objective function goes on increasing.

(b) Minimization Problem: The solution will be on some corner point (vertex).

Example 1.3.5. Using graphical method solve

Max z = 2x1 +3x2

subject to
x1 + x2 ≤ 30
x1− x2 ≥ 0

x2 ≥ 3
0≤ x1 ≤ 20
0≤ x2 ≤ 12.

Solution. As shown in figure the feasible region is the pentagon with vertices A, B, C, D, E.
Now, we evaluate the function z at these points as follows:

5 10 15 20 25 30

5

10

15

20

25

30

x1 +
x2 =

30

x 1
− x 2

=
0

x2 = 12

x2 = 3

x1
=

20

D
C

BA

E

x1

x 2

Point Coordinates Max z = 2x1 +3x2

A (3,3) 15
B (20,3) 49
C (20,10) 70
D (18,12) 72
E (12,12) 60

Hence, the maximum is attained at point D(18,12). �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Example 1.3.6. Determine the solution of the following optimization problem by graphical
method

Minimize z = 20x1 +40x2.

subject to
36x1 +6x2 ≥ 108
3x1 +12x2 ≥ 36

20x1 +10x2 ≥ 100
x1, x2 ≥ 0.

Solution. The graph of this problem is given in Example 1.3.31.3.3. The feasible region is as shown
in the graph below.

1 3 5 7 9 11 13 15

2

4

6
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10

12

14

16

18

36x
1
+

6x
2
=

108

3x1 +12x2 = 36

20x1 +
10x2 =

100

B

A

C
D

0

Here the feasible region is an unbounded region but the objective function is to be minimized.
Therefore, the optimal solution exists on the corner points. In this case the corner points are
A,B,C,D.

Point Coordinates Min z = 20x1 +40x2

A (0,18) 720
B (2,6) 280
C (4,2) 160
D (12,0) 240

Hence, the minimum is obtained at point C(4,2). �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Example 1.3.7 (Reddy Mikks model). Obtain the optimal solution of the Reddy Mikks problem
using graphical method. Recall that the mathematical formulation of Reddy Mikks model is
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20 §1.3. Graphical Method

given (in Example 1.2.11.2.1) by

Maximize z = 5x1 +4x2

subject to
6x1 +4x2 ≤ 24
x1 +2x2 ≤ 6
−x1 + x2 ≤ 1

x2 ≤ 2
x1, x2 ≥ 0.

Solution. We first plot the lines 6x1 + 4x2 = 24, x1 + 2x2 = 6, −x1 + x2 = 1 and x2 = 2 and
determine the feasible region.

It is clear from the figure that the feasible region is the bounded and shaded region which
bounded by the polygon ABCDEF . Now, we compute the objective function z at the vertices of
this polygon and determine the optimum (here maximum) solution.

x

y

1 2 3 4 5 6
0

1

2

3

4

5

6

6x
1 +

4x
2 ≤

24

x1 +2x2 ≤ 6

−x
1
+

x 2
≤

1

x2 ≤ 2

A B

C
DE

F

Point Coordinates Max z = 5x1 +4x2

A (0,0) 0
B (4,0) 10
C (3, 3

2) 21
D (2,2) 18
E (1,2) 13
F (0,1) 4

Hence, by graphical method we obtain the optimal solution at the point C(3,1.5) and the
optimal (maximum) value of the objective function is z = 21, i.e. to maximize the profit the
Reddy Mikks company must produce 3 tons of exterior paint and 1.5 tons of interior paint daily
and its daily profit will be | 21000. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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1.3.2 Alternative method for maximization (or minimization) - ISO-profit
(or cost) method

We describe an alternative method for graphically obtaining the maximum of the objective
function called the ISO-profit method and the minimum of the function called the ISO-cost
method.

1. First plot the graph of the problem and determine the feasible region.
2. Draw a straight line for some reasonable profit (or cost) by assigning the profit (or cost)

to the objective function. This line is called ISO-profit (or ISO-cost) line and it must fall
inside the feasible region.

3. Determine the direction in which the objective function increases (or correspondingly
decreases). This direction will be usually away (or closer) from the origin.

4. Draw lines parallel to the ISO-profit (or cost) line in the direction away (or close) from
the origin depending on the case.

5. The line farthest (or closest) from the origin which passes through a vertex determines
the optimal value of the objective function and the corresponding vertex is the required
optimal solution.

In the example below, we obtain the solution of the Reddy Mikks model by ISO-profit method.

Example 1.3.8. Obtain the solution of the Reddy Mikks model (Example 1.2.11.2.1) ISO-profit
method.

Solution. We first have to plot the graph of the Reddy Mikks model and determine the feasible
region which is already shown in Example 1.3.71.3.7. Next we determine in which direction the
profit function z = 5x1 + 4x2 increases. This is done by arbitrarily assigning values to z. For
example, assigning z = 10 and z = 15, we obtain two lines falling in the feasible region given by
5x1 +4x2 = 10 and 5x1 +4x2 = 15 respectively. Thus, we can identify the direction in which
z increases. Drawing parallel lines, we finally find that optimum solution occurs at the point
C(3, 3

2) and the optimum value is z = 21.

x

y

1 2 3 4
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3

A B

C

DE
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10

z=
15
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�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Remark 1.3.9. In case the the objective function gives the ISO-profit lines parallel to one of
the edges (i.e. lines represented by the constraints), then when the ISO lines are shifted away
from the origin one of them will coincide with the constraint line. In this case, before leaving the
feasible region, an edge of the region is a subset of the ISO-profit line and we obtain alternative
optima. This means all the points on the edge give the same optimal value of the objective
function.

Hence, in such case, we get infinitely many optimal solutions.

1.3.3 Disadvantages of graphical method

The graphical method has certain disadvantages and hence it is not efficient or useful in many
cases. The disadvantages are:

1. It works in two decision variables only.
2. It works efficiently if the number of constraints is small.
3. If the coefficient in constraints have abnormal ranges, then it becomes difficult to plot the

corresponding lines. Hence the method is not suitable.

1.4 Graphical Sensitivity Analysis

In a linear programming model, there is a scope for change in the values of the parameters like
constraints, profit/cost, etc. without altering the optimum. This is called sensitivity analysis.
There are two types of sensitivity analysis of a linear programming problem which are discussed
in the reference book of this course. They are graphical sensitivity analysis and algebraic
sensitivity analysis.

In our course, we limit our discussion only to sensitivity analysis of graphical solution of a
linear programming problem. Thus, our case will be restricted to two decision variables only.

1.4.1 Sensitivity analysis of graphical solution

In graphical sensitivity analysis, the following two cases are considered.
1. Sensitivity of the optimum solution to changes in the availability of the resources (i.e. the

right hand side of the constraints).
2. Sensitivity of the optimum solution to changes in unit profit or unit cost (i.e. the coefficients

of the objective function).
We shall discuss the above two cases by an example. Consider the following example.

Example 1.4.1 (JOBCO problem). JOBCO manufactures two product on two machines. A unit
of product 1 requires 2 hours on machine 1 and 1 hour on machine 2. For product 2, one unit
requires 1 hour on machine 1 and 3 hours on machine 2. The revenues per unit of products 1 and
2 are $30 and $20, respectively. The total daily processing time available for each machine is 8
hours. The goal is to maximize the revenue.

Solve the problem by graphical method.
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Solution. Let x1 and x2 be the daily number of units of products 1 and 2 respectively. Then the
mathematical formulation of the given LP model is given by

Maximize z = 30x1 +20x2

subject to
2x1 + x2 ≤ 8 (Machine 1)
x1 +3x2 ≤ 8 (Machine 2)

x1, x2 ≥ 0.

We plot the graph of the given problem. As shown in the figure, the feasible region is the bounded
(shaded) region bounded by the polygon ABCD. We now compute the objective function at the
vertices A,B,C and D of this polygon and determine the corner point which gives the optimum.
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x1
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Point Coordinates Max z = 30x1 +20x2

A (0,0) 0
B (0,2.67) 53.34
C (3.2,1.6) 128
D (4,0) 120
G (3.8,1.4) 142

Hence, we find that the optimum is z = 128 at point C(3.2,1.6). �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

1.4.2 Sensitivity of optimum to changes in availability (right hand side)

Above figure demonstrates that optimum changes with the change in the capacity of machine 1.
If the daily capacity of machine 1 is increased from 8 hours to 9 hours, then the new optimum
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24 §1.4. Graphical Sensitivity Analysis

moves to the point G (as shown in figure). The rate of change in the objective function z due to
change in machine 1 capacity can be computes as follows: Rate of change in z due to

increase in machine 1 capacity
by 1 hour (point C to G)

=
zG− zC

(Capacity change)
=

142−128
9−8

= $14/hr.

Thus, a unit increase (or decrease) in machine 1 capacity leads to increase (or decrease) in
revenue by $14. This price is called the dual price.

From the above figure, we can say that the dual price of $14/hour remains valid for any
change (increase or decrease) in machine 1 capacity that moves its constraint parallel to itself
and passing through any point on line-segment BF . Machine 1 capacity at points B and F are
computes as:

Machine 1 capacity at B(0,2.67) = 2×0+1×2.67 = 2.67 hours.
Machine 2 capacity at F(8,0) = 2×8+1×0 = 16 hours.

Thus, the valid range for dual price of $14/hr is

2.67 hr ≤Machine 1 capacity≤ 16 hr.

Changes outside this range may produce a different dual price (worth per unit).
Similarly, the dual price for machine 2 is $2/hr and the range is (Exercise)

4 hr ≤Machine 2 capacity≤ 24 hr.

These valid ranges for machine 1 and 2 computed above are called feasible ranges. The dual
price allows us to make economic decisions about the problem. For example, consider the
following questions:

Question 1: If JOBCO can increase the capacity of both machines, which machine should
receive the priority?

The dual prices of machine 1 and 2 are $14 and $2 respectively. Thus, machine 1 should
receive the first priority.

Question 2: It is suggested that the capacities of machine 1 and 2 should be increased at the cost
of $10/hr for each of them. Is it advisable?

For machine 1, the additional revenue per hour is $14−$10 = $4. However, for machine 2 it
is $2−$10 =−$8. Hence, it is advisable that only machine 1 should be considered for increase
in capacity at $10/hr.

Question 3: If the capacity of machine 1 is increased from 8 hours to 13 hours, how will it
impact the optimum revenue?

The valid range of dual price of machine 1 is [2.67,16] hour. The proposed increase to 13
hours falls in this feasible range. Hence the increase in revenue is $14(13−8) = $70, i.e. the
revenue will raise from $128 to $198.

Question 4: Suppose the capacity of machine 1 is increased to 20 hours, how will it affect the
optimum revenue?
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The proposed change is outside the feasible range [2.67,16] hour. Hence nothing can be said.
Note that the proposed value is outside the feasible range does not mean that the problem has no
solution. It just means that the information is insufficient to make a complete decision.

1.4.3 Sensitivity of optimum to changes in coefficients of objective func-
tion

From the graph, it is clear that optimum occurs at point C(3.2,1.6) and the value is z = 128.
Changes in revenues (i.e. objective-function coefficients) changes the slope of z. However, from
the graph, it can be seen that the optimal solution remains at the point C unchanged as long as
the objective function lies between lines BF and DE.
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Now, we determine the ranges for the coefficients of the objective function such that the
optimum solution remains unchanged at C. We write

Maximize z = c1x1 + c2x2.

Now, keeping the line z fixed at C it can rotate clockwise or anticlockwise such that it lies
between the lines x1 +3x2 = 8 and 2x1 + x2 = 8. This means the ratio c1

c2
lies between 1

3 and 2
1 .

Therefore
1
3
≤ c1

c2
≤ 2

1
or 0.333≤ c1

c2
≤ 2.

This gives answer to the following questions.

Question 1: Suppose that the unit revenues for products 1 and 2 are changed to $35 and $25
respectively. Will the current optimum remain the same?

The new objective function becomes

Maximize z = 35x1 +25x2.
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The ratio c1
c2
= 35

25 = 1.4 lies in the valid range (0.33,2). Hence the optimum point remains at C.
However, the optimum value z changes to 35×3.2+25×1.6 = $152.

Question 2: Suppose that the unit revenue of product 2 is fixed at its current value c2 = $20.
What is the associated optimality range for the unit revenue for product 1, c1, that will keep the
optimum unchanged?

Substituting c2 = 20 in the condition 1
3 ≤

c1
c2
≤ 2, we get the range for c1 as

6.67≤ c1 ≤ 40.

Similarly, we can obtain feasible range for c2 when c1 is fixed at $30 (Exercise).

1.5 Linear Programming: Equation Form and Basic Solu-
tions

1.5.1 General Linear Programming Problem

Consider an optimization problem in n-decision variables x1,x2, . . . ,xn and m-constraints. Let z
be the objective function which is a linear function of decision variables given by

z = c1x1 + c2x2 + · · ·+ cnxn,

where c j’s are constants. The constraints are also in the form of linear inequalities (or equalities)
given by

a11x1 +a12x2 + · · ·+a1nxn ≤ or ≥ or = b1

a21x1 +a22x2 + · · ·+a2nxn ≤ or ≥ or = b2

...
...

am1x1 +am2x2 + · · ·+amnxn ≤ or ≥ or = bm,

where the coefficients ai j’s are real constants and can be represented by a m× n matrix. In
addition, there may be restriction on the sign of decision variables (non-negativity restriction).
The problem problem of determining an n-tuple (x1,x2, . . . ,xn) which optimizes the objective
function z satisfying constraints described above is called the general linear programming
problem.

Example 1.5.1. Airforce is experimenting with three types of bombs P, Q and R. They are made
using explosives say A, B, C. It is decided to use at most 600 kg of explosive A, at least 480 kg
of explosive B and exactly 540 kg of explosive C. The composition of three types of bombs is
given below.

Bomb Explosive required

A B C

P 3 2 2
Q 1 4 3
R 6 2 3
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The bombs P, Q and R are equivalent to explosion 2,3 and 4 respectively. Under what
production schedule can airforce achieve biggest target. Formulate this problem in mathematical
term.

Solution. Decision variables: Let

x1 be the number of bombs of type P.
x2 be the number of bombs of type Q.
x3 be the number of bombs of type R.

Objective function: Maximize z = 2x1 +3x2 +4x3 subject to
Constraints:

3x1 + x2 +6x3 ≤ 600
2x1 +4x2 +2x3 ≥ 480
2x1 +3x2 +3x3 = 540

x1, x2, x3 ≥ 0.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

After an LPP is mathematically formulated, the next step is to solve it. For solution purpose,
the problem must be reduced to some specific form. The two types of such specific forms that we
will see are canonical form and standard form. They are described in the succeeding subsections.

1.5.2 Canonical form of an LPP

It is always possible to convert a general LPP in the following form:

Maximize z = c1x1 + c2x2 + · · ·+ cnxn

subject to the constraints

ai1x1 +ai2x2 + · · ·+ainxn ≤ bi, i = 1,2, . . . ,m

and
x1,x2, . . . ,xn ≥ 0.

This form of a linear programming is called the canonical form of LPP.
Note that here the objective function is of maximum type and all the constraints are of ≤ type.

The general LPP can be converted into canonical form by following steps:
1. If the objective function is of minimum type, say

Minimize z = c1x1 + c2x2 + · · ·+ cnxn,

then it is converted to maximum type by multiplying it with −1. Equivalently, we have

Maximize h =−z =−c1x1− c2x2−·· ·− cnxn.
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2. If a constraint is of ≥ type then it can be converted to ≤ type by multiplying both sides by
−1, i.e. the constraint given by

ai1x1 +ai2x2 + · · ·+ainxn ≥ bi,

then it can be equivalently written as

−ai1x1−ai2x2−·· ·−ainxn ≤−bi.

3. If a constraint is of equality type then it is replace by two weak constraints of ≤ type and
≥ type. For example, the constraint

ai1x1 +ai2x2 + · · ·+ainxn = bi

is replaced by

ai1x1 +ai2x2 + · · ·+ainxn ≤ bi and
ai1x1 +ai2x2 + · · ·+ainxn ≥ bi.

4. If a variable is of ≤ type (i.e. non-positive) then it is converted to non-negative constraint
by multiplying it with −1. That is

xk ≤ 0⇔ yk(=−xk)≥ 0.

5. A variable which is unrestricted in sign (i.e. neither non-positive nor non-negative) is
written as difference of two non-negative variables. For example, if x j is unrestricted then,
we write

x j = x′j− x′′j , where x′j, x′′j ≥ 0.

Example 1.5.2. Convert the general LPP in the (above) Example 1.5.11.5.1 into canonical form.

Solution. Canonical form: Maximize z = 2x1 +3x2 +4x3

subject to constraints

3x1 + x1 +6x3 ≤ 600
−2x1−4x2−2x3 ≤ −480

2x1 +3x2 +3x3 ≤ 540
−2x1−3x2−3x3 ≤ −540

x1, x2, x3 ≥ 0.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

1.5.3 Equation (Standard) form of an LPP

To solve a given LPP by the simplex method, it has to be first converted into some specific form.
This form is called the standard form of LPP and it has the following requirements:

1. All the constraints are equations with non-negative right hand side.
2. All the variables are non-negative.

Converting inequalities into equations
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Definition 1.5.3 (Slack variable). The constraint of ≤ type is converted into an equation
by adding a non-negative variable on the left hand side of the constraint. For example, the
constraint

ai1x1 +ai2x2 + · · ·+ainxn ≤ bi

is converted into an equality as

ai1x1 +ai2x2 + · · ·+ainxn + s1 = bi, s1 ≥ 0.

The added non-negative variable s1 is called a slack variable.

Definition 1.5.4 (Surplus variable). The constraint of ≥ type is converted into an equation by
subtracting a non-negative variable from the left hand side of the constraint. For example, the
constraint

ai1x1 +ai2x2 + · · ·+ainxn ≥ bi

is converted into an equality as

ai1x1 +ai2x2 + · · ·+ainxn−S1 = bi, S1 ≥ 0.

The non-negative variable S1 which is subtracted is called a surplus variable.

If the right hand side of the constraint is negative, then it is converted into non-negative form by
multiplying the constraint by −1.

Remark 1.5.5. Note that, multiplying both sides of an inequality constraint by −1 and then
converting into an equation is same as converting it first into an equation and then multiplying
both sides by −1.

Variables with unrestricted sign

An unrestricted variable is replaced by the difference of two non-negative integers. For example
if Si has no restriction on its sign, then we write

Si = S−i −S+i , S−i ≥ 0, S+i ≥ 0.

Or if x j is an unrestricted variable, then we write x j = x′j− x′′j , where x′j, x′′j ≥ 0.

Standard LPP in matrix form

Note that the equation form (i.e. standard form) of an LPP with n-decision variables and
m-constraints can be written in terms of matrix notation as

Ax = b,

where A = (ai j)m×n =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn


m×n

, x =


x1

x2
...

xn


n×1

and b =


b1

b2
...

bm


m×1

.
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Example 1.5.6. Convert the general LPP in the (above) Example 1.5.11.5.1 into standard form.

Solution. Standard form: Maximize z = 2x1 +3x2 +4x3

subject to constraints

3x1 + x1 +6x3 + s1 = 600
2x1 +4x2 +2x3−S2 = 480

2x1 +3x2 +3x3 = 540
x1, x2, x3, s1, S2 ≥ 0,

where s1 is a slack variable and S2 is a surplus variable. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

1.5.4 Solving a system of linear equations

When an LPP with n-decision variables and m-constraints is expressed in the standard form, the
constraints are linear equations. Consider a system of m-linear equations in n-unknowns. We
have the following three cases:

1. m > n.
In this case, the number of equations exceeds than the number of unknowns. So not all
constraints will be linearly independent and they are called redundant constraints. It is
possible to discard such constraints and the case can be reduced to one of the following
two cases.

2. m = n.
If the system is consistent then it has unique solution which is optimum. In this case, the
solution of the problem is insignificant from OR perspective.

3. m < n.
In this case, the system has infinitely many feasible solutions and the problem is to de-
termine the optimal solution by OR techniques. In all non-trivial LPPs, the number of
equations m is always less than the number of variables n.

Now, we describe how to obtain some of the feasible solutions (corresponding to the corner
points in graphical method) and then determine the optimum solution among them.

Definition 1.5.7 (Basic solution). Consider an LPP with n-decision variables and m-constraints
in standard form, where m < n. To determined a solution, n−m variables are set equal to zero
and thus it suffices to solve m equations for the remaining m variables. This provides a unique
solution which is called a basic solution.

Definition 1.5.8 (Basic and non-basic variables). To solve an LPP with m equations and n
variables with m < n, a set of n−m variables are set equal to zero. These variables are called
non-basic variables. The remaining m variables which give a unique basic solution are called
basic variables.

Definition 1.5.9 (Basic feasible solution). A basic solution is called a basic feasible solution
if it is feasible i.e., if the basic variables are non-negative.
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Remark 1.5.10. Consider an LPP with m equations and n variables, m < n. We choose m basic
variables among the total n variables to solve the m equations by setting the remaining n−m
variables to zero. Thus, the number of basic solutions will be

nCm =
n!

(n−m)! m!
.

In the following example, we demonstrate the above described method to obtain all the
possible basic solutions.

Example 1.5.11. Express the following LPP in two variables into equation form and obtain all
the basic solutions.

Maximize z = 2x1 +3x2

subject to
2x1 + x2 ≤ 4
x1 +2x2 ≤ 5

x1, x2 ≥ 0.

Solution. First we convert the given LPP in equation (standard) form. Since the two constraints
are of ≤ type inequalities, we add two slack variables s1,s2 and express the given LPP as

Maximize z = 2x1 +3x2

subject to
2x1 + x2 + s1 = 4
x1 +2x2 + s2 = 5
x1, x2, s1, s2 ≥ 0.

We have to solve m = 2 equations for n = 4 variables. Hence, as describe in the above remark,
the number of basic solutions will be 4C2 = 6. These 6 solutions will be obtained by setting
n−m = 2 variables equal to zero and solving for the remaining m = 2 variables. We have the
following possibilities for basic solutions.

1. Setting x1,x2 as non-basic variables, i.e. x1 = x2 = 0, from the above listed constraints, we
have

s1 = 4 and s2 = 5.

Thus, the solution is (s1,s2) = (4,5) at which the value of the objective function z = 0.
2. Non-basic variables x1 = s1 = 0. Then we have

x2 = 4
2x2 + s2 = 5

solving which we get (x2,s2) = (4,−3). Note that this (basic) solution is not feasible
as the basic variable s2 is not non-negative and hence we do not compute the value of
objective function z in this case.

3. Non-basic variables x1 = s2 = 0. Then we have

x2 + s1 = 4
2x2 = 5

solving which we get (x2,s1) =
(5

2 ,
3
1

)
and z = 15

2 = 7.5.
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4. Non-basic variables x2 = s1 = 0. Then we have

2x1 = 4
x1 + s2 = 5.

This gives the solution (x1,s2) = (2,3) and the objective function z = 4.
5. Non-basic variables x2 = s2 = 0. Then we have

2x1 + s1 = 4
x1 = 5.

In this case the solution is (x1,s1) = (5,−6). This is infeasible basic solution as the basic
variable s1 is negative.

6. Non-basic variables s1 = s2 = 0. Then we have

2x1 + x2 = 4
x1 +2x2 =5.

Solving these equations, we get (x1,x2) = (1,2). The value of z at this point is 8.
�

Dr. Jay Mehta,
Department of
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Remark 1.5.12. From the six basic solutions obtained in the above example it appears that the
optimum solution is 8 and the optimum occurs at the point (x1,x2) = (1,2). This is in fact, true.
We verify this solving the example by graphical method below. This will also reflect how these
basic solutions are analogously related to the corner points we obtain graphically.

The graph of the above LP is shown below.

1 2 3 4 5

1

2

3

4

x1 +2x2 = 5 (s2 = 0)

2x
1 +

x
2 =

4
(s1 =

0)

C optimum (x1 = 1,x2 = 2)

F

B

A
D E

x1

x 2

The table shown below gives an idea of the analogy between the corner points and the basic
solutions. It reflects how the corner points of graph are obtained as basic solutions. In fact the
vertices of the feasible region are obtained as the basic feasible solutions of the given LP.
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Non-basic
(zero)
variables

Basic
variables

Basic
solution

Associated
corner point
(x1,x2)

Feasible? Objective
function
value z

(x1,x2) (s1,s2) (4,5) A (0,0) 4 0
(x1,s1) (x2,s2) (4,−3) F (0,4) 8 –
(x1,s2) (x2,s1) (2.5,1.5) B (0,2.5) 4 7.5
(x2,s1) (x1,s2) (2,3) D (2,0) 4 4
(x2,s2) (x1,s1) (5,−6) E (5,0) 8 –
(s1,s2) (x1,x2) (1,2) C (1,2) 4 8

Definition 1.5.13 (Degenerate basic solution). For a system of linear equations, a basic
solution is called a degenerate basic solution if any of the basic variables is zero.

If all the (basic) variables in a basic solution are non-zero then that basic solution is called
non-degenerate basic solution.

In the above example, all the 6 basic solutions are non-degenerate basic solutions because in
all of the basic solutions, both basic variables are non-zero. Let us consider one more example
below in which we compute the basic solutions and determine which among them are feasible
and non-degenerate basic solutions.

Example 1.5.14. Obtain all basic solutions to the system

2x1 + x2− x3 = 2
3x1 +2x2 + x3 = 3.

Solution. Here the given constraints of the problem are already in equation form. There are
m = 2 equations, both are linearly independent, and n = 3 variables. So we set n−m = 1 variable
to zero to obtain 3C2 = 3 basic solutions. We have the following solutions:

1. x1 = 0 (non-basic variable). Then we have

x2− x3 = 2
2x2 + x3 = 3.

Thus, the basic solution in this case is (x2,x3) =
(5

3 ,−
1
3

)
. This is not a feasible solution as

the basic variable, x3 are negative. However, the solution is non-degenerate basic solution
as both the basic variables x2,x3 are non-zero.

2. x2 = 0 (non-basic variable). Then we have

2x1− x3 = 2
3x1 + x3 = 3.

Thus, the basic solution in this case is (x1,x3) = (1,0). This is feasible solution as both the
basic variables, x1 and x3 are non-negative. This is, however, a degenerate basic solution
as the basic variable x3 = 0.

3. x3 = 0 (non-basic variable). Then we have

2x1 + x2 = 2
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34 §1.6. The Simplex Method

3x1 +2x2 = 3.

Thus, the basic solution in this case is (x1,x2) = (1,0). This is feasible solution as both the
basic variables, x1 and x2 are non-negative. This is, however, a degenerate basic solution
as the basic variable x2 = 0.

We summarize the above basic solutions by writing them in tabular form as follows:

Non-basic
variables

Basic
variables

Basic
solution

Feasible? Non-degenerate?

x1 (x2,x3)
(5

3 ,−
1
3

)
8 4

x2 (x1,x3) (1,0) 4 8

x3 (x1,x2) (1,0) 4 8

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

1.6 The Simplex Method

Before we describe the computational algorithm of the procedure to solve a given LP by simplex
method, we explain the simplex method by considering an example demonstration.

We begin with an already seen example, the Reddy Mikks model, which is converted into
equation form below. We now obtain the solution to the Reddy Mikks model by simplex method.
Since this is the first example of simplex method being discussed, we include the description of
the method and full computational details and not just tableau steps only.

Example 1.6.1. Consider the Reddy Mikks model (Example 1.2.11.2.1) expressed in standard form
as follows:

Maximize z = 5x1 +4x2 +0s1 +0s2 +0s3 +0s4

subject to
6x1 + 4x2 + s1 = 24
x1 + 2x2 + s2 = 6
−x1 + x2 + s3 = 1

x2 + s4 = 2

x1, x2, s1, s2, s3, s4 ≥ 0,

where the variables s1,s2,s3,s4 are slack variables.

Solution. We write the objective equation as

z−5x1−4x2 = 0.

The initial simplex table can be represented as follows:
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Basic z x1 x2 s1 s2 s3 s4 Solution

z 1 −5 −4 0 0 0 0 0 z-row

s1 0 6 4 1 0 0 0 24 s1-row
s2 0 1 2 0 1 0 0 6 s2-row
s3 0 −1 1 0 0 1 0 1 s3-row
s4 0 0 1 0 0 0 1 2 s4-row

The process of obtaining solution by simplex method begins at origin, in this case (x1,x2) =
(0,0). Thus, x1,x2 are set to be non-basic variables and the remaining variables (s1,s2,s3,s4) are
taken to be basic variables. The basic variables are listed in the first and leftmost column (“Basic
column”) and their solutions are given in the last and rightmost column (“Solution column”).
Thus, the starting simplex table formulation itself gives us the initial basic solution. In our case,
the starting basic solution is (s1,s2,s3,s4) = (24,6,1,2) which is obtained from the constraint
equations by taking x1 = x2 = 0. Note that (at every stage) the submatrix formed by the basic
variables in the simplex table forms an identity matrix. This is shown in the above table by
shaded columns.

The objective function z is written in form of an equation with right hand side equal to 0. The
coefficients of z and all the variables x1,x2,s1,s2,s3,s4 gives us the first row (i.e. “z-row”) of
starting simplex table. Accordingly here we write z−5x1−4x2 = 0. Since the right hand side of
objective function is 0, the entry in Solution column of z-row is also 0.

The initial solution of z can be improved by increasing the value of a non-basic variable x1
or x2 from 0 to some positive value. The variable with the most negative coefficient (in the
z-row) is chosen for this purpose. This rule is called simplex optimality condition. The variable
chosen is called the entering variable and since the number of basic variables m and non-basic
variables n−m is fixed, one of the basic variables is to be replaced by the entering non-basic
variable (x1 in this case). This variable is called the leaving variable. We compute the ratios of
the solutions to the coefficients of entering variable. The row with the minimum ratio decides
the leaving variable. This rule is called the simplex feasibility condition.

In our example, x1 has the most negative coefficient −5 and hence x1 is the entering variable.
Now, we compute the ratios of Solution

coefficient of x1
for “s1-row, s2-row, s3-row and s4-row”. The table

of ratios is given below.

Basic Entering
x1

Solution Ratio (or intercept)

s1 6 24 x1 =
24
6 = 4← minimum

s2 1 6 x1 =
6
1 = 6

s3 −1 1 x1 =
1
−1 =−1 (negative denominator, ignore)

s4 0 2 x1 =
2
0 (zero denominator, ignore)

Note that from the above table, it is clear that this ratio is minimum for the basic variable s1
and hence s1 is the leaving variable. The the row of leaving variable is called the pivot row while
the column of entering variable is called the pivot column and their intersection cell is called

Dr. Jay Mehta jay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edu

mailto:jay_mehta@spuvvn.edu
jay_mehta@spuvvn.edu
jay_mehta@spuvvn.edu


36 §1.6. The Simplex Method

the pivot element. The same starting simplex table with pivot row (“s1-row”), pivot column
(“x1-column”) and pivot element (6 in this case) is re-sketched in the following table.

Enter
↓

Basic z x1 x2 s1 s2 s3 s4 Solution

z 1 −5 −4 0 0 0 0 0

Leave← s1 0 6 4 1 0 0 0 24 Pivot row
s2 0 1 2 0 1 0 0 6
s3 0 −1 1 0 0 1 0 1
s4 0 0 1 0 0 0 1 2

Pivot
column

Next, we compute the Gauss-Jordan row operations to obtain the new basic solutions.
These computations are carried out in the following two steps:

1. For pivot row:
(a) Replace the leaving variable in the “Basic” column by the entering variable.
(b) New pivot row = Current pivot row ÷ Pivot element.

2. For all other rows:

New row =
(
Current row

)
–
(
(Pivot column coefficient) × (New pivot row)

)
.

These computations are shown below:
1. Replace s1 by x1 in the Basic column.

New x1− row = Current s1-row ÷ 6

=
1
6
(0 6 4 1 0 0 0 24)

=

(
0 1

2
3

1
6

0 0 0 4
)
.

2. New z− row = Current z-row −(−5)× New x1 row

= (1 −5 −4 0 0 0 0 0)− (−5)
(

0 1
2
3

1
6

0 0 0 4
)

=

(
1 0 − 2

3
5
6

0 0 0 20
)
.

3. New s2− row = Current s2-row −(1)× New x1 row

= (0 1 2 0 1 0 0 6)− (1)
(

0 1
2
3

1
6

0 0 0 4
)

=

(
0 0

4
3
− 1

6
1 0 0 2

)
.
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4. New s3− row = Current s3-row −(−1)× New x1 row

= (0 −1 1 0 0 1 0 1)− (−1)
(

0 1
2
3

1
6

0 0 0 4
)

=

(
0 0

5
3

1
6

0 1 0 5
)
.

5. New s4− row = Current s4-row −(0)× New x1 row

= (0 0 1 0 0 0 1 2)− (0)
(

0 1
2
3

1
6

0 0 0 4
)

= (0 0 1 0 0 0 1 2) .
The new simplex table with the above rows is shown below.

↓

Basic z x1 x2 s1 s2 s3 s4 Solution

z 1 0 −2
3

5
6 0 0 0 20

x1 0 1 2
3

1
6 0 0 0 4

← s2 0 0 4
3 −1

6 1 0 0 2

s3 0 0 5
3

1
6 0 1 0 5

s4 0 0 1 0 0 0 1 2

The above table gives the new basic solution (x1,s2,s3,s4) = (4,2,5,2). Equivalently the new
value of the objective z = 5× x1 +4× x2 +0× s1 +0× s2 +0× s3 +0× s4 = 20.

Note that the optimality condition (most negative coefficient) shows that x2 is the entering
variables in the next step. We compute the ratios in the following table and find out that s2 is the
leaving variable as it has the minimum ratio.

Basic Entering
x2

Solution Ratio (or intercept)

x1
2
3 4 x2 = 4÷ 2

3 = 6

s2
4
3 2 x2 = 2÷ 4

3 = 1.5 (minimum)

s3
5
3 5 x2 = 5÷ 5

3 = 3

s4 1 2 x2 =
2
1 = 2

Again computing the Gauss-Jordan row operations as before, we obtain the new simplex table
as follows:
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Basic z x1 x2 s1 s2 s3 s4 Solution

z 1 0 0 3
4

1
2 0 0 21

x1 0 1 0 1
4 −1

2 0 0 3

x2 0 0 1 −1
8

3
4 0 0 3

2

s3 0 0 0 3
8 −5

4 1 0 5
2

s4 0 0 0 1
8 −3

4 0 1 1
2

Observe that none of the coefficients of the z-row in the above table have negative coefficients.
Hence the above table is optimal. The optimum is z= 21 and the optimal point is (x1,x2) =

(
3, 3

2

)
.

The complete basic solution is (x1,x2,s3,s4) =
(
3, 3

2 ,
5
2 ,

1
2

)
. �
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1.6.1 The Simplex Algorithm

The above example is of maximization type in which by optimality condition the variable with the
most negative coefficient in the z-row of simplex table is the entering variable. In minimization
type problems, it is the opposite, i.e. the variable with the most positive coefficient in the z-row
becomes the entering variable. However, the feasibility condition for the leaving variable remains
unchanged.

Now, we describe below the terms we used in simplex process in the above example.

Definition 1.6.2 (Optimality condition). The entering variable in a maximization type (or
minimization type) problem is the non-basic variable with the most negative (or most positive)
coefficient in the z-row. If two variables have the same most negative coefficient then any one
is chosen arbitrarily. The optimum is reached at the iterative step where all the coefficients of
the z-row are non-negative (or non-positive).

Definition 1.6.3 (Feasiblility condition). For both the maximization and minimization type
problems, the leaving variable is the basic variable associated with the smallest non-negative
ratio and strictly positive denominator. In case of any tie, any one of the variable is chosen as
leaving variable arbitrarily.

Definition 1.6.4 (Gauss-Jordan row operations).
1. For pivot row:

(a) Replace the leaving variable in the “Basic” column by the entering variable.
(b) New pivot row = Current pivot row ÷ Pivot element.

2. For all other rows (including the z-row):

New row =
(
Current row

)
–
(
(Pivot column coefficient) × (New pivot row)

)
.

The following are the steps of the simplex method:
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Simplex Method Algorithm
1. Express the given LPP into equation form (i.e. standard form) by introducing slack or

surplus variables if necessary.
2. Determine a initial basic feasible solution and frame the starting simplex table.
3. Choose the entering variable by optimality condition. If there is no entering variable,

then the latest solution is optimal. If optimal solution is obtained, terminate the process.
Else go to next step.

4. Select the leaving variable using the feasibility condition.
5. Compute Gauss-Jordan row operations to determine the new basic solution.
6. Go to Step 1 and repeat the process till optimum is obtained.

Let us consider few more examples of the simplex method.

1.6.2 Solved examples using simplex method

Example 1.6.5. Solve the following problem by simplex method.

Max. z = 4x1 +10x2

subject to
2x1 + x2 ≤ 50

2x1 +3x2 ≤ 90
2x1 +5x2 ≤ 100

x1, x2, ≥ 0.

Solution. The equation form of the given LPP is written below.

Max. z = 4x1 +10x2 +0s1 +0s2 +0s3

subject to
2x1 + x2 + s1 = 50
2x1 + 3x2 + s2 = 90
2x1 + 5x2 + s3 = 100

x1, x2, s1, s2, s3 ≥ 0,

where the variables s1,s2,s3 are slack variables.
We write the objective function equation as z−4x1−10x2 = 0. The starting simplex table

giving initial basic solution (s1,s2,s3) = (50,90,100) is represented below.

↓

Basic z x1 x2 s1 s2 s3 Solution Ratio

z 1 −4 −10 0 0 0 0

s1 0 2 1 1 0 0 50 50
1 = 50

s2 0 2 3 0 1 0 90 90
3 = 30

← s3 0 2 5 0 0 1 100 100
5 = 20 Pivot row

Pivot
column
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Here x2 has the most negative coefficient and hence x2 is the entering variable. The ratios
computed in the rightmost column indicates that s3 is the leaving variable. Hence, “s3-row” is
the pivot row, “x2-column” is the pivot column and their intersection entry 5 is the pivot element.

We carry out the Gauss-Jordan computations to obtain the following simplex table.

Basic z x1 x2 s1 s2 s3 Solution

z 1 0 0 0 0 2 200

s1 0 8
5 0 1 0 −1

5 30

s2 0 4
5 0 0 1 −3

5 30

x2 0 2
5 1 0 0 1

5 20

Since all the entries in the “z-row” are non-negative, we obtain the the solution of the given
problem which is z = 200 with x1 = 0 and x2 = 20. �
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We now verify the optimal solution of the above problem by graphical method. The graph of
the above problem is sketched below.
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1 +

x
2
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2x1 +3x2 = 90

2x1 +5x2 = 100

C
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The feasible region is the shaded region bounded by the polygon ABCD. We compute the
objective value at these corner points and determine the optimum point.
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Point Coordinates Max z = 4x1 +10x2

A (0,0) 0
B (25,0) 100
C

(75
4 ,

25
2

)
200

D (0,20) 200

Thus, by graphical method we have verified that D(0,20) is one of the point where optimum
occurs and the optimum value is z = 200.

Example 1.6.6. Solve the following problem by simplex method.

Max. z = 4x1 +3x2 +6x3

subject to
2x1 +3x2 +2x3 ≤ 440

4x1 +3x3 ≤ 470
2x1 +5x2 ≤ 430
x1, x2, x3 ≥ 0.

Solution. The given LPP can be expressed in equation form as

Max. z = 4x1 +3x2 +6x3 +0s1 +0s2 +0s3

subject to
2x1 + 3x2 + 2x3 + s1 = 440
4x1 + 3x3 + s2 = 470
2x1 + 5x2 + s3 = 430

x1, x2, x3, s1, s2, s3 ≥ 0,

where the variables s1,s2,s3 are slack variables.
We write the objective equation as z−4x1−3x2−6x3 = 0. The starting simplex table giving

the initial basic solution (s1,s2,s3) = (440,470,430) is framed below.

Basic z x1 x2 x3 s1 s2 s3 Solution Ratio

z 1 −4 −3 −6 0 0 0 0

s1 0 2 3 2 1 0 0 440 440
2 = 220

s2 0 4 0 3 0 1 0 470 470
3

s3 0 2 5 0 0 0 1 430 430
0 = ∞

The optimality condition (most negative coefficient) shows that x3 is the entering non-basic
variable and the feasibility condition (ratios) shows that s2 is the leaving basic variable. After
computing the Gauss-Jordan row operations, we get the simplex table as follows:
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Basic z x1 x2 x3 s1 s2 s3 Solution Ratio

z 1 4 −3 0 0 2 0 940

s1 0 −2
3 3 0 1 −2

3 0 380
3

380
9

x3 0 4
3 0 1 0 1

3 0 470
3

470
0 = ∞

s3 0 2 5 0 0 0 1 430 430
5 = 83

From the above table it follows that, in the next iteration, the non-basic variable x2 is the
entering variable and the basic variable s1 leaves. We have the following simplex table in the
next iterative step.

Basic z x1 x2 x3 s1 s2 s3 Solution

z 1 2 0 0 1 0 0 3200
3

x2 0 −4
3 1 0 1

3 −2
9 0 380

9

x3 0 4
3 0 1 0 1

3 0 470
3

s3 0 26
3 0 0 −5

3
10
9 1 1970

9

Thus, the optimal solution is z= 3200
3 = 1066.67 and the point at which it occurs is (x1,x2,x3)=(

0, 470
3 , 380

9

)
. The final basic solution is (x2,x3,s3) =

(470
3 , 380

9 , 1970
9

)
. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

1.7 Artificial Starting Solution

Example 1.7.1. Express the following LP into equation form and check if it has a starting
solution consisting of all slack variables.

Max z = 5x1−4x2 +3x3

subject to

2x1 + x2−6x3 = 20
6x1 +5x2 +10x3 ≤ 76
8x1−3x2 +6x3 ≤ 50

x1, x2, x3 ≥ 0.

Solution. The equation form of given LP is written below.

Max z = 5x1−4x2 +3x3 +0s1 +0s2

subject to
2x1 + x2 − 6x3 = 20
6x1 + 5x2 + 10x3 + s1 = 76
8x1 − 3x2 + 6x3 + s2 = 50
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x1, x2, x3, s1, s2,≥ 0,

where the variables s1,s2 are slack variables. Here there are three equations and only two
slack variables. Hence, we cannot get an initial all-slack variable basic solution if we take
x1 = x2 = x3 = 0. The reason is the fact that the first constraint is an equation and not “≤”
type. �
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As seen in the above example if the a given LP has constraints of type “=” or “≥”, then it
does not give a starting basic solution consisting of all slack variables only. In other words,
in such cases, we cannot initiate the simplex process at origin i.e. by taking given variables
x1,x2, . . . ,xn as non-basic variables.

To deal with such problems, we introduce artificial variables which play the same role as that
of the slack variables in the first iteration. The artificial variables are then disposed of at a later
iteration. There are two methods involving the use of artificial variables for solving a given LP
for which initial basic feasible solution cannot be given by all the slack variables. These methods
are: the Big M-method and the Two-Phase method.

1.7.1 Big M-Method

In a given LPP represented in equation form, if an equation i does not have a slack variable
then an artificial variable Ri is added. This helps in forming a starting basic solution similar to
all-slack basic solution. However, these artificial variables thus added, are not part of the original
problem and they are reduced to zero by the time we reach the optimum solution (assuming
that feasible solution exists). This is done by penalizing the artificial variables in the objective
function by the following rule.

Penalty rule for artificial variables:

Given a sufficiently large positive value M (M→ ∞), the objective function coefficient of an
artificial variable represents an appropriate penalty if:

Artificial variable objective coefficient =

{
−M, in maximization problems

M, in minimization problems
.

The Big M-method is sometimes also called the M-method or the penalty method. Let us
consider couple of examples below to understand this method.

Example 1.7.2. Solve: Max. z = 6x1 +4x2
subject to

2x1 +3x2 ≤ 30
3x1 +2x2 ≤ 24

x1 + x2 ≥ 3
x1, x2 ≥ 0.

Solution. First we express the given problem in equation form as below:

Max. z = 6x1 +4x2 +0s1 +0s2 +0S3
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subject to

2x1 + 3x2 + s1 = 30
3x1 + 2x2 + s2 = 24
x1 + x2 − S3 = 3

x1, x2, x3, s1, s2, S3 ≥ 0,

where s1,s2 are slack variables and S3 is a surplus variable.
If we start the simplex method at origin, i.e. setting x1,x2 as non-basic variables, then the

initial basic solution is given by (s1,s2,S3) = (30,24,−3) which is infeasible. The reason is that
the third constraint does not have a slack variable (here S3 is a surplus variable). So we add an
artificial variable R1 in the third constraint and penalize it in the objective function with −MR1.
The resultant LP is given below.

Max. z = 6x1 +4x2−MR1

subject to

2x1 + 3x2 + s1 = 30
3x1 + 2x2 + s2 = 24
x1 + x2 − S3 + R1 = 3

x1, x2, x3, s1, s2, S3, R1 ≥ 0.

The starting basic solution is given by (s1,s2,R1) = (30,24,3). The computations during the
iterations can be carried out algebraically considering M as a large value. However, for computa-
tional convenience, we assign a large value to M, say M = 100 (looking at the coefficients in the
objective function, it would suffice). Writing the objective equation as z−6x1−4x2+100R1 = 0,
the starting simplex table takes the following form:

Basic x1 x2 s1 s2 S3 R1 Solution

z −6 −4 0 0 0 100 0

s1 2 3 1 0 0 0 30
s2 3 2 0 1 0 0 24
R1 1 1 0 0 −1 1 3

Note that the initial value of z is

z = 6x1 +4x2−100R1 = 6×0+4×0−100×3 =−300.

So to make the z-row in the above simplex table consistent with the rest of the table, we substitute
out R1 in the z-row by the following operation:

New z-row = Old z-row − (100×R1-row).

Then the starting simplex table takes the following form:
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Basic x1 x2 s1 s2 S3 R1 Solution Ratio

z −106 −104 0 0 100 0 −300

s1 2 3 1 0 0 0 30 30
2 = 15

s2 3 2 0 1 0 0 24 24
3 = 8

R1 1 1 0 0 −1 1 3 3
1 = 3 (min.)

The above table is now ready for execution of simplex algorithm. It can be seen, by optimality
and feasibility conditions respectively, that x1 is the entering variable and R1 is the leaving
variable. We compute the Gauss-Jordan operations to obtain the following table:

Basic x1 x2 s1 s2 S3 R1 Solution Ratio

z 0 2 0 0 −6 106 18

s1 0 1 1 0 2 −2 24 24
2 = 12

s2 0 −1 0 1 3 −3 15 15
3 = 5 (min.)

x1 1 1 0 0 −1 1 3 3
−1 =−3

Basic x1 x2 s1 s2 S3 R1 Solution

z 0 0 0 2 0 100 48

s1 0 5
3 1 −2

3 0 0 14

S3 0 −1
3 0 1

3 1 −1 5

x1 1 2
3 0 1

3 0 0 8

Hence, the optimum value of the objective function is z = 48 and the optimum point is
(x1,x2) = (8,0). �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

The above LP involves two variables and so the solution can be verified graphically. It is left
as an exercise to check the solution by graphical method.

Example 1.7.3. Solve: Min. z = 4x1 + x2
subject to

3x1 + x2 = 3
4x1 +3x2 ≥ 6

x1 +2x2 ≤ 4
x1, x2 ≥ 0.

Solution. Introducing x3 as a surplus variable in the second constraint and x4 as a slack variable
in the third constraint, the given LP can be expressed in equation form as

Min. z = 4x1 + x2 +0x3 +0x4
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subject to
3x1 + x2 = 3
4x1 + 3x2 − x3 = 6
x1 + 2x2 + x4 = 4

x1, x2, x3, x4 ≥ 0.

The first and second constraint equations written above do not have any slack variable. Hence it
is not possible in this case to have a starting basic feasible solution of all slack variables only.
As a result, we add artificial variables R1,R2 to the first and second constraint respectively and
penalize them in the objective function with MR1 +MR2 (since it is a minimization problem) for
a sufficiently large number M. The resultant LP can be written as:

Min. z = 4x1 + x2 +MR1 +MR2

subject to
3x1 + x2 + R1 = 3
4x1 + 3x2 − x3 + R2 = 6
x1 + 2x2 + x4 = 4

x1, x2, x3, x4, R1, R2 ≥ 0.

The starting basic solution is given by (R1,R2,x4) = (3,6,4). Looking at the coefficients of the
variables in the objective function, it appears that the value of M = 100 is reasonable. Writing
the objective equation as

z−4x1− x2−100R1−100R2 = 0,

the starting simplex table can be written as follows:

Basic x1 x2 x3 R1 R2 x4 Solution

z −4 −1 0 −100 −100 0 0

R1 3 1 0 1 0 0 3

R2 4 3 −1 0 1 0 6

x4 1 2 0 0 0 1 4

The initial value of z is z = 4x1+x2+100R1+100R2 = 4×0+0+100×3+100×6 = 900.
The above table shows the starting value of z = 0. So to make the z-row consistent with the rest
of the table, we substitute out R1 and R2 in the z-row by the following row operation:

New z-row = Old z-row + (100×R1-row + 100×R2-row).

Then the simplex table then takes the form as shown below.

Basic x1 x2 x3 R1 R2 x4 Solution Ratio

z 696 399 −100 0 0 0 900

R1 3 1 0 1 0 0 3 3
3 = 1 (min.)

R2 4 3 −1 0 1 0 6 6
4 = 3

2

x4 1 2 0 0 0 1 4 4
1 = 4
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The above table is now ready for simplex method computations. Since the problem is of
minimization type, we choose the variable with the most positive coefficient in the z-row as the
entering variable. Consequently, it can be seen that, x1 is the entering variable and R1 is the
leaving variable. We carry out the simplex computations till we reach the optimum.

Basic x1 x2 x3 R1 R2 x4 Solution Ratio

z 0 167 −100 −232 0 0 204

x1 1 1
3 0 1

3 0 0 1 1
1/3 = 3

R2 0 5
3 −1 −4

3 1 0 2 2
5/3 = 6

5 (min.)

x4 0 5
3 0 −1

3 0 1 3 3
5/3 = 9

5

Basic x1 x2 x3 R1 R2 x4 Solution Ratio

z 0 0 1
5 −492

5 −501
5 0 18

5

x1 1 0 1
5

3
5 −1

5 0 3
5

3/5
1/5 = 3

x2 0 1 −3
5 −4

5
3
5 0 6

5
6/5
−3/5 =−2

x4 0 0 1 1 −1 1 1 1 (min.)

Basic x1 x2 x3 R1 R2 x4 Solution

z 0 0 0 −493
5 −100 −1

5
17
5

x1 1 0 0 2
5 0 −1

5
2
5

x2 0 1 0 −1
5 0 3

5
9
5

x3 0 0 1 1 −1 1 1

Since the given problem is of minimization type and all the variables in the z-row of the above
table have non-positive coefficient, we have reached the optimum.

Hence, the optimum value of the objective function is z = 17
5 , the optimum occurs at the point

(x1,x2) =
(2

5 ,
9
5

)
and the complete basic solution is (x1,x2,x3) =

(2
5 ,

9
5 ,1
)
. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Again, the above LP is in two variables and so one can verify the solution of the above
problem by graphical method. The verification is left as an exercise.

Remark 1.7.4. Note that, in any given LP, an artificial variable need not always necessarily
vanish at the end of simplex method by imposing a penalty M to it in the objective function. If,
at the final iteration, an artificial variable has a positive value, then the given LP does not have
feasible solution (see Exercise 1.201.20).
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1.7.2 Two-Phase Method

The Two-Phase method also involves adding artificial variables to the constraint just as in the
Big M-method except that the penalty M is not used in the objective function in this case. As
the name suggest, the solution of the given LP is obtained in two phases. Phase I obtains the
starting basic feasible solution and if one such solution is found then Phase II solves the problem
by obtaining the optimum.

The Two-Phase method can be summarized as follows:

Phase I:
1. Express the given problem in equation form and add necessary, slack, surplus,

and artificial variables (same as in the Big M-method) to obtain the starting basic
feasible solution.

2. Thereafter, find a basic solution of the resulting equations that minimizes the sum
of artificial variables, irrespective of whether the given LP is maximization type or
minimization type.

3. If the minimum value of the sum of the artificial variables is positive, then the
given LP has no feasible solution (see Exercise 1.221.22). Else proceed to Phase II.

Phase II:
Using the feasible solution obtained from Phase I as the starting basic feasible
solution, solve the original LP, i.e. the columns of artificial variables can now be
deleted.

We solve the above discussed two examples by Two-Phase method (Examples 1.7.21.7.2 and 1.7.31.7.3)
that we already solved by Big M-method in the preceding subsection.

Example 1.7.5. Solve by Two-Phase method

Max. z = 6x1 +4x2

subject to

2x1 +3x2 ≤ 30
3x1 +2x2 ≤ 24

x1 + x2 ≥ 3
x1, x2 ≥ 0.

Solution. Phase I:
Min r = R1

subject to
2x1 + 3x2 + s1 = 30
3x1 + 2x2 + s2 = 24
x1 + x2 − S3 + R1 = 3

x1, x2, x3, s1, s2, S3, R1 ≥ 0,

where s1,s2 are slack variables, S3 is a surplus variable, and R1 is an artificial variable.
The associated table is

PS04EMTH30 2017-18



§1.7. Artificial Starting Solution 49

Basic x1 x2 s1 s2 S3 R1 Solution

r 0 0 0 0 0 −1 0

s1 2 3 1 0 0 0 30
s2 3 2 0 1 0 0 24
R1 1 1 0 0 −1 1 3

The starting basic solution is (s1,s2,R1) = (30,24,3) and the initial value of r is r = R1 = 3.
However, the above table shows r = 0. So, to make the r-row consistent with the rest of the table,
we substitute out R1 in r-row by the following operation:

New r-row = Old r-row + (1×R1-row).

Consequently, we have the following table:

Basic x1 x2 s1 s2 S3 R1 Solution Ratio

r 1 1 0 0 −1 0 3

s1 2 3 1 0 0 0 30 30
2 = 15

s2 3 2 0 1 0 0 24 24
3 = 8

R1 1 1 0 0 −1 1 3 3
1 = 3 (min.)

Since the problem is to “minimize” r, we choose the variable with the most “positive”
coefficient in the r-row as the entering variable. Here, there is a tie between x1 and x2. We choose
x1 arbitrarily. As seen in the above table, R1 is the leaving variable and we have the following
table as the next iteration.

Basic x1 x2 s1 s2 S3 R1 Solution

r 0 0 0 0 0 −1 0

s1 0 1 1 0 2 −2 24
s2 0 −1 0 1 3 −3 15
x1 1 1 0 0 −1 1 3

We have reached the optimum as the above table indicates and Phase I ends here. Since
minimum r = 0, by Phase I, the basic feasible solution is (s1,s2,x1) = (24,15,3). Now, we
eliminate the column of the artificial variable R1 and go to Phase II.

Phase II: The original problem can now be written as

Max z = 6x1 +4x2

subject to
x2 + s1 + 2S3 = 24

− x2 + s2 + 3S3 = 15
x1 + x2 − S3 = 3
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x1, x2, x3, s1, s2, S3 ≥ 0.

The associated table (obtained by deleting R1-column and replacing r-row by z-row) is as follows:

Basic x1 x2 s1 s2 S3 Solution

z −6 −4 0 0 0 0

s1 0 1 1 0 2 24
s2 0 −1 0 1 3 15
x1 1 1 0 0 −1 3

Again, initial value of z is z = 6× x1 + 4× x2 = 6× 3+ 4× 0 = 18. To make the z-row
consistent with the rest of the table, we substitute out x1 in the above table by the following
operation:

New z-row = Old z-row + (6× x1-row)

Then the new table obtained is as follows:

Basic x1 x2 s1 s2 S3 Solution Ratio

z 0 2 0 0 −6 18

s1 0 1 1 0 2 24 24
2 = 8

s2 0 −1 0 1 3 15 15
3 = 5 (min.)

x1 1 1 0 0 −1 3 3
−1 =−3

Here S3 is the entering variable and s2 is the leaving variable. Computing Gauss-Jordan
operations, we have the following tableau:

Basic x1 x2 s1 s2 S3 Solution

z 0 0 0 2 0 48

s1 0 5
3 1 −2

3 0 14

S3 0 −1
3 0 1

3 1 5

x1 1 2
3 0 1

3 0 8

Hence, the maximum value of the objective function is z = 48 and the optimum point is
(x1,x2) = (8,0). The complete basic solution is given by (s1,S3,x1) = (14,5,8). �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Example 1.7.6. Solve Example 1.7.31.7.3 by Two-Phase method, i.e.
Solve by two-phase method: Minimize z = 4x1 + x2
subject to

3x1 + x2 = 3
4x1 +3x2 ≥ 6
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x1 +2x2 ≤ 4
x1, x2 ≥ 0.

Solution. Phase I:
Min r = R1 +R2

subject to
3x1 + x2 + R1 = 3
4x1 + 3x2 − x3 + R2 = 6
x1 + 2x2 + x4 = 4

x1, x2, x3, x4, R1, R2 ≥ 0,

where x3 is a surplus variable, x4 is a slack variable and R1,R2 are artificial variables. The
associated table is

Basic x1 x2 x3 R1 R2 x4 Solution

r 0 0 0 −1 −1 0 0

R1 3 1 0 1 0 0 3

R2 4 3 −1 0 1 0 6

x4 1 2 0 0 0 1 4

We substitute out R1 and R2 in the r-row just as in Big M-method, by the following operation:

New r-row = Old r-row + (1×R1-row +1×R2-row).

The resultant table and further iterations are as given below:

Basic x1 x2 x3 R1 R2 x4 Solution Ratio

r 7 4 −1 0 0 0 9

R1 3 1 0 1 0 0 3 3
3 = 1 (min.)

R2 4 3 −1 0 1 0 6 6
4 = 3

2

x4 1 2 0 0 0 1 4 4
1 = 4

Basic x1 x2 x3 R1 R2 x4 Solution Ratio

r 0 5
3 −1 −7

3 0 0 2

x1 1 1
3 0 1

3 0 0 1 1
1/3 = 3

R2 0 5
3 −1 −4

3 1 0 2 2
5/3 = 6

5 (min.)

x4 0 5
3 0 −1

3 0 1 3 3
5/3 = 9

5
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Basic x1 x2 x3 R1 R2 x4 Solution

r 0 0 0 −1 −1 0 0

x1 1 0 1
5

3
5 −1

5 0 3
5

x2 0 1 −3
5 −4

5
3
5 0 6

5

x4 0 0 1 1 −1 1 1

Since minimum r = 0, Phase I provides the basic feasible solution (x1,x2,x4) =
(3

5 ,
6
5 ,1
)
. The

role of artificial variables is over, their columns can be deleted now and we move to Phase II.

Phase II: The original problem can be written as

Min z = 4x1 + x2

subject to
x1 + 1

5x3 = 3
5

+ x2 − 3
5x3 = 6

5
x3 + x4 = 1

x1, x2, x3, x4 ≥ 0.

The table associated with Phase II is gives as

Basic x1 x2 x3 x4 Solution

z −4 −1 0 0 0

x1 1 0 1
5 0 3

5

x2 0 1 −3
5 0 6

5

x4 0 0 1 1 1

Again, to make the z-row consistent, we substitute out basic variables x1 and x2 in the z-row
by the following row operation:

New z-row = Old z-row + (4× x1-row +1× x2-row).

Then the initial table of Phase II becomes

Basic x1 x2 x3 x4 Solution Ratio

z 0 0 1
5 0 18

5

x1 1 0 1
5 0 3

5
3/5
1/5 = 3

x2 0 1 −3
5 0 6

5
6/5
−3/5 =−2

x4 0 0 1 1 1 1 (min.)

Here, x3 is the entering variable and x4 is the leaving variable. By Gauss-Jordan row operations,
we obtain the optimum in the next iteration.
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Basic x1 x2 x3 x4 Solution

z 0 0 0 −1
5

17
5

x1 1 0 0 −1
5

2
5

x2 0 1 0 3
5

9
5

x3 0 0 1 1 1

The maximum value of the objective function is z = 17
5 , the optimum occurs at the point

(x1,x2) =
(2

5 ,
9
5

)
and the complete basic solution is (x1,x2,x3) =

(2
5 ,

9
5 ,1
)
.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Remark 1.7.7. The columns of artificial variables at the end of Phase I can only be deleted if all
of them are non-basic variables. If an artificial variable is basic at zero level (i.e. having value 0)
at the end of Phase I, then it can be removed by the following two additional steps:

1. Select a zero artificial variable to leave the basic solution by considering its row as pivot
row. The entering variable can be chosen as any non-basic variable and non-artificial
variable with a non-zero coefficient in the pivot row. Go to the next iteration by simplex
computations (see Exercise 1.231.23).

2. Delete the column of that (left) artificial variable from the table. If there are no more
zero artificial variables then move to Phase II, else repeat above step.

In continuation of this topic, in the next chapter, we shall see some special cases in the simplex
method and their interpretations.

Exercises

Exercise 1.1
The owner of metro sports company wishes to determine how many advertisements to place

in three selected magazines A, B and C. His objective is to advertise in such a way that total
exposure to potential buyers of sports goods is maximized. Percentage of readers for each
magazine are known. Exposure in any particular magazine is the number of advertisements
placed multiplied by the number of potential buyers. The following data is given:

A B C

Readers 100000 60000 40000
Potential buyers 20% 15% 8%
Cost per advertisement (in |) 8000 6000 5000

The budget is | 100000. He has also decided that no more than 15 advertisements should be
placed in magazine A, and in B and C he wants to place at least 8 advertisements.

Formulate this optimization problem in mathematical form.
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Exercise 1.2
Check whether the following solutions are feasible or not and hence determine the best feasible

solution among the following solutions for the Reddy Mikks model in Example 1.2.11.2.1.

(a) x1 = 1, x2 = 2

(b) x1 = 3, x2 = 1

(c) x1 = 3, x2 = 1.5

(d) x1 = 2, x2 = 1

(e) x1 = 2, x2 =−1

Exercise 1.3
A company buying scrap metal has two types of scrap available to them. The first type of scrap

metal has 20% metal A, 10% of impurity and 20% of metal B by weight. The second type of
scrap has 30% metal A, 10% impurity and 15% of metal B by weight. The company requires at
least 120 kg of metal A, at most 40 kg of impurity and at least 90 kg of metal B. The prices of
two scraps are | 200 and | 300 per kg respectively.

Determine the optimum quantities of two scraps to be purchased at minimum cost.

Exercise 1.4
A farm uses at least 800 kg of special feed daily. The special feed is a mixture of corn and

soybean meal with the following compositions:

kg per kg of feedstuff

Feedstuff Protein Fibre Cost (|/kg)

Corn 0.09 0.02 0.30
Soybean meal 0.60 0.06 0.90

The dietary requirements of the special feed are at least 30% protein and at most 5% fibre.
The goal is to determine the daily minimum-cost feed mix.

Exercise 1.5
A farmer has a supply of chemical fertilizer of Type-I which contains 10% Nitrogen, and 6% of

Phosphoric acid and Type-II fertilizer which contains 5% Nitrogen and 10% Phosphoric acid.
After testing the soil conditions of a field it is found that at least 14 kg of Nitrogen and 14 kg of
Phosphoric acid is required for a good crop. The fertilizer of Type-I costs | 2 per kg and that of
Type-II costs | 3. How many kilograms of each fertilizer should be used to meet the requirement
and the cost be minimum? (Use graphical method).

Exercise 1.6
The ABC company has a producer of picture tubes for television sets and certain printed circuits

for radios. The company has just expanded into full scale production and making of AM and
AM-FM radios. It has built a new plant that can operate 48 hours per week. Production of an
AM radio in the new plant will require 2 hours and production of an AM-FM radio will require
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3 hours. Each AM radio will contribute | 40 to profit while an AM-FM radio will contributes
| 80 to the profit. The marketing department, after extensive research, has determined that a
maximum of 15 AM radios and 10 AM-FM radios can be sold each week.

(a) Formulate a linear programming model to determine the optimum production mix of
AM-FM radios that will maximize the profit.

(b) Solve the problem using graphical method.

Exercise 1.7
A firm makes two products X and Y and has a total production capacity of 9 tons per day, X

and Y requiring the same production capacity. The firm has a permanent contract to supply at
least 2 tons of X and at least 3 tons of Y per day to another company. Each ton of X requires 20
machine hours of production time and each ton of Y requires 50 machine hours of production
time. The daily maximum possible number of machine hours is 360. All the firm’s output can be
sold, and the profit made is | 80 per ton of X and | 120 per ton of Y. It is required to determine
the production schedule for maximum profit and to calculate this profit.

Exercise 1.8
An aeroplane can carry maximum of 200 passengers. A profit of Rs. 400 is made on each first

class ticket and a profit of Rs. 300 is made on each economy class ticket. The airline reserves at
least 20 tickets for first class seats. However, at least 4 times as many passengers prefer to travel
by economy class as to the first class. Determine how many tickets of each type must be sold in
order to maximize the total profit for the airline.

Formulate a linear programming model to determine the optimal mix that will maximum the
profit. Solve it by using graphical method.

Exercise 1.9
Obtain the optimal solution in Examples 1.3.31.3.3 and 1.3.51.3.5 by ISO-profit or ISO-cost method,

whichever applicable.

Exercise 1.10
A company manufactures two products P and Q. The unit profit on P and Q are | 2 and | 3

respectively. Two raw materials A and B are used in products P and Q. The daily availability of
of A and B are 8 and 18 units respectively. One unit of P uses 2 units of A and 3 units of B. One
unit of Q uses 2 units of A and 6 units of B.

(a) Determine the dual prices of A and B and their feasibility ranges.

(b) Suppose 2 additional units of A can be obtained at the cost of 25 paise per unit, would it
be advisable to go for additional purchase?

(c) What is the maximum price for per unit of B that the company should pay?

(d) Determine the optimum profit if the availability of material B is increased by 3 units.

Exercise 1.11
Consider Exercise 1.101.10. Answer the following questions:

(a) Determine the optimality condition for the ratio cP
cQ

of coefficients of the objective function
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that will keep the optimum unchanged.

(b) If the unit profits cP and cQ are changed simultaneouly to | 5 and | 4 respectively, then
determine the new optimum.

Exercise 1.12
Answer the following questions for the Reddy Mikks model (Example 1.2.11.2.1).

(a) If the profit per ton of exterior paint remains constant at | 6000 per ton, then determine
the maximum unit profit on interior paint that will keep the present optimum solution
unchanged.

(b) If the unit profit on interior paint is reduced to | 2500, will it affect the current optimum?

Exercise 1.13
Determine the optimum solution for each of the following LPs by enumerating all the basic

solutions. Also state which are feasible and non-degenerate solutions.

(a)
Maximize z = 2x1−4x2 +5x3−6x4

subject to
x1 +4x2−2x3 +8x4 ≤ 2
−x1 +2x2 +3x3 +4x4 ≤ 1

x1, x2, x3, x4 ≥ 0.

(b)
Maximize z = x1 +2x2−3x3−2x4

subject to
x1 +2x2−3x3 + x4 = 4
x1 +2x2 + x3 +2x4 = 4

x1, x2, x3, x4 ≥ 0.

Exercise 1.14
Consider the LP as follows:

Maximize z = x1 +3x2

subject to
x1 + x2 ≤ 2
−x1 + x2 ≤ 4

x1 unrestricted
x2 ≥ 0.

(a) Determine all the basic feasible solutions of the problem.

(b) Use direct substitution in the objective function to determine the best basic solution.

(c) Solve the problem graphically and verify that the solution obtained is the optimum.
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Exercise 1.15
Solve the problem for each of the following objective functions by simplex method.
(a) Maximize z = 2x1 + x2−3x3 +5x4
(b) Maximize z = 8x1 +6x2 +3x3−2x4
(c) Maximize z = 3x1− x2 +3x3 +4x4
(d) Minimize z = 5x1−4x2 +6x3−8x4

subject to the constraints

x1 + 2x2 + 2x3 + 4x4 ≤ 40
2x1 − x2 + x3 + 2x4 ≤ 8
4x1 − 2x2 + x3 − x4 ≤ 10

x1, x2, x3, x4 ≥ 0.

Exercise 1.16
Solve the LP for each of the following objective functions by Big M-method

(a) Maximize z = 2x1 +3x2−5x3
(b) Minimize z = 2x1 +3x2−5x3
(c) Maximize z = x1 +2x2 + x3
(d) Minimize z = 4x1−8x2 +3x3

subject to the constraints
x1 + x2 + x3 = 7

2x1 − 5x2 + x3 ≥ 10

x1, x2, x3 ≥ 0.

Exercise 1.17
Using x3 and x4 as starting basic variables (i.e. do not use artificial variables), solve the following
LP.

Maximize z = 2x1 +4x2 +4x3−3x4

subject to
x1 + x2 + x3 = 4
x1 + 4x2 + x4 = 8

x1, x2, x3, x4 ≥ 0.

Exercise 1.18
Using x3 and x4 as starting basic variables (i.e. do not use artificial variables), solve the following

problem.
Minimize z = 3x1 +2x2 +3x3

subject to
x1 + 4x2 + x3 ≥ 14
2x1 + x2 + x4 ≥ 20

x1, x2, x3, x4 ≥ 0.
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Exercise 1.19
Solve (by Big M-method): Minimize z = x1 +5x2 +3x3

subject to
x1 + 2x2 + x3 = 6

2x1 − x2 = 8

x1, x2, x3 ≥ 0

by using x3 as a slack variable and one artificial variable R in the second constraint.

Exercise 1.20
Show, by Big M-method, that the LP given below has no feasible solution. Also exhibit this by
graphical method.

Maximization z = 2x1 +5x2

subject to
3x1 + 2x2 ≥ 6
2x1 + x2 ≤ 2

x1, x2 ≥ 0.

Exercise 1.21
Solve all the problems in Exercise 1.161.16 by the two-phase method.

Exercise 1.22
Show that (by two-phase method) that the following problem has no feasible solution.

Maximize z = 2x1 +5x2

subject to

3x1 +2x2 ≥ 12
2x1 + x2 ≤ 4
x1, x2 ≥ 0.

Exercise 1.23
Solve the following problem by Two-Phase method:

Maximize z = 2x1 +2x2 +4x3

subject to

2x1 + x2 + x3 ≤ 2
3x1 +4x2 +2x3 ≥ 8

x1, x2, x3 ≥ 0.
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2.1 Simplex Method: Special Cases

In this section, we shall study four special cases that arise in using the simplex method and also
see their theoretical and practical properties. They are

1. Degeneracy
2. Alternative optima
3. Unbounded solutions
4. Infeasible solutions
Our present syllabus include only first two cases, namely, degeneracy and alternative

optima. However, for the completion of this section and the notes on this topic, we will discuss
all four of them. The students, though encouraged study all the four special cases, may skip the
last two cases (i.e. unbounded solutions and infeasible solutions) from exam point of view.

2.1.1 Degeneracy

Recall that, a basic solution is called degenerate if any of the basic variables is zero.
During simplex method, while determining the leaving variable if two or more basic variables

have the same least non-negative ratio, then by feasibility condition we can arbitrarily choose
any one of them as the leaving variable. This will lead to atleast one basic variable with zero
value in the succeeding iteration. The new basic solution is thus said to be degenerate.

Consider the following example.

Example 2.1.1 (Degenerate Optimal Solution).

Maximize z = 3x1 +9x2

subject to

x1 +4x2 ≤ 8
x1 +2x2 ≤ 4

x1, x2 ≥ 0.
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Solution. Writing the given LP in equation form by adding slack variables x3 and x4 in first two
constraints respectively, we get the simplex table, its iterations and solution as given below:

Iteration Basic x1 x2 x3 x4 Solution Ratio

0th z −3 −9 0 0 0

x2 enters x3 1 4 1 0 8 8
4 = 2

x3 leaves x4 1 2 0 1 4 4
2 = 2

1st z −3
4 0 9

4 0 18

x1 enters x2
1
4 1 1

4 0 2 8

x4 leaves x4
1
2 0 −1

2 1 0 0

2nd z 0 0 3
2

3
2 18

(optimum) x2 0 1 1
2 −1

2 2

x1 1 0 −1 2 0

As seen in the above table, in the initial iteration, i.e. 0th iteration, there is a tie between x3
and x4 for the leaving variable. Here, we choose x3 as the leaving variable arbitrarily. This tie
results in degeneracy in the next basic solution (x2,x4) appearing in the next iteration (i.e. 1st

iteration) as it can be seen that the basic variable x4 = 0.
The graph of the given problem is sketched below.

1 2 3 4 5 6 7 8

1

2

3

x1 +4x2 = 8 (redundant)
x1 +2x2 = 4

z = 3x1 +9x2

x1

x 2

Remark 2.1.2.
1. From practical point of view, degeneracy means one or more constraints are redundant

(unnecessary or additional), i.e. the optimum solution can be determined even if such
constraints are removed. For example, in the graph above, the optimum point is (0,2)
and it can be determined by only one constraint x1 +2x2 ≤ 4 along with non-negativity
constraint. Thus, here the constraint x1 +4x2 ≤ 8 is redundant.

2. From theoretical point of view, degeneracy can lead to cycling of simplex iteration, thus
never terminating the simplex algorithm. In the above example, the iterations 1 and 2
have the same value of objective function z = 18 which is optimum. However, due to
degeneracy, it may be possible that the simplex method enters a repetitive sequence of
iterations without improving the objective value and thus never reaching optimum.
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2.1.2 Alternative Optima

In a given LP, if the objective function is parallel to a (non-redundant) binding constraint, then it
may have infinite number of alternative optima. Consider the following example in which the
objective function has infinitely many solution points.

Example 2.1.3. Solve the following optimization problem using graphical method.

Maximize z = 2x1 +4x2

subject to

x1 +2x2 ≤ 5
x1 + x2 ≤ 4
x1, x2 ≥ 0.

Solution. The graph of the given LP is given below and the optimum is z = 10.

1 2 3 4 5

1

2

3

4

x1 +2x2 = 5

x1 +
x2 =

4

B(3,1)

A

C
(
0, 5

2

)

0

z = 8 z = 12

x1

x 2

Here the feasible region is the shaded region as shown in the graph. It is bounded by the
polygon with vertices 0, A, B and C. We have

Point Coordinates Max z = 2x1 +4x2

0 (0,0) 0
A (4,0) 8
B (3,1) 10
C (0,2.5) 10

Note: Here the solution is not unique. In fact, for any point on the line-segment BC, the value of
the function z is 10. For example at the midpoint

(3
2 ,

7
4

)
of line-segment BC, the value of z is 10.

Hence there are infinitely many solutions.
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The simplex iterations of the given problem are as follows:

Iteration Basic x1 x2 x3 x4 Solution Ratio

0th z −2 −4 0 0 0

x2 enters x3 1 2 1 0 5 5
2

x3 leaves x4 1 1 0 1 4 4
1 = 4

1st (optimum) z 0 0 2 0 10

x1 enters x2
1
2 1 1

2 0 5
2 5

x4 leaves x4
1
2 0 −1

2 1 3
2 3

2nd z 0 0 2 0 10

(alternative optimum) x2 0 1 1 −1 1

x1 1 0 −1 2 3

Iteration 1 gives the solution (x1,x2) =
(
0, 5

2

)
and z = 10 (point C in the graph). Whether the

given problem has an alternative optima or not can be determined by observing the coefficients
of non-basic variables in the z-row. If a non-basic variable has 0 coefficient in the z-row then it
can be made basic. This gives a different basic solution without changing the value of objective
function z.

In iteration 2, choosing x1 as entering variable and x4 as leaving variable, we get a new
optimum point (x1,x2) = (3,1) (point B in the graph) without changing the value of z = 10.

Practically, the alternative optima situations are useful as one can choose from many solutions
without changing the optimum objective value. For example, at point C in the graph only
activity 2 has a positive level while at point B both activities are at a positive level. Hence in
practical situations, if the activities represents selling 2 different products, then it is beneficial to
sell two different products in market instead of selling just one. �

Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

2.1.3 Unbounded Solution

If a constraint permits the indefinite increase or decrease of the decision variables then the
objective function will also accordingly increase or decrease. Now if the the objective function is
increases indefinitely then the solution space is unbounded at least in one variable and we cannot
determine the optimum.

An unbounded solution means the given problem is poorly formulated. In such cases, some
constraints may not have been considered or the existing constraints may not be accurate.

In a problem with an unbounded solution space, at a simplex iteration there is no leaving
variable by feasibility condition as there may not be any non-negative ratio. Consider the
following example.

Example 2.1.4 (Unbounded Objective Value).

Maximize z = 2x1 + x2

subject to

x1− x2 ≤ 10
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2x1 ≤ 40
x1, x2 ≥ 0.

Solution. The simplex iterations are shown below, where x3 and x4 are slack variables.

Iteration Basic x1 x2 x3 x4 Solution Ratio

0th z −2 −1 0 0 0

x1 enters x3 1 −1 1 0 10 10
1 = 10

x3 leaves x4 2 0 0 1 40 40
2 = 20

1st z 0 −3 2 0 20

x2 enters x1 1 −1 1 0 10 10
−1

x4 leaves x4 0 2 −2 1 20 20
2 = 10

2nd z 0 0 −1 3
2 50

x3 enters x2 1 0 0 1
2 20 20

0

(no leaving variable) x1 0 1 −1 1
2 10 10

−1

Note that in the initial iteration, both x1 and x2 have negative coefficients in the z-row. This
means that an increase in their values will increase the value of z. Here x1 is entering variable but
note that all the coefficients of x2 are non-positive which means that x2 can increase indefinitely
without violating any constraints. Hence, z can be increased indefinitely resulting into unbounded
solution. This is shown in the graph given below.

10 20 30 40

10

20

30

40

50

60

70

2x1 ≤ 40

x 1
− x 2
≤ 10

z
=

2x
1 +

x
2

x1

x 2
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2.1.4 Infeasible Solution

If in a given LP the constraints are inconsistent, then it has no feasible solution. This situation
does not arise if all the constraints are of “6” type as a trivial feasible solution is provided by all
the slack variables. For other types of constraints, we use artificial variables. If at least one of
the artificial variable remains basic variable with a positive value in the optimum iteration, then
the given LP has no feasible solution. In other words, the solution space is infeasible. Consider
the following example.

Example 2.1.5 (Infeasible Solution Space).

Maximize z = 3x1 +2x2

subject to

2x1 + x2 ≤ 2
3x1 +4x2 ≥ 12

x1, x2 ≥ 0.

Solution. Adding a slack variable x4 to the first constraint, subtracting a surplus variable x3 and
adding an artificial variable R to the second constraint with a penalty M = 100 in the objective
function, we get the following simplex tableau:

Iteration Basic x1 x2 x4 x3 R Solution Ratio

0th z −303 −402 100 0 0 −1200

x2 enters x3 2 1 0 1 0 2 2
1 = 2

x3 leaves R 3 4 −1 0 1 12 12
4 = 3

1st z 501 0 100 402 0 −396

(pseudo-optimum) x2 2 1 0 1 0 2

R −5 0 −1 −4 1 4

The optimum is reached in the 1st iteration, where the artificial variable R is a basic variable
and has positive value (R = 4). This shows that the given LP has no feasible solution. This is also
verified in the following graph. If can be seen that there is no region in which all the constraints
are consistent, i.e. there is no feasible region at all.
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2.2 Dual Problem

The original LP model is called primal or primal problem and the dual problem is systematically
defined from the primal. The optimum solution of any one of the problem gives the optimum
solution of the other. In this aspect, dual is important and is closely related to the primal.

The dual can be defined for different types of primal problems, depending on the objective
type (maximization or minimization), constraints type (≤, ≥, or =), the sign of the variables
(unrestricted or non-negative).

To frame the dual problem, the primal (given) problem first needs to be expressed into equa-
tion form as in case of simplex method. Before we describe the rules and method to frame a dual,
we see an example of how to construct the dual to a given primal to better understanding of the
method.

Example 2.2.1. Frame the dual of the following problem:

Primal Primal in equation form Dual variables

Maximize z = 5x1 +12x2 +4x3 Maximize z = 5x1 +12x2 +4x3 +0x4

subject to subject to

x1 +2x2 + x3 ≤ 10

2x1− x2 +3x3 = 8

x1, x2, x3 ≥ 0.

x1 + 2x2 + x3 + x4 = 10
2x1 − x2 + 3x3 = 8

x1, x2, x3, x4 ≥ 0

y1

y2

Solution. The (given) primal problem is first expressed into equation form as shown above. The
dual of the above primal is written as follows:
Dual Problem:

Minimize w = 10y1 +8y2
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subject to
y1 + 2y2 ≥ 5

2y1 − y2 ≥ 12
y1 + 3y2 ≥ 4

y1 + 0y2 ≥ 0
y1, y2 unrestricted

}
⇒ (y1 ≥ 0, y2 unrestricted).
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2.2.1 Method for constructing the dual

Now we describe the method of constructing the dual from the given primal. The steps are as
follows:

1. Express the given primal in equation form.
2. Construct a dual constraint for each primal variable.
3. The (column) constraint coefficients and the objective coefficient of the jth primal

variable define the left hand sides and right hand sides of the the jth dual constraint
respectively.

4. The right hand sides of the primal constraint equations becomes the dual objective
coefficients.

5. The sense of optimization, direction of inequalities, and the signs of the variables in the
dual are governed by the rules given in the following table.

Primal objective Dual Problem

Objective Constraints type Variables sign

Maximization Minimization ≥ Unrestricted
Minimization Maximization ≤ Unrestricted

2.2.2 Examples of dual obtained from primal

Example 2.2.2. Write the dual of the following problem:

Primal Primal in equation form Dual variables

Minimize z = 15x1 +12x2 Minimize z = 15x1 +12x2 +0x3 +0x4

subject to subject to

x1 +2x2 ≥ 3

2x1−4x2 ≤ 5

x1, x2 ≥ 0.

x1 +2x2− x3 +0x4 = 3

2x1−4x2 +0x3 + x4 = 5

x1, x2, x3, x4 ≥ 0.

y1

y2

Solution. Dual Problem:
Maximize w = 3y1 +5y2
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subject to
y1 + 2y2 ≤ 15

2y1 − 4y2 ≤ 12
−y1 ≤ 0

y2 ≤ 0
y1, y2 unrestricted

 ⇒ (y1 ≥ 0, y2 ≤ 0).
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Example 2.2.3. Frame the dual of the following problem:

Primal Primal in equation form Dual variables

Substitute x1 = x−1 − x+1
Maximize z = 5x1 +6x2 Maximize z = 5x−1 −5x+1 +6x2

subject to subject to

x1 +2x2 = 5

−x1 +5x2 ≥ 3

4x1 +7x2 ≤ 8

x1 unrestricted, x2 ≥ 0

x−1 − x+1 + 2x2 = 5
−x−1 + x+1 + 5x2 − x3 = 3
4x−1 − 4x+1 + 7x2 + x4 = 8

x−1 , x+1 , x2, x3, x4 ≥ 0

y1

y2

y3

Solution. Dual Problem:
Minimize w = 5y1 +3y2 +8y3

subject to

y1 − y2 + 4y3 ≥ 5
−y1 + y2 − 4y3 ≥ −5

}
⇒

y1 − y2 + 4y3 ≥ 5
y1 − y2 + 4y3 ≤ 5

}
⇒ y1− y2 +4y3 = 5

2y1 + 5y2 + 7y3 ≥ 6
− y2 ≥ 0

y3 ≥ 0
y1, y2, y3 unrestricted

 ⇒ (y1 unrestricted, y2 ≤ 0, y3 ≥ 0)
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Example 2.2.4 (NBHM 2009, 4.8). Use duality to find the optimal value of the cost function in
the following linear programming problem:

Max x+ y+ z

subject to

3x+2y+2z = 1
x, y, z≥ 0.

Dr. Jay Mehta jay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edujay_mehta@spuvvn.edu

mailto:jay_mehta@spuvvn.edu
jay_mehta@spuvvn.edu
jay_mehta@spuvvn.edu


68 §2.3. Primal-Dual Relationships

Solution. Here, the given primal is already in equation form. Its dual is the following problem:

Minimize w = y1

subject to
3y1 ≥ 1
2y1 ≥ 1
2y1 ≥ 1

y1 unrestricted

⇒ 2y1 ≥ 1 or y1 ≥
1
2
.

Thus, w = 1
2 is the optimum value of the given cost function. �
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Observing the above examples of dual, the rules of constructing the dual can be summarized
as follows:

Maximization problem Minimization problem

Constraints Variables
≥ ⇔ ≤ 0
≤ ⇔ ≥ 0
= ⇔ Unrestricted

Variables Constraints
≥ 0 ⇔ ≥
≤ 0 ⇔ ≤

Unrestricted ⇔ =

Note that the headings of the column in the above table do not specify primal or dual problem.
Only sense of optimization matters. If the primal is maximization then dual will be minimization,
and vice-versa. Also observe that there is no provision for including artificial variables in the
primal as they do not change the definition of the dual.

Remark 2.2.5. Dual of the dual problem yields the original primal problem. Verify this for the
above considered examples.

2.3 Primal-Dual Relationships

In this section, we shall see some aspects of primal-dual relationships and how they can be used
to recompute the quantities in the optimal simplex table. These primal-dual relationships form
the basis for the economic interpretation of the LP model that we will be considering at the end
of this unit.

2.3.1 Simplex Tableau Layout

The starting simplex tableau and the general simplex tableau are expressed in the format as
represented in the following figures.
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Starting variables

Objective z-row
{

=

Constraint
columns



1 0 · · · 0

0 1 · · · 0
...

... . . . ...

0 0 · · · 1

=

Identity matrix

Figure 2.1: (Starting simplex tableau)

Starting variables

Objective z-row
{

=

Constraint
columns


Inverse matrix =

Figure 2.2: (General simplex iteration)

In the starting simplex table, the constraint coefficients under the starting variables form an
identity matrix. With this tabular arrangement, the subsequent iterations of the simplex table
produced by the Gauss-Jordan row operations modify the elements of the identity matrix to
produce the inverse matrix. This inverse matrix serves as the key to compute all the elements of
the simple tableau.

2.3.2 Optimal Dual Solution

The primal and the dual solutions are closely related in the sense that the optimal solution of
either of the problems provides the solutions of the other. In a given LP model, if the number of
variables is comparatively much smaller than the number of constraints, then it is better to solve
the dual of the problem for computation convenience. This is because the amount of simplex
computations depend largely (thought not completely) on the number of constraints.

In this subsection, we shall see a couple of methods of obtaining the optimum solution (point)
for the dual problem from the given optimum primal solution. The two methods are described
below.
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Method-I.

(
Optimal value of the

dual variable yi

)
=


Optimal primal z-coefficient

of the starting basic variable xi

+

Original objective coefficient of xi


Consider the following example.

Example 2.3.1. Find the optimum values of the dual variables from the optimal primal solution
for the following problem.

Maximize z = 5x1 +12x2 +4x3

subject to

x1 +2x2 + x3 ≤ 10
2x1− x2 +3x3 = 8

x1, x2, x3 ≥ 0.

Solution. We express the given primal in equation form by adding a slack variable x4 to the first
constraint and an artificial variable R to the second constraint to solve the problem by simplex
method. We penalize the artificial variable R in the objective function by −M. The resulting
primal and the dual associated to it are as follows:

Primal Dual

Maximize z = 5x1 +12x2 +4x3−MR Minimize w = 10y1 +8y2

subject to subject to

x1 + 2x2 + x3 + x4 = 10
2x1 − x2 + 3x3 + R = 8

x1, x2, x3, x4, R≥ 0

y1 + 2y2 ≥ 5
2y1 − y2 ≥ 12
y1 + 3y2 ≥ 4
y1 ≥ 0

y2 ≥ −M ⇒ y2 unrestricted

We now obtain the optimal primal solution using simplex (Big M) method. The starting
simplex table is given below:

Basic x1 x2 x3 x4 R Solution

z −5 −12 −4 0 M 0

x4 1 2 1 1 0 10
R 2 −1 3 0 1 8

We substitute out R in the z-row by the following row operation:
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New z-row = Old z-row − (M×R-row).

Then the resulting simplex table takes the following form:

Basic x1 x2 x3 x4 R Solution Ratio

z −2M−5 M−12 −3M−4 0 0 −8M

x4 1 2 1 1 0 10 10

R 2 −1 3 0 1 8 8
3

Basic x1 x2 x3 x4 R Solution Ratio

z −7
3 −40

3 0 0 M+ 4
3

32
3

x4
1
3

7
3 0 1 −1

3
22
7

22
7

x3
2
3 −1

3 1 0 1
3

8
3 −8

Basic x1 x2 x3 x4 R Solution Ratio

z −3
7 0 0 40

7 M− 4
7

368
7

x2
1
7 1 0 3

7 −1
7

22
7 22

x3
5
7 0 1 1

7
2
7

26
7

26
5

Basic x1 x2 x3 x4 R Solution

z 0 0 3
5

29
5 M− 2

5
274

5

x2 0 1 −1
5

2
5 −1

5
12
5

x1 1 0 7
5

1
5

2
5

26
5

Dual values by Method-I: The starting primal variables are x4 and R which uniquely corre-
sponds to dual variables y1 and y2 respectively. The optimal z-row coefficients of x4 and R are 29

5
and M− 2

5 respectively and their original objective coefficients are 0 and −M respectively. Thus,
optimum dual solution is as presented in the table below:

Starting primal basic variables x4 R

Optimal z-row coefficients 29
5 M− 2

5
Original objective coefficient 0 −M
Corresponding dual variables y1 y2

Optimal dual values 29
5 +0 = 29

5

(
M− 2

5

)
+(−M) =−2

5
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The the optimal values of dual variables are y1 =
29
5 and y2 = −2

5 . Notice that, here y2 is
negative and in the dual too y2 is an unrestricted variable. �
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Method-II.

(
Optimal values of

dual variables

)
=

 Row vector of the
original objective coefficients
of the optimal primal variables

×( Optimal primal
inverse

)

Note: The elements of the row vector must appear in the same order as the basic variables listed
in the Basic column of the optimal simplex iteration.

Example 2.3.2. Determine the optimum dual values by Method-II for the above problem, i.e.

Maximize z = 5x1 +12x2 +4x3

subject to

x1 +2x2 + x3 ≤ 10
2x1− x2 +3x3 = 8

x1, x2, x3 ≥ 0.

Solution. Recall (from above example), the optimal simplex table obtained is as follows:

Basic x1 x2 x3 x4 R Solution

z 0 0 3
5

29
5 M− 2

5
274

5

x2 0 1 −1
5

2
5 −1

5
12
5

x1 1 0 7
5

1
5

2
5

26
5

Dual values by Method-II: The optimal primal inverse matrix is the shaded matrix in the above
table under the variables x4 and R, i.e.

Optimal inverse =

(
2
5 −1

5
1
5

2
5

)

The order of the optimal primal basic variables in the Basic column is first x2 and then x1. Recall
that, the original objective function of primal is Maximize z = 5x1 + 12x2 + 4x3. Thus, the
original objective coefficients of x2 and x1 are 12 and 5 respectively, i.e. the row vector of
original objective coefficients (in the same order) is given by (12,5). Then the optimal dual
values are obtained as

(y1,y2) =

(
Original objective

coefficients of x2, x1

)
×

(
Optimal primal

inverse

)

= (12,5)

(
2
5 −1

5
1
5

2
5

)
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=

(
29
5
,−2

5

)
.

�
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Primal-dual objective values.

Optimum

Maximize z Minimize w

Figure 2.3: Relationship between maximum z and minimum w

For any pair of feasible solution of primal and its dual, we have the following relation:(
Objective value in the
maximization problem

)
≤

(
Objective value in the
minimization problem

)

The equality occurs, i.e. the two objective values are equal, only at the optimum. In other words,
the optimum cannot occur with z strictly less than w (i.e., z < w) because now matter how close
z and w are, there is always scope of improvement in their values as shown in the above figure.

Note that the above relationship does not mention which problem is primal and which is dual.
Only the sense of optimization (i.e. maximization or minimization) of the problem is important
in this case. For example

Example 2.3.3. In Example 2.3.12.3.1, (x1,x2,x3) =
(
0,0, 8

3

)
is an arbitrary feasible primal solution,

while (y1,y2) = (6,0) is an arbitrary feasible dual solution. The associated objective values are

z = 5x1 +12x2 +4x3 = 5×0+12×0+4× 8
3
=

32
3

w = 10y1 +8y2 = 10×6+8×0 = 60.

Thus, z = 32
3 for (primal) maximization problem is less that w = 60 for (dual) minimization

problem. Note that the optimum value z = 274
5 falls in the range (max,min) =

(32
3 ,60

)
.

2.3.3 Simplex Tableau Computations

Any given iteration of the simplex table can be generated from the given data of the problem, the
inverse matrix associated with that iteration and the dual problem. Consider the format of the
simplex table as shown in Figures 2.12.1 and 2.22.2. Then the computations can be divided into the
following two categories:

1. Constraint columns (left hand side and right hand side)
2. Objective function row, i.e. z-row
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Formula 1: Constraint column computations.

In any simplex iteration, the left hand side constraint column or the right hand side constraint
column is computed by the following formula:(

Constraint column
in iteration i

)
=

(
Inverse in
iteration i

)
×

(
Original

constraint column

)

Example 2.3.4. Compute the x1-column, x2-column, R-column and right hand side (solution)-

column in the optimal iteration of Example 2.3.12.3.1 by using optimal inverse =

(
2
5 −1

5
1
5

2
5

)
.

Solution. The original problem and optimal inverse are given. We compute(
x1-column in

optimal iteration

)
=

(
Inverse in

optimal iteration

)
×

(
Original

x1-column

)

=

(
2
5 −1

5
1
5

2
5

)
×

(
1
2

)
=

(
0
1

)
.

(
x2-column in

optimal iteration

)
=

(
Inverse in

optimal iteration

)
×

(
Original

x2-column

)

=

(
2
5 −1

5
1
5

2
5

)
×

(
2
−1

)
=

(
1
0

)
.

(
R-column in

optimal iteration

)
=

(
Inverse in

optimal iteration

)
×

(
Original

R-column

)

=

(
2
5 −1

5
1
5

2
5

)
×

(
0
1

)
=

(
−1

5
2
5

)
.

(
RHS-column in
optimal iteration

)
=

(
Inverse in

optimal iteration

)
×

(
Original

RHS-column

)

=

(
2
5 −1

5
1
5

2
5

)
×

(
10
8

)
=

(
12
5

26
5

)
.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Similar computations can be used to determine the optimal columns for x3,x4 (Verify!).

Formula 2: Objective z-row computations.

In any simplex iteration, the objective equation coefficient of x j is compute as follows:
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(
Primal z-coefficient

of variable x j

)
=

(
Left-hand side of
jth dual constraint

)
−

(
Right-hand side of
jth dual constraint

)

In the example below, we show how the z-row coefficients are computed. The optimal values
of the dual variables (y1,y2) =

(29
6 ,−

2
5

)
were obtained in Example 2.3.22.3.2.

Example 2.3.5. Compute the z-coefficients x1 and R in the optimal iteration of Example 2.3.12.3.1

by using optimal inverse =

(
2
5 −1

5
1
5

2
5

)
.

Solution. By the above formula (i.e. Formula 2), we have

z− coefficient of x1 = y1 +2y2−5 = 29
5 +2×−2

5 −5 = 0

z− coefficient of R = y2− (−M) = −2
5 − (−M) = M− 2

5

�
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Similar computations can be used to determine the z-coefficients of x2,x3 and x4 (Verify!).
In the example below, we show how the above two formulas help us to determine whether, at

any given iteration, the basic solution is feasible or not and whether the objective value at that
iteration is optimum or not.

Example 2.3.6. Consider the following LP model:

Maximize 4x1 +14x2

subject to
2x1 + 7x2 + x3 = 21
7x1 + 2x2 + x4 = 21

x1, x2, x3, x4 ≥ 0.

Check the optimality and feasibility of the following basic solution:

Basic variables = (x2,x4), Inverse =

(
1
7 0

−2
7 1

)
.

Solution. First we check the feasibility of the given basic solution (i.e. basic variables x2,x4).
For this we compute the right-hand side of the iteration under consideration. By formula 1,

(
RHS-column in

the iteration

)
=

(
Inverse in

the iteration

)
×

(
Original

RHS-column

)
(

x2

x4

)
=

(
1
7 0

−2
7 1

)
×

(
21
21

)
=

(
3

15

)
.

Thus, the basic solution (x2,x4) = (3,15) is feasible.
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Next we check the optimality of the basic solution. For this we compute the z-row and check
that there are no negative coefficients (since the problem is of maximization). We construct the
dual of the problem below:

Minimize w = 21y1 +21y2

subject to

2y1 + 7y2 ≥ 4
7y1 + 2y2 ≥ 14

y1 ≥ 0
y2 ≥ 0

Now, we compute the corresponding values of dual variables y1,y2 (by Method-II seen above):

(
Values of

dual variables

)
=

 Row vector of the
original objective coefficients

of the primal variables

×( Primal
inverse

)

∴ (y1,y2) = (x2,x4)×

(
Primal
inverse

)

= (14,0)×

(
1
7 0

−2
7 1

)
= (2,0).

Since x2,x4 are basic variables, their coefficient in the z-row are already 0. It suffices to check
the coefficients of x1 and x3 in the z-row. By formula 2,(

Primal z-coefficient
of variable x1

)
=

(
Left-hand side of
1st dual constraint

)
−

(
Right-hand side of
1st dual constraint

)
∴ z-coefficient of x1 = 2y1 +7y2−4

= 2×2+7×0−4 = 0.

Similarly,
Objective-coefficient of x3 = y1−0 = 2.

Thus, objective coefficients of x1 and x3 are 0 and 2 respectively. Since both are non-negative,
the basic solution (x2,x4) = (3,15) is optimal. �
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2.4 Economic Interpretation of Duality

An LP model can be considered as a resource allocation model that maximizes revenue or
profit under limited available resources. Then the dual problem yields interesting economic
interpretations of the primal LP. Consider the primal and the dual expressed in the following
general form:
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Primal Dual

Maximize z =
n
∑
j=1

c jx j Minimize w =
m
∑

i=1
biyi

subject to subject to
n
∑
j=1

ai jxi ≤ bi, i = 1,2, . . . ,m
m
∑

i=1
ai jyi ≥ c j, j = 1,2, . . . ,n

x j ≥ 0, j = 1,2, . . . ,n yi ≥ 0, i = 1,2, . . . ,m

The primal problem has n economic activities and m resources. The coefficients c j denote the
revenue per unit of activity j, the coefficients ai j indicate the rate at which resource i is used per
unit of activity j, and the constants bi indicate the availability of the resource i.

2.4.1 Economic Interpretation of Dual Variables

We know that, as seen at the end of Subsection 2.3.22.3.2, any two finite primal and dual feasible
solution (irrespective of which is maximization and which is minimization) satisfy the following
relation:

z =
n

∑
j=1

c jx j ≤
m

∑
i=1

biyi = w,

where the equality holds in the above inequality when both the values z and w are optimum, i.e.
z = w when they are optimum.

As seen above, in terms of resource allocation model, z represents | revenue and bi represents
the available units of resource i. Thus, dimensionally z = w (i.e. optimum objective) implies

| revenue =
m

∑
i=1

biyi =
m

∑
i=1

(units of resource i)× (| per unit of resource i).

This means that the dual variable yi represents the worth per unit (dual price) of the resource i.
By the same dimensional analysis, for any two finite basic feasible primal and dual solutions,

the strict inequality z < w indicates

(Revenue) < (Worth of resources).

This represents that as long as the total revenue is less than the worth of all the resources, the
corresponding primal and dual solutions are not optimal. Optimality is attained only when all
the resources are availed totally. This can happen only when the input (i.e. the worth of all the
resources) equals the output (i.e. total revenue |). In economic terms, the system in this case is
said to be unstable or nonoptimal.

Example 2.4.1. The Reddy Mikks model (Example 1.2.11.2.1) and its dual are given as follows:
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Reddy Mikks primal Reddy Mikks dual

Maximize z = 5x1 +4x2 Minimize w = 24y1 +6y2 + y3 +2y4

subject to subject to

6x1 + 4x2 ≤ 24 (resource 1, M1)
x1 + 2x2 ≤ 6 (resource 2, M2)
−x1 + x2 ≤ 1 (resource 3, market)

x2 ≤ 2 (resource 4, demand)

x1, x2 ≥ 0

6y1 + y2 − y3 ≥ 5
4y1 + 2y2 + y3 + y4 ≥ 4

y1, y2, y3, y4 ≥ 0

Optimum solution: Optimum solution:
x1 = 3, x2 = 1. z = 21 y1 = 0.75, y2 = 0.5, y3 = y4 = 0, w = 21

Solution. The optimum dual solution shows that the dual price (i.e. worth per unit) of raw
material M1 is y1 = 0.75 (i.e. | 750 per ton) and that of raw material M2 is y2 = 0.5 (or | 500
per ton). �
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2.4.2 Economic Interpretation of Dual Constraints

Now we discuss what a dual constraint represents economically. By formula 2 (of the previous
subsection), we have(

Objective-coefficient
of variable x j

)
=

(
Left-hand side of
jth dual constraint

)
−

(
Right-hand side of
jth dual constraint

)

=
m

∑
i=1

ai jyi− c j.

We know that c j represents the revenue (in |) per unit of activity j. Since the quantity
m
∑

i=1
ai jyi

has the opposite sign at that of c j, it must represent cost (in |). Using above dimensional analysis,
we have

| cost =
m

∑
i=1

ai jyi =
m

∑
i=1

(
Usage of resource i
per unit of activity j

)
×

(
Cost per unit
of resource i

)
Thus, in this context, the dual variable yi represents what is called imputed cost per unit of

resource i. The quantity
m
∑

i=1
ai jyi can be considered as the imputed cost of all the resources

needed to produce one unit of activity j. The quantity
m
∑

i=1
ai jyi− c j is called reduced cost.

The maximization optimality condition (i.e. condition for entering variable) in simplex
method says that an increase in the unused activity j (non-basic variable) can improve the
revenue only if the reduced cost is negative. That is Imputed cost of

resources used by
one unit of activity j

<

(
Revenue per unit

of activity j

)
.

PS04EMTH30 2017-18



Exercises 79

Exercises

Exercise 2.1
Construct the dual for the following primal problems:

(a) Maximize z = 5x1 +3x2
subject to

3x1 +5x2 ≤ 15
3x1 +2x2 ≤ 10

x1, x2 ≥ 0.

(b) Minimize z = x1−3x2−2x3
subject to

3x1− x2 +2x3 ≤ 7
2x1−4x2 ≥ 12

−4x1 +3x2 +3x3 = 10
x1, x2. x3 ≥ 0.

(c) Maximize z = 5x+7y
subject to

x− y≤ 1

2x+ y≥ 2
x+2y≤ 4

x, y≥ 0.

(d) Maximize z = 2x+3y
subject to

x+2y = 3
2x+ y≥ 4

x+ y≤ 5
x, y≥ 0.

(e) Maximize z = 2x1 +3x2 + x3
subject to

4x1 +3x2 + x3 = 6
x1 +2x2 +5x3 ≥ 4

x1, x2, x3 ≥ 0.

Exercise 2.2
Write the dual for the following primal problems:

(a) Maximize z = 66x1−22x2
subject to

−x1 + x2 ≤ 2
2x1 +3x2 ≤ 5

x1, x2 ≥ 0

(b) Minimize z = 6x1 +3x2
subject to

6x1−3x2 + x3 ≥ 25

3x1 +4x2 + x4 ≥ 55
x1, x2, x3 ≥ 0

(c) Maximize z = x1 + x2
subject to

2x1 + x2 = 5
3x1− x2 = 6

x1, x2 unrestricted

Exercise 2.3
Consider the following LP:

Maximize z = 5x1 +2x2 +3x3

subject to
x1 + 5x2 + 2x3 = 30
x1 − 5x2 − 6x3 ≤ 40
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x1, x2, x3 ≥ 0.

Given that the artificial variable x4 and the slack variable x5 form the starting basic variables and
that M was set equal to 100 when solving the problem, the optimal tableau is given as:

Basic x1 x2 x2 x4 x5 Solution

z 0 23 7 105 0 150

x1 1 5 2 1 0 30
x5 0 −10 −8 −1 1 10

Write the associated dual problem, and determine its optimal solution in two ways.

Exercise 2.4
Consider the following LP:

Minimize z = 4x1 + x2

subject to
3x1 + x2 = 30
4x1 + 3x2 ≥ 60

x1 + 2x2 ≤ 40

x1, x2 ≥ 0.

The starting solution consists of artificial x4 and x5 form the first and second constraints and
slack x6 for the third constraint. Using M = 100 for the artificial variables, the optimal tableau is
given as

Basic x1 x2 x2 x4 x5 x6 Solution

z 0 0 0 −98.6 −100 −0.2 34

x1 1 0 0 0.4 0 −0.2 4
x2 0 1 0 −0.2 0 0.6 18
x3 0 0 1 1 −1 1 10

Write the associated dual problem, and determine its optimal solution in two ways.

Exercise 2.5
Consider the following LP (Exercise 1.171.17):

Maximize z = 2x1 +4x2 +4x3−3x4

subject to
x1 + x2 + x3 = 4
x1 + 4x2 + x4 = 8

x1, x2, x3, x4 ≥ 0.
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Using x3 and x4 as starting basic variables, the optimal table is given as

Basic x1 x2 x2 x4 Solution

z 2 0 0 3 16

x3 0.75 0 1 −0.25 2
x2 0.25 1 0 0.25 2

Write the associated dual problem, and determine its optimal solution in two ways.

Exercise 2.6
Consider the following LP:

Maximize z = x1 +5x2 +3x3

subject to
x1 + 2x2 + x3 = 3

2x1 − x2 = 4

x1, x2, x3 ≥ 0.

The starting solution consists of x3 in the first constraint and an artificial variable x4 in the second
constraint with M = 100. The optimal tableau is given as

Basic x1 x2 x2 x4 Solution

z 0 2 0 99 5

x3 1 2.5 1 −0.5 1
x1 0 −0.5 0 0.5 2

Write the associated dual problem, and determine its optimal solution in two ways.

Exercise 2.7
Consider the following LP model:

Maximize 4x1 +14x2

subject to
2x1 + 7x2 + x3 = 21
7x1 + 2x2 + x4 = 21

x1, x2, x3, x4 ≥ 0.

Check the optimality and feasibility of each of the following basic solutions:

(a) Basic variables = (x2,x3), Inverse =

(
0 1

2

1 −7
2

)
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(b) Basic variables = (x2,x1), Inverse =

(
7

45 − 2
45

− 2
45

7
45

)

(c) Basic variables = (x1,x4), Inverse =

(
1
2 0

−1
2 1

)

Exercise 2.8
Consider the following LP model:

Maximize z = 3x1 +2x2 +5x3

subject to
x1 + 2x2 + x3 + x4 = 30

3x1 + 2x3 + x5 = 60
x1 + 4x2 + x6 = 20

x1, x2, x3, x4, x5, x6 ≥ 0.

Check the optimality of and feasibility of the following basic solutions:

(a) Basic variables = (x4,x3,x6), Inverse =


1 −1

2 0

0 1
2 0

0 0 1


(b) Basic variables = (x2,x3,x1), Inverse =


1
4 −1

8
1
8

3
2 −1

4 −3
4

−1 1
2

1
2


(c) Basic variables = (x2,x3,x6), Inverse =


1
2 −1

4 0
0 1

2 0
−2 1 1


Exercise 2.9
Consider the following LP model:

Minimize z = 2x1 + x2

subject to
3x1 + x2 − x3 = 3
4x1 + 3x2 − x4 = 6
x1 + 2x2 + x5 = 3

x1, x2, x3, x4, x5 ≥ 0.

Compute the entire simplex table associated with the following basic solution, and check it for
optimality and feasibility.

Basic variables = (x1,x2,x5), Inverse =


3
5 −1

5 0

−4
5

3
5 0

1 −1 1


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Exercise 2.10
The following is the optimal tableau for a maximization LP problem with three (≤) constraints

and all non-negative variables. The variables x3,x4 and x5 are the slacks associated with the
three constraints. Determine the associated optimal objective value in the two ways by using the
primal and dual objective functions.

Basic x1 x2 x3 x4 x5 Solution

z 0 0 0 3 2 ?

x3 0 0 1 1 −1 2
x2 0 1 0 1 0 6
x1 1 0 0 −1 1 2
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Transportation and Assignment models

3.1 Dual Simplex Method

We have seen that simplex method starts with a feasible solution and continues to be feasible
in all the iterations until optimum is attained. In this section, we will see dual simplex method
which starts with an infeasible solution but better than optimal solution and continues to be
infeasbile until feasibility is attained.

3.1.1 Dual Simplex Algorithm

In (primal) simplex method, we have seen that, the starting basic solution is feasible but need not
be optimal. It remains feasible through all the iterations that continue till we obtain an optimal
solution. In dual simplex method, the procedure is somewhat the opposite. We start with a
solution which is better than optimal but infeasible and we carry out the iterations till feasibility
is restored.

Unlike the simplex method, in the dual simplex method, we choose the leaving variables first
and then the entering variable. The optimality condition (i.e. the condition for entering variable)
and the feasibility condition (i.e. the condition for leaving variable) for the dual simplex method
are stated as below:

Definition 3.1.1 (Dual feasibility condition). The leaving variable xr is the basic variable
having the most negative value (ties are broken arbitrarily). If all the basic variables are
non-negative, then feasibility is restored and terminate the algorithm.

Definition 3.1.2 (Dual optimality condition). If xr is the leaving variable, c̄ j is the reduced
cost (z-row coefficient) of non-basic variable x j and αr j is the constraint coefficient in the
xr-row and x j-column, then the entering variable is the non-basic variable with αr j < 0 that
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corresponds to

min
Nonbasic x j

{∣∣∣∣ c̄ j

αr j

∣∣∣∣ , αr j < 0
}
.

Ties are broken arbitrarily. If αr j ≥ 0 for all nonbasic variables x j, then the problem has no
feasible solution.

The following two conditions must be satisfied prior to starting the dual simplex algorithm of
an LP with optimal and infeasible solution.

1. The objective function must satisfy the optimality condition of the regular simplex
method.

2. All the constraints must be of “≤” type.

If a constraint is an inequality of type “≥”, then it is converted into “≤” type by multiplying
both the sides of the inequality by −1. If the constraint is an equation i.e. “=” type, then the
equation is replaced by two inequalities. The starting solution is infeasible if at least one of the
right hand sides of the inequalities is negative.

3.1.2 Examples of dual simplex method

Consider the following LP solved by the dual simplex algorithm. Since it is the first example
of this method, we include the full detailed solution below, as we have done in the above two
chapters. However, one can directly show the necessary computations and tabular operations to
derive the solution.

Example 3.1.3. Solve the following LP by dual simplex method:

Minimize z = 3x1 +2x2 + x3

subject to

3x1 + x2 + x3 ≥ 3
−3x1 + 3x2 + x3 ≥ 6

x1 + x2 + x3 ≤ 3

x1, x2, x3 ≥ 0.

Solution. The first two constraints are inequalities of ≥ type which are converted into ≤ by
multiplying both the sides by −1. We then add slack variables x4,x5 and x6 to all the three (≤)
type constraints and obtain the resultant LP as

−3x1 − x2 − x3 + x4 = −3
3x1 − 3x2 − x3 + x5 = −6
x1 + x2 + x3 + x6 = 3

x1, x2, x3, x4, x5, x6 ≥ 0.

The starting tableau is thus given as follows:
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Basic x1 x2 x3 x4 x5 x6 Solution

z −3 −2 −1 0 0 0 0

x4 −3 −1 −1 1 0 0 −3
x5 3 −3 −1 0 1 0 −6
x6 1 1 1 0 0 1 3

Note that, the above table is optimal as all the reduced costs (coefficients) in the z-row are
non-positive (c̄1 = −3, c̄2 = −2, c̄3 = −1, c̄4 = 0, c̄5 = 0, c̄6 = 0) in the given minimization
LP. The solution is also infeasible as at least one basic variable is negative (here x4 =−3 and
x5 =−6).

By the feasibility condition x5 (thus r = 5 for xr) is the leaving variable as it x5 the most
negative value. To determine the entering variable, we compute the ratios

∣∣∣ c̄ j
α5 j

∣∣∣ for each non-basic
variables x j, where α5 j < 0. Here x1,x2,x3 (thus j = 1,2,3) are the non-basic variables. We have
the following table of computed ratios:

j = 1 j = 2 j = 3

Nonbasic variable x1 x2 x3

z-row (c̄ j) −3 −2 −1
x5-row, α5 j 3 −3 −1

Ratio
∣∣∣ c̄ j

α5 j

∣∣∣, α5 j < 0 − 2
3 1

The computed ratios indicate that x2 is the entering variable in the next iteration. Computing
the Gauss-Jordan row-operations gives the following table:

Basic x1 x2 x3 x4 x5 x6 Solution

z −5 0 −1
3 0 −2

3 0 4

x4 −4 0 −2
3 1 −1

3 0 −1

x2 −1 1 1
3 0 −1

3 0 2

x6 2 0 2
3 0 1

3 1 1

Ratio 5
4 − 1

2 − 2 −

The above table indicates that x4 is the leaving variable (most negative value) and x3 is
the entering variable (minimum ratio for non-basic variables). Again by Gauss-Jordan row-
operations, we have the following table:
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Basic x1 x2 x3 x4 x5 x6 Solution

z −3 0 0 −1
2 −1

2 0 9
2

x3 6 0 1 −3
2

1
2 0 3

2

x2 −3 1 0 1
2 −1

2 0 3
2

x6 −2 0 0 1 0 1 0

The above table provides a basic solution which is both optimal and feasible and hence we
stop the process here.

Observe the working of the dual simplex method. All the iterations are already optimal as all
the reduced costs (coefficients of z-row) are ≤ 0. However, the solutions are not feasible. Once
the feasibility is attained in the 3rd iteration, the process ends and the optimal feasible solution is
given by (x1,x2,x3) =

(
0, 3

2 ,
3
2

)
with z = 9

2 . �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Let us consider one more example of dual simplex.

Example 3.1.4. Solve by dual simplex method.

Minimize z = 2x1 +3x2

subject to

2x1 +2x2 ≤ 3
x1 +2x2 ≥ 1

x1, x2 ≥ 0.

Solution. Multiplying both the sides of the second constraint by −1 and then adding slack
variables x3 and x4 to both the constraints, we can write the given LP as follows.

Minimize z = 2x1 +3x2

subject to
2x1 + 2x2 + x3 = 3
−x1 − 2x2 + x4 = −1

x1, x2, x3, x4 ≥ 0.

The starting basic (infeasible) solution is given by (x3,x4) = (3,−1) and the starting (optimal)
table is given as below:

Basic x1 x2 x3 x4 Solution

z −2 −3 0 0 0

x3 2 2 1 0 3
x4 −1 −2 0 1 −1

Ratio 2 3
2 − −
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In the above table, the basic variable x4 has the most negative value and hence it is the
leaving variable. The computed ratios determine that the basic variable x2 is the entering variable.
Gauss-Jordan row operations yields the following table:

Basic x1 x2 x3 x4 Solution

z −1
2 0 0 −3

2
3
2

x3 1 0 1 1 2
x2

1
2 1 0 −1

2
1
2

Feasibility of the solution is restored in the above table and so we end the process. The
optimal feasible solution is given by x1 = 0, x2 =

1
2 with z = 3

2 . �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

The solution of the above LP, being in two variables, can be verified by graphical method.
We sketch the graph below to examine the course of the dual simplex algorithm in reaching a
feasible optimal solution.

1 2

1

2

2x1 +2x2 ≤
3

x1 +2x2 ≥ 1
O

x1

x 2

Observe that, we started with (x1,x2) = (0,0) which is an infeasible solution but better than
optimal (as minimum z = 0). In the next iteration itself, feasibility is restored at (x1,x2) =

(
0, 1

2

)
and the optimum value is z = 3

2 . The the path of the dual simplex method for the above example
is shown in the graph above.

3.2 Transportation Model

In this section, we shall study transportation model. We will see three methods to obtain a
starting solution of the transportation problem and then method to determine the optimal solution
from the starting solution.

The definition of the transportation model is given below:
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Definition 3.2.1 (Transportation model). The transportation problem is represented by the
network shown in the following figure.

1
c11 : x11

1

Sources Destinations

b1

2 2 b2
Demand
Units of

a1

a2
Supply
Units of

m
cmn : xmn

n bnam

...
...

There are m sources and n destinations, each represented by a node. The arcs represent
the routes linking the sources and the destinations. Arc (i, j) joining source i to destination j
carries two pieces of information:
• the transportation cost per unit, ci j, and
• the amount shipped, xi j.

The amount of supply at source i is ai, and the amount of demand at destination j is b j. the
objective of the model is to minimize the total transportation cost while satisfying all the
supply and demand constraints.

Consider an example of transportation problem given below.

Example 3.2.2 (MG Auto Model). MG Auto has three plants in Rajkot, Delhi, Mumbai, and
two major distribution centers in Chennai and Kolkata. The quarterly capacities of the three
plants are 1000, 1500, and 1200 cars, and the demands at the two distribution centers for the
same period are 2300 and 1400 cars. The mileage chart between the plants and the distribution
centers is given in the following table.

Table 3.1: Mileage Chart

Chennai Kolkata
Rajkot 1000 2690
Delhi 1250 1350

Mumbai 1275 850

The trucking company in charge of transporting the cars charges 8 paise per km per car. The
transportation costs per car on the different routes, rounded to the closest |, are given in the
following table.
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Table 3.2: Transportation Cost per Car

Chennai (1) Kolkata (2)
Rajkot (1) | 80 | 215
Delhi (2) | 100 | 108

Mumbai (3) | 102 | 68

The LP model of the problem is

Minimize z = 80x11 +215x12 +100x21 +108x22 +102x31 +68x32

subject to

x11 + x12 = 1000 (Rajkot)
x21 + x22 = 1500 (Delhi)

x31 + x32 = 1200 (Mumbai)
x11 + x21 + x31 = 2300 (Chennai)

x12 + x22 + x32 = 1400 (Kolkata)

xi j ≥ 0, i = 1,2,3, j = 1,2.

These constraints are all equations because the total supply from the three sources (= 1000+
1500+1200 = 3700) equals the total demand at the two destinations (= 2300+1400).

The special structure of the transportation problem helps to represent the problem compactly
in the tabular form called the transportation table given as follows:

Table 3.3: MG Auto Transportation Model

Chennai Kolkata Supply

Rajkot

80

x11

215

x12 1000

Delhi

100

x21

108

x22 1500

Mumbai

102

x31

68

x32 1200

Demand 2300 1400

Remark 3.2.3. The optimal solution of the above problem is given (already provided) to be
x11 = 1000, x21 = 1300, x22 = 200, x32 = 1200. This is represented in the following diagram.
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1
1000

1

Chennai

2300

2
1300

200

2

Kolkata

1400

3

1200

1000

Rajkot

1500

Delhi

1200

Mumbai

The minimum transportation cost is given by

z = 1000×| 80+1300×| 100+200×| 108+1200×| 68 = | 313200.

Balancing the transportation model

The transportation tableau representations already assumes that the table is balanced, i.e. the
total demand is same as the total supply. If the model is unbalanced, then we can add a dummy
source or a dummy destination, as required, to make it balanced.

Let us understand the balancing of the transportation model by the above example of MG
Auto model.

Example 3.2.4. Suppose that the Delhi plant in the MG Auto model has the production capacity
of only 1300 cars instead of 1500 cars. Then the supply (= 3500) is less than the demand
(= 3700). This means that the part of demand at Chennai and Kolkata will not be met.

Table 3.4: MG model with Dummy plant

Chennai Kolkata Supply

Rajkot

80

1000

215

1000

Delhi

100

1300

108

1500

Mumbai

102 68

1200 1200

Dummy plant

0 0

200 200

Demand 2300 1400

Since the demand exceeds the supply (by 200 cars), we add a dummy source (dummy
plant) with a capacity of 200 cars to restore the balance of the transportation model. The unit
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transportation cost from the dummy plant to the two destinations is set to zero as the plant does
not exists. This is represented in the above table (Table 3.43.4) along with the optimal solution in
this case.

Now, consider another case. Suppose that the demand at the Chennai center is only 1900 cars
instead of 2300 cars. In this case the supply exceeds the demand by 400 cars. Hence to restore
the balance of the transportation model, we add a dummy destination (distribution center) to
receive the surplus supply. Again, the unit transportation cost to this dummy destination from the
three plants is zero. This case, along with its optimal solution is shown in the following table.

Table 3.5: MG model with Dummy destination

Chennai Kolkata Dummy Supply

Rajkot

80

1000

215 0

1000

Delhi

100

900

108

200

0

400 1500

Mumbai

102 68

1200

0

1200

Demand 1900 1400 400

3.2.1 The Transportation Algorithm

The basic steps of the transportation algorithm are similar to those of the simplex method.
However, in the transportation problem, we have the advantage of the special transportation table
format of the model as compared the usual simplex table. This makes the computations more
convenient.

Step 1. Determine the starting basic feasible solution and go to Step 2.
Step 2. Use the optimality condition of the simplex method to determine the entering variable

from among all the non-basic variables. If the optimality condition is satisfied, then stop
the process. Else, go to Step 3.

Step 3. Use the feasibility condition of the simplex method to determine the leaving variable
form among all the basic variables, and find the new basic solution. Go back to Step 2.

Before going into the details of the algorithm, consider the following example. We solve
(obtain starting solution of) the example given below by three methods described in the preceding
subsection.

Example 3.2.5 (SunRay Transport). SunRay Transport Company ships truckloads of grain from
three silos to four mills. The supply (in truckloads) and the demand (in truckloads) together with
the unit transportation costs per truckload on the different routes are given in the following table.
The unit transportation costs, ci j (indicated in the top right corner of each box) are in hundreds
of |. The objective of the model is to determine a shipping schedule between the silos and the
mills that minimizes the transportation costs.
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Table 3.6: Sunray Transport model

Mill 1 Mill 2 Mill 3 Mill 4 Supply

Silo 1

10

x11

2

x12

20

x13

11

x14 15

Silo 2

12

x21

7

x22

9

x23

20

x24 25

Silo 3

4

x31

14

x32

16

x33

18

x34 10

Demand 5 15 15 15

3.2.2 Determining the starting solution

A general form of transportation model with m sources and n destinations has m+n constraint
equations, one for each source and each destination. Since, the transportation model is always
balanced (sum of the units of supply = sum of the units of demand), the model can be considered
to be reduced to m+n−1 independent equations and m+n−1 basic variables. For instance, in
the above example (SunRay model), the starting solution has 3+4−1 = 6 basic variables.

The special structure of the transportation problem provides a non-artificial starting basic
solution using one of the following three methods:

1. Northwest corner method
2. Least-cost method
3. Vogel approximation method

3.2.3 Northwest-corner method

The method starts at the nothwest-corner cell of the table.

Step 1. Allocate as much as possible to the selected cell, and adjust the associated amounts
of supply and demand by subtracting the allocated amount.

Step 2. Cross out the row or column with zero supply or demand to indicate that no further
assignments can be made in that row or column. If both a row and a column net to zero
simultaneously, then cross out only one, and leave a zero supply (or demand) in the
uncrossed row (or column).

Step 3. If exactly one row or column is left uncrossed, stop. Otherwise, move to the cell to
the right if a column has just been crossed out or below if a row has just been crossed
out. Go to Step 1.

The starting solution of the Sunray model (Example 3.2.53.2.5) is obtained by Northwest-corner
method in the following example.

Example 3.2.6. The application of the procedure to the Sunray model (Example 3.2.53.2.5) gives the
starting basic solution in table given below. The arrows show the order in which the allocated
amounts are generated.
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Table 3.7: North-West corner starting solution

Mill 1 Mill 2 Mill 3 Mill 4 Supply

Silo 1

10

5

2

10

20 11

15

Silo 2

12 7

5

9

15

20

5 25

Silo 3

4 14 16 18

10 10

Demand 5 15 15 15

The starting solution is

x11 = 5,x12 = 10,
x22 = 5,x23 = 15, x24 = 5,
x34 = 10.

The associated cost of the schedule is

z = 5×10+10×2+5×7+15×9+5×20+10×18 = | 520.

3.2.4 Least-cost method

The least-cost method yields a better starting solution by determining the cheapest routes.
That is, it finds the cell with the smallest unit cost and assigns to it as much as possible. Ties
are broken arbitrarily. The row or the column that is satisfied is crossed out and the amounts
of supply and demand are adjusted accordingly. If both, a row and a column, are satisfied
simultaneously then only one is crossed out just as in case of northwest-corner method. Next,
select the uncrossed cell with the smallest unit cost and repeat the process until exactly one
row or column is left uncrossed.

Example 3.2.7. Example 3.2.53.2.5 is solved by the least-cost method below to obtain a starting
solution of the Sunray model.

1. Cell (1,2) has the least unit cost in the table (i.e. | 2). The most that can be shipped through
(1,2) is x12 = 15 truckloads. This satisfies both row 1 and column 2 simultaneously. We
arbitrarily cross out column 2 and adjust the supply in row 1 to 0.

2. Cell (3,1) has the smallest uncrossed unit cost (which is | 4). Again x31 = 5, and cross
out column 1 as it is satisfied, and adjust the demand or row 3 to 10−5 = 5 truckloads.

3. Continuing in this way, we successively assign 15 truckloads to cell (2,3), 0 to cell (1,4),
5 truckloads to cell (3,4), and 10 to cell (2,4) (Check!).

The resulting starting solution is given in the following table. The arrows show the order in
which the allocations are made.
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Table 3.8: Least-cost starting solution

Mill 1 Mill 2 Mill 3 Mill 4 Supply

Silo 1

10 (start) 2

15

20 11

0 15

Silo 2

12 7 9

15

(end) 20

10 25

Silo 3

4

5

14 16 18

5 10

Demand 5 15 15 15

The starting solution consists of 6 variables and is given by

x12 = 15, x14 = 0, x23 = 15, x24 = 10, x31 = 5, x34 = 5.

The associated objective value is z = 15×2+0×11+15×9+10×20+5×4+5×18 = | 475.
Note that this starting solution turns out to be better than that of the northwest-corner method.

3.2.5 Vogel Approximation Method (VAM)

Vogel approximation method (VAM) is an improved version of the least-cost method that usually,
not always, produces better starting solutions.

The process is given below:

Step 1. For each row (or column), determine a penalty measure by subtracting the smallest
unit cost element in the row (or column) from the next smallest unit cost element in the
same row (or column).

Step 2. Identify the row of column with the largest penalty (Ties are broken arbitrarily).
Allocate as much as possible to the variable with the least unit cost in the selected row
or column. Adjust the supply and demand, and cross out the satisfied row or column. If
a row or column are satisfied simultaneously then only one of the two is crossed out,
and the remaining row (or column) is assigned the zero supply (or demand).

Step 3. (a) If exactly one row or column with zero supply or demand remain uncrossed,
then stop.

(b) If one row (or column) with positive supply (or demand) remains uncrossed,
determine the basic variables in the row (or column) by the least-cost method.
Stop.

(c) If all the uncrossed rows and columns have (remaining) zero supply and demand,
determine the zero basic variables by the least-cost method. Stop.

(d) Otherwise, go to Step 1.

Example 3.2.8. Example 3.2.53.2.5 is solved by VAM. The following table shows the computed first
set of penalties as per the above described algorithm.
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Table 3.9: Row and Column Penalties in VAM

Mill 1 Mill 2 Mill 3 Mill 4 Supply Row penalty

Silo 1

10 2 20 11

15 10−2 = 8

Silo 2

12 7 9 20

25 9−7 = 2

Silo 3

4

5

14 16 18

10 14−4 = 10

Demand 5 15 15 15

Column penalty 10−4 = 6 7−2 = 5 16−9 = 7 18−11 = 7

Here row 3 has the largest penalty (= 10) among the row and the column penalties. Hence,
row 3 is selected. In row 3, cell (3,1) has the least unit cost. The maximum amount that can be
allotted to that cell is 5. Thus, x31 = 5 is assigned and column 1 is now satisfied and must be
crossed out.

Again the row and column penalties are computed by subtracting the smallest element in
the rows (and similarly in the columns) from the next smallest element. This is shown in the
following table.

Table 3.10: First assignment in VAM (x31 = 5)

Mill 1 Mill 2 Mill 3 Mill 4 Supply Row penalty

Silo 1

10 2 20 11

15 9

Silo 2

12 7 9 20

25 2

Silo 3

4

5

14 16 18

10 2

Demand 5 15 15 15

Column penalty − 5 7 7

Now, row 1 has the largest penalty (= 9) among all rows and column penalties. In row 1, cell
(1,2) has the smallest unit cost and hence cell (1,2) is selected. The maximum amount that can
be assigned to cell (1,2) is 15 and hence second assignment becomes x12 = 15. This satisfies
both row 1 and column 2. We arbitrarily cross out column 2 and set the supply in row 1 to zero.

The second assignment along with the row and column penalties for the next iteration is
represented in the following table.
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Table 3.11: Second assignment in VAM (x31 = 5, x12 = 15)

Mill 1 Mill 2 Mill 3 Mill 4 Supply Row penalty

Silo 1

10 2

15

20 11

15 9

Silo 2

12 7 9 20

25 11

Silo 3

4

5

14 16 18

10 2

Demand 5 15 15 15

Column penalty − − 7 7

Next, row 2 has the largest penalty (i.e. 11) and least unit cost (= 9) is in cell (2,3). We
assign x23 = 15. This satisfies column 3 and hence it is crossed out. The number of units left for
row 2 is now 10 and we have the following table.

Table 3.12: Third assignment in VAM (x31 = 5, x12 = 15, x23 = 15)

Mill 1 Mill 2 Mill 3 Mill 4 Supply

Silo 1

10 2

15

20 11

15

Silo 2

12 7 9

15

20

25

Silo 3

4

5

14 16 18

10

Demand 5 15 15 15

Now only column 4 is left uncrossed and hence there is no penalty to be computed. Column 4
has a positive demand of 15 units. We apply the least cost method. Cell (1,4) has the least unit
cost (= 11) in column 4. But row 1 has 0 units of supply left. Hence we assign x14 = 0 and cell
(1,4) is crossed out. Next, in column 4, cell (3,4) has the least unit cost (= 18). Since row 3
has only 5 units of supply left, we assign x34 = 5. Finally we have x24 = 10 and we obtain the
starting solution and the table representing the starting solution as follows.

The objective value associated with this starting solution (as obtained in the following table)
is

z = 15×2+0×11+15×9+10×20+5×4+5×18 = | 475.

PS04EMTH30 2017-18



§3.2. Transportation Model 99

Table 3.13: Starting solution by VAM

Mill 1 Mill 2 Mill 3 Mill 4 Supply

Silo 1

10 2

15

20 11

0 15

Silo 2

12 7 9

15

20

10 25

Silo 3

4

5

14 16 18

5 10

Demand 5 15 15 15

Note that, in this case, the solution gives the same objective value as that in case of the
least-cost method and not a better starting solution.

In the next subsection, we will see the method to determine the optimal solution of a trans-
portation model once the starting solution is determined by any of the above three methods.

3.2.6 Iterative computations of the Transportation algorithm

Once the starting solution of a transportation model is determined using any of the above
discussed three methods, the optimum solution can be determined using the following algorithm:

Step 1. Use the simplex optimality condition to determine the entering variable. If the
optimality condition is satisfied, stop. Otherwise go to step 2.

Step 2. Determine the leaving variable using the simplex feasibility condition to obtain the
new basic solution. Go back to step 1.

Though the optimality and feasibility conditions are same as that of simplex method, the
computations are not similar to simplex method. The special structure of the transportation
model helps us to carry out simpler computations.

In the example below, we obtain optimum solution of the Sunray Transport model (Exam-
ple 3.2.53.2.5) by using the starting solution provided by the Northwest-corner method.

Example 3.2.9. Solve the model of Example 3.2.53.2.5, starting with the northwest-corner solution.

Solution. The following table gives the starting solution provided by the northwest-corner
method. The cells in which allocations are made indicate the basic variables. In our example
there are 6 basic variables and they are (x11,x12,x22,x23,x24,x34). The non-allocated cells
correspond to the non-basic variables.

The determination of the entering variable from among the non-basic variables is done by
computing the z-row coefficients of the non-basic variables using the method of multipliers.
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Table 3.14: Starting iteration

Mill 1 Mill 2 Mill 3 Mill 4 Supply

Silo 1

10

5

2

10

20 11

15

Silo 2

12 7

5

9

15

20

5 25

Silo 3

4 14 16 18

10 10

Demand 5 15 15 15

In the method of multipliers, the multipliers ui and v j are associated with the ith and jth column
of the transportation table. For each basic variable xi j, they satisfy the following equation:

ui + v j = ci j.

We have 6 basic variables but 7 multiples, i.e. u1,u2,u3 and v1,v2,v3,v4. This leaves us with
6 equations and 7 unknowns. To solve these equations, one of the multiplier is set to zero. We
arbitrarily take u1 = 0, then we solve for the remaining variables as shown in the following table.

Basic variable (u,v)-equation Solution

x11 u1 + v1 = 10 Set u1 = 0⇒ v1 = 10
x12 u1 + v2 = 2 u1 = 0⇒ v2 = 2
x22 u2 + v2 = 7 v2 = 2⇒ u2 = 5
x23 u2 + v3 = 9 u2 = 5⇒ v3 = 4
x24 u2 + v4 = 20 u2 = 5⇒ v4 = 15
x34 u3 + v4 = 18 v4 = 15⇒ v3 = 3

After having computed ui’s and v j’s, we use them to evaluate the z-coefficients of the non-basic
variables xi j by finding

ui + v j− ci j.

The coefficient computations of non-basic variables are shown in the following table.

Nonbasic variable ui + v j− ci j

x13 u1 + v3− c13 = 0+4−20 =−16
x14 u1 + v4− c14 = 0+15−11 = 4
x21 u2 + v1− c21 = 5+10−12 = 3
x31 u3 + v1− c31 = 3+10−4 = 9
x32 u3 + v2− c32 = 3+2−14 =−9
x33 u3 + v3− c33 = 3+4−16 =−9
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We know that, z-coefficient of all basic variables is zero. Here for all basic variables xi j,
ui + v j − ci j = 0. Then the above two tables actually give the z-row of the simplex table
represented as follows:

↓
Basic x11 x12 x13 x14 x21 x22 x23 x24 x31 x32 x33 x34

z 0 0 −16 4 3 0 0 0 9 −9 −9 0

Since the objective of the transportation model is to minimize the cost, the entering variable is
the variable with most positive coefficient in the z-row. Hence, here x31 is the entering variable.

The computations of the multipliers ui,v j can be directly done on the transportation table as
shown in the following table, i.e. there is no need to write the (u,v)-equations separately.

Table 3.15: Iteration 1 Calculations

v1 = 10 v2 = 2 v3 = 4 v4 = 15 Supply

u1 = 0 5
10

10
2 20 11

15
−16 4

u2 = 5
12

5
7

15
9

5
20

25
3

u3 = 3
4 14 16

10
18

10
9 −9 −9

Demand 5 15 15 15

Once x31 is the entering variable, the leaving variable is determined from how much maximum
we can assign to cell (3,1). If θ is the amount that can be shipped on route (3,1), then maximum
value of θ depends on the following two conditions:

1. Supply and demand requirements remain satisfied.
2. Shipments through all the routes remain non-negative.
To determine the maximum value of θ and the leaving variable, we construct a closed loop

(clockwise or counterclockwise) that starts and ends at the entering variable. The loop consists
of connected horizontal and vertical segments only whose corner points are the basic variables
as shown in the following table. We assign θ to the entering variable cell. Since the supply and
demand limits remain satisfied, we subtract and add θ alternatively at the successive corner steps
as shown in the table given below:
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Table 3.16: Determination of closed loop for x31

v1 = 10 v2 = 2 v3 = 4 v4 = 15 Supply

u1 = 0 5−θ

10
10+θ

2 20 11
15

−16 4

u2 = 5
12

5−θ

7
15

9
5+θ

20
25

3

u3 = 3 θ
4 14 16

10−θ

18
10

9 −9 −9

Demand 5 15 15 15

Since θ ≥ 0, the new variables remain non-negative if

x11 = 5−θ ≥ 0
x22 = 5−θ ≥ 0

x34 = 10−θ ≥ 0

Thus, the maximum value of θ is 5 and this happens when both x11 and x22 reach at zero
level (i.e. they both become zero). This means, either x11 or x22 can be leaving variable
and we arbitrarily choose x11 as the leaving variable. The entering variable x13 is assigned
value θ = 5 and the values of the corner variables are adjusted accordingly. Since each unit
shipped through route (3,1) reduces the cost by | 9 (= u3 + v1− c13), the total cost reduces by
ci j× xi j = 9×5 = 45. Hence, the new cost is | 520−45 = 475. We get the new basic solution
and a new table representing the same as follows:

Table 3.17: Iteration 2 Calculations

v1 = 10 v2 = 2 v3 = 4 v4 = 15 Supply

u1 = 0
10

15−θ

2 20
θ

11
15

−9 −16 4

u2 = 5
12

0+θ

7
15

9
10−θ

20
25

−6

u3 = 3 5
4 14 16

5
18

10
−9 −9

Demand 5 15 15 15

We repeat the process of computing the multipliers u and v by assuming u1 = 0 arbitrarily.
We find that x14 is the entering variable as u1 + v4− c14 = 4 is the most positive. Constructing
a closed loop as above, we get x14 = 10 and that the leaving variable is x24. The new solution,
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shown in the table below, is hence c14× x14 = 4×10 = | 40 less than the previous one. Hence
the new cost is now, | 475−40 =| 435.

Table 3.18: Iteration 3 Calculations (Optimal)

v1 =−3 v2 = 2 v3 = 4 v4 = 11 Supply

u1 = 0
10

5
2 20

10
11

15
−13 −16

u2 = 5
12

10
7

15
9 20

25
−10 −4

u3 = 7 5
4 14 16

5
18

10
−5 −5

Demand 5 15 15 15

The new values of ui + v j− ci j for all the nonbasic variables xi j are all non-negative. Hence,
the new solution obtained (represented in the above table) is optimal. The following table
summarizes the optimum solution and the optimal objective value.

From silo To mill Number of truckloads

1 2 5
1 4 10
2 2 10
2 3 15
3 1 5
3 4 5

Optimal cost = | 435

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

3.3 The Assignment Model

The classical assignment problem is about matching the workers (with different skills) to the
given jobs. It is assumed that varied skills of workers affects the cost of completing a job. The
objective of the model is to determine the minimum-cost assignment of workers to jobs. The
general assignment model with n workers and n jobs can be represented as an LP model follows:
Let ci j be the unit cost of assigning worker i to the job j, and define

xi j =

{
1, if worker i is assigned to job j;
0, otherwise.
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The LP model of assignment problem can be given as

Minimize z =
n

∑
i=1

n

∑
j=1

ci jxi j

subject to

n

∑
i=1

xi j = 1, i = 1,2, . . . ,n

n

∑
i=1

xi j = 1, j = 1,2, . . . ,n

xi = 0 or 1.

We can assume, without the loss of generality, that the number of workers and the number of
jobs are equal. If that is not the case, then we can add dummy workers or dummy jobs to satisfy
this assumption.

The general assignment model with n workers and n jobs is represented in tabular form as
shown below:

Table 3.19: Assignment Model

Jobs
1 2 · · · n

1 c11 c12 · · · c1n 1
2 c21 c22 · · · c2n 1

Workers
...

...
...

...
...

...
n cn1 cn2 · · · cnn 1

1 1 · · · 1

The assignment model is a special case of the transportation model, where workers represent
the sources and jobs represent the destinations. The supply and demand at each source and
destination respectively is exactly equal to 1. The cost of “transporting” (assigning) worker i
to job j is ci j. Thus, the assignment model can be solved directly as a regular transportation
model (or as a regular LP). However, the fact that all the supply and demand amounts are exactly
equal to 1 leads to a simple solution algorithm for the assignment model called the Hungarian
method. The solution method though appears to be different from the transportation model, the
algorithm is rooted in the simplex method, just as in case of transportation problem.

3.3.1 The Hungarian Method

We demonstrate the application of Hungarian method by the means of the two examples consid-
ered in this subsection.

Example 3.3.1 (DOMSPU Model). Department of Mathematics, SPU is renovating the Assem-
bly Hall which involves three types of jobs, which includes flooring, painting and furniture work.
There are three workers available, Worker A, Worker B and Worker C who can do these jobs and
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their cost (charges) for these jobs (in thousands of |) are summarized in the table below. The
assignment model seeks the best assignment of workers to jobs which minimizes the cost of
renovation.

Table 3.20: DOMSPU Problem

Flooring Painting Furniture
Worker A | 15 | 10 | 9
Worker B | 9 | 15 | 10
Worker C | 10 | 12 | 8

Solution. We solve the problem by Hungarian method. The steps of the method are described
below.

Step 1. Determine pi, the minimum cost element of row i in the original cost matrix, and
subtract it from all the elements of row i, for all i = 1,2,3.

Step 2. For the matrix obtained from step 1, determine q j, the minimum cost element of
column j and subtract it from all the elements of column j, for all j = 1,2,3.

Step 3. From the matrix obtained in step 2, attempt to find a feasible assignment among all
the resulting zero entries.
3 a. If such an assignment can be determined, it is optimal.
3 b. If such assignment does not exists, then additional calculations are required (as

explained in Example 3.3.23.3.2 below).

The tables associated with the computations in the above steps are shown below:

Table 3.21: Step 1

Flooring Painting Furniture Row minimum
Worker A 15 10 9 p1 = 9
Worker B 9 15 10 p2 = 9
Worker C 10 12 8 p3 = 8

Table 3.22: Step 2

Flooring Painting Furniture
Worker A 6 1 0
Worker B 0 6 1
Worker C 2 4 0

Column minimum q1 = 0 q2 = 1 q3 = 0
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Table 3.23: Step 3

Flooring Painting Furniture

Worker A 6 0 0
Worker B 0 5 1
Worker C 2 3 0

The last (above) table shows the feasible solution of this assignment model. In the third
column of the above table has two zeros. This indicates that Furniture job can be assigned to
Worker A or Worker C. Likewise the two zeros in the first row suggests that Worker A can be
given Painting job or Furniture job. However, if Worker A is assigned Furniture job, then first
row is crossed out and there is no worker to execute the Painting job. Hence, the feasible solution
is given by
• Worker A is assigned Paint job.
• Worker B gets to do the Flooring.
• Worker C gets the Furniture job.

Comparing this assignment with the cost Table 3.203.20 (first table), the total cost incurred to the
Department will be 9+10+8 = | 27 (thousand).

Note that this amount will be always equal to

(p1 + p2 + p3)+(q1 +q2 +q3) = (9+9+8)+(0+1+0) = 27.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

In the above problem, the zero entries of the final matrix gives a feasible solution. However,
as discussed in the step 3 of the Hungarian method above, the zeros created by step 1 and step 2
may not give a feasible solution directly. In that case, further steps are needed to find the optimal
assignment. This is explained in the following example.

Example 3.3.2. Suppose that the situation in Example 3.3.13.3.1 is extended to four workers and
four jobs. Table given below summarizes the cost elements of the problem.

Table 3.24: Assignment problem

Jobs
1 2 3 4

A | 1 | 4 | 6 | 3
Workers B | 9 | 7 | 10 | 9

C | 4 | 5 | 11 | 7
D | 8 | 7 | 8 | 5

Solution. We solve the problem by Hungarian method. Steps 1, 2 and 3 are shown below in
tabular form to obtained the reduced assignment matrix.
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Table 3.25: Step 1

Jobs
1 2 3 4 Row minimum

A 1 4 6 3 p1 = 1
Workers B 9 7 10 9 p2 = 7

C 4 5 11 7 p3 = 4
D 8 7 8 5 p4 = 5

Table 3.26: Step 2

Jobs
1 2 3 4

A 0 3 5 2
Workers B 2 0 3 2

C 0 1 7 3
D 3 2 3 0

Column minimum q1 = 0 q2 = 0 q3 = 3 q4 = 0

Table 3.27: Reduced assignment matrix (step 3)

Jobs
1 2 3 4

A 0 3 2 2
Workers B 2 0 0 2

C 0 1 4 3
D 3 2 0 0

The location of zeros in the above reduced matrix does not allow unique feasible assignment
of jobs to workers. For example, if Worker A takes job 1, then first column is satisfied and
crossed out. As a result, Worker C is not assigned any job. Likewise if Worker B takes job 3,
then there is no one who is assigned job 2. To overcome this difficulty, the following additional
steps are carried out.

Step 3 b. If no feasible zero-element assignments can be found, then
1. Draw the minimum number of horizontal and vertical lines in the last reduced matrix to

cover all the zero entries.
2. Select the smallest uncovered entry, subtract it from every uncovered entry, and then

add it to every entry at the intersection of two lines.
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3. If still no feasible assignment can be found among the resulting zero entries, then repeat
step 3 b. Otherwise, go to step 3 a. (described in the above example)

The tabular computations of step 3 b are shown below.

Table 3.28: Application of Step 3 b

Jobs
1 2 3 4

A 0 3 2 2
Workers B 2 0 0 2

C 0 1 4 3
D 3 2 0 0

The smallest uncovered entry is 1 which is added to the two intersection cells and subtracted
from all other uncovered entries to give the following optimal table.

Table 3.29: Optimal assignment

Jobs
1 2 3 4

A 0 2 1 1
Workers B 3 0 0 2

C 0 0 3 2
D 4 2 0 0

Thus, the optimal solution is given by

• Worker A is assigned Job 1
• Worker B is assigned Job 3

• Worker C is assigned Job 2
• Worker D is assigned Job 4

The associated optimal cost is 1+10+5+5 =| 21. The same cost is also determined by the
sum

(p1 + p2 + p3 + p4)+(q1 +q2 +q3 +q4)+(least uncovered entry in 3b)

= (1+7+4+5)+(0+0+3+0)+(1) = 21.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Exercises

Exercise 3.1
Solve the following LP problems by dual simplex method:
(a) Minimize z = 5x1 +6x2

subject to

x1 + x2 ≥ 20
4x1 + x2 ≥ 40

x1, x2 ≥ 0.

(b) Minimize z = 4x1 +2x2
subject to

x1 + x2 = 10
3x1− x2 ≥ 20

x1, x2 ≥ 0.

(c) Minimize z = 2x1 +3x2
subject to

2x1 + x1 ≥ 30
x1 + x2 = 20
x1, x2 ≥ 0.

Exercise 3.2
Solve the following LP by dual simplex method.

Minimize z = 6x1 +7x2 +3x3 +5x4

subject to
5x1 + 6x2 − 3x3 + 4x4 ≥ 12

x2 − 5x3 − 6x4 ≥ 10
2x1 + 5x2 + x3 + x4 ≥ 8

x1, x2, x3, x4 ≥ 0.

Exercise 3.3
Determine and compare the starting solutions obtained by the northwest-corner, the least-cost

method, and the Vogel approximation methods for each of the following models:

(a) (b) (c)
0 2 1 6
2 1 5 7
2 4 3 7
5 5 10

1 2 6 12
0 4 2 7
3 1 5 11

10 10 10

5 1 8 12
2 4 0 14
3 6 7 4
9 10 11
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Exercise 3.4
Consider the following transportation models:
(a) Use the northwest-corner method to find the starting solution.
(b) Develop the iterations that lead to the optimum solution.

(i) (ii) (iii)
| 0 | 2 | 1 6
| 2 | 1 | 5 9
| 2 | 4 | 3 5
5 5 10

| 10 | 4 | 2 8
| 2 | 3 | 4 5
| 1 | 2 | 0 6
7 6 6

− | 3 | 5 4
| 7 | 4 | 9 7
| 1 | 8 | 6 19
5 6 19

Exercise 3.5
Solve the following assignment models by Hungarian method.

(i) (ii)

| 9 | 8 | 2 | 10 | 3
| 6 | 5 | 2 | 7 | 5
| 6 | 3 | 2 | 7 | 5
| 8 | 4 | 12 | 3 | 5
| 7 | 8 | 6 | 7 | 7

| 3 | 12 | 2 | 2 | 7
| 6 | 1 | 5 | 8 | 6
| 9 | 4 | 7 | 13 | 3
| 2 | 5 | 4 | 2 | 1
| 10 | 6 | 1 | 4 | 6
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Nonlinear Programming

In nonlinear programming, unlike linear programming, the objective function and the constraints
(if present) need not be in linear form.

As seen in all the earlier models, there is an objective function that is to be optimized subject to
some constraints. In this chapter, we shall see two types of algorithms, unconstrained algorithms
(in which there are no constraints) and constrained algorithms (in which constraints are present
but not necessarily linear).

4.1 Unconstrained Algorithms

We shall see two different methods to obtain optimum for unconstrained algorithms. They are
the direct method and the gradient method.

4.1.1 Direct Search Method

Recall that, a function f (x) is said to be a unimodal function if there exists m such that f (x) is
monotonically increasing for x ≤ m and monotonically decreasing for x ≥ m. Thus, f (x) has
maximum value f (m) and no other local maxima.

Direct method can be applied to single variable strictly unimodal functions. The procedure
is to determine the interval of uncertainty, at each iteration, which contains optimum point.
Iteratively, the length of the intervals of uncertainty decreases and can be brought down to a
desired level of accuracy.

In this section, we shall see two closely related algorithms, dichotomous and golden section,
that maximizes a unimodal objective function f (x) over the interval a≤ x≤ b which includes
the optimum point x∗. Both the methods start by taking the initial interval of uncertainty as
I0 = (a,b). The general iteration i is given as follows:
General iteration i. Suppose the interval in the current iteration (iteration i−1) is Ii−1 = (xL,xR)
(at iteration 0, I0 = (a,b), i.e. xL = a, xR = b). The following table shows how x1 and x2 are
determined in both the algorithms, i.e. in dichotomous and in golden section.
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Dichotomous method Golden section method

x1 =
1
2(xR + xL−∆) x1 = xR−

(√
5−1
2

)
(xR− xL)

x2 =
1
2(xR + xL +∆) x2 = xL +

(√
5−1
2

)
(xR− xL)

The selection of x1 and x2 defined in the above table is such that xL < x1 < x2 < xR.

f (x1)

x1

f (x2)

x2a bxL xR

Ii−1

Ii

I0

(a)

f (x1)

x1

f (x2)

x2a bxL xR

Ii−1

Ii

I0

(b)

The next interval of uncertainty is determined by the following rule:
1. If f (x1)> f (x2), then xL < x∗ < x2. Let xR = x2 and set Ii = (xL,x2).
2. If f (x1)< f (x2), then x1 < x∗ < xR. Let xR = x2 and set Ii = (x1,xR).
3. If f (x1) = f (x2), then x1 < x∗ < x2. Let xL = x1 and xR = x2 and set Ii = (x1,x2).
The way x1 and x2 are determine ensures that the length of the interval Ii < Ii−1. Let ∆ be the

desired level of accuracy. If the length of the interval Ik ≤ ∆, then terminate the algorithm.

Dichotomous method

In the dichotomous method, the values x1 and x2 are exactly symmetrically on the opposite side
of the midpoint of current interval of uncertainty, i.e. the length of the interval in iteration i+1 is

Ii+1 = 0.5(Ii +∆) =
Ii +∆

2
.

Golden section method

Note that in the dichotomous method, at every iteration, we computed two values f (x1) and f (x2)
and discarded the smaller one. In golden section method, to save computations, the discarded
value is reused in the next iteration.
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For 0 < α < 1, define

x1 = xR−α(xR− xL) = αxL +(1−α)xR

x2 = xL +α(xR− xL) = αxR +(1−α)xL.

Then as in case of previous method, the interval of uncertainty in the iteration i is Ii = (xL,x2)
or (x1,xR). Consider the case Ii = (xL,x2), i.e. xL < x1 < x2 which means that x1 ∈ Ii. In the
iteration i+1, we consider x2 equal to x1 of the iteration i. This gives the following relation:

x2(iteration i+1) = x1(iteration i).

Substituting these values in the above two equations, we get

xL +α[x2(iteration i)− xL] = xR−α(xR− xL)

or

xL +α[xL +α(xR− xL)− xL] = xR−α(xR− xL).

On simplification, we get

α
2 +α−1 = 0⇒ α =

−1±
√

5
2

.

Since, 0 < α < 1, the positive root α = −1+
√

5
2 ≈ 0.618 is selected. This gives

Ii+1 = αIi.

The golden section method converges to optimum faster than the dichotomous method, as the
intervals of uncertainty are narrowing faster than in the case of dichotomous method. Besides,
the golden section method requires only half of the computations because it uses the discarded
values of f (x1) or f (x2) in the immediately preceding iteration.

Example 4.1.1.

Maximize f (x) =

{
3x, 0≤ x≤ 2
1
3 (−x+20) , 2≤ x≤ 3.

The maximum value of f (x) occurs at x = 2. Desired level of accuracy ∆ = 0.1.

Solution. The following tables show two iterations of dichotomous method and golden section
method with level of accuracy ∆ = 0.1.
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Dichotomous method

Iteration 1
I0 = (0,3) = (xL,xR)

x1 = 0+0.5(3−0−0.1) = 1.45, f (x1) = 4.35
x2 = 0+0.5(3−0+0.1) = 1.55, f (x2) = 4.65
f (x1)> f (x2)⇒ xL = 1.45, I1 = (1.45,3)

Iteration 2
I1 = (1.45,3) = (xL,xR)

x1 = 1.45+0.5(3−1.45−0.1) = 2.175, f (x1) = 5.942
x2 =

3+1.45+0.1
2 = 2.275, f (x2) = 5.908

f (x1)> f (x2)⇒ xR = 2.275, I2 = (1.45,2.275)

Golden section method

Iteration 1
I0 = (0,3) = (xL,xR)

x1 = 3−0.618(3−0) = 1.146, f (x1) = 3.438
x2 = 0+0.618(3−0) = 1.854, f (x2) = 5.562
f (x2)> f (x1)⇒ xL = 1.146, I1 = (1.146,3)

Iteration 2
I1 = (1.146,3) = (xL,xR)

x1 = x2 in iteration 1 = 1.854, f (x1) = 5.562
x2 = 1.146+0.618(3−1.146) = 2.292, f (x2) = 5.903
f (x2)> f (x1)⇒ xL = 1.854, I2 = (1.854,3)

Continuing this way, the length of the intervals of uncertainty eventually reduces to the desired
tolerance ∆. �
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Remark 4.1.2. In both of the above (direct) methods, if the desired level of accuracy ∆ is very
small, then the number of iterations becomes considerably larger. It is not possible, then to
compute all the iterations by hand and often the optimum is obtained using Excel or other
programming software.

4.1.2 Gradient Method

In this section, we shall study a method for optimizing twice continuously differentiable functions,
called the steepest ascent method. The idea is to generate points in the direction of gradient and
the method terminates when the gradient vector becomes zero. This is only necessary condition
for optimality. The process is as follows:

Suppose f (X) is maximized. Let X0 be the initial point from which the procedure starts, and
define ∇ f (Xk) as the gradient of f at a point Xk. The successive point Xk+1 is obtained from
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the following relation:
Xk+1 = Xk + rk∇ f (Xk),

where rk is the optimal step size at Xk.
The step size rk is determined such that the next point Xk+1 gives the maximum improvement

in f . This is equivalent to determining r = rk that maximizes the function

h(r) = f [Xk + r∇ f (Xk)].

The process terminates when two successive points Xk and Xk+1 are approximately equal.
Equivalently, rk∇ f (Xk)≈ 0, i.e. f (Xk)≈ 0.

Example 4.1.3. Maximize f (x1,x2) = 4x1 +6x2−2x2
1−2x1x2−2x2

2.
The exact optimum occurs at (x∗1,x

∗
2) =

(1
3 ,

4
3

)
. Take the starting point X0 = (1,1).

Solution. The gradient of f is

∇ f (X) = (4−4x1−2x2,6−2x1−4x2). (4.1)

The starting point X0 = (1,1). The iterations obtained are as follows:

Iteration 1:
∇ f (X0) = (−2,0).

The next point X1 is obtained by considering

X = (1,1)+ r(−2,0) = (1−2r,1).

Thus,
h(r) = f (1−2r,1) =−2(1−2r)2 +2(1−2r)+4.

As described before, the value of r such that X1 is the next largest improvement in f is equivalent
to the value of r such that h(r) is maximum. This r can be obtained by taking ∇h(r) = 0 i.e.
h′(r) = 0. Thus, 8(1−2r)−4 = 0⇒ r = 1

4 . Substituting this value of r in above expression of
the point X, we get X1 =

(1
2 ,1
)
.

Iteration 2: Substituting X1 =
(1

2 ,1
)

obtained in the previous iteration in equation (4.14.1), we get

∇ f (X1) = (0,1)

X =

(
1
2
,1
)
+ r(0,1) =

(
1
2
,1+ r

)
h(r) = −2(1+ r)2 +5(1+ r)+

3
2

Thus, taking h′(r) = 0, we get r2 =
1
4 and hence X2 =

(1
2 ,

5
4

)
.

Iteration 3:

∇ f (X2) =

(
−1

2
,0
)

X =

(
1
2
,
5
4

)
+ r
(
−1

2
,0
)
=

(
1− r

2
,
5
4

)
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h(r) = − 1
2
(1− r)2 +

3
4
(1− r)+

35
8

Hence, r3 =
1
4 and X3 =

(3
8 ,

5
4

)
.

Iteration 4:

∇ f (X3) =

(
0,

1
4

)
X =

(
3
8
,
5
4

)
+ r
(

0,
1
4

)
=

(
3
8
,
5+ r

4

)
h(r) = − 1

8
(5+ r)2 +

21
16

(5+ r)+
39
32

Hence, r4 =
1
4 and X4 =

(3
8 ,

21
16

)
.

Iteration 5:

∇ f (X4) =

(
−1

8
,0
)

X =

(
3
8
,
21
16

)
+ r
(
−1

8
,0
)
=

(
3− r

8
,
21
16

)
h(r) = − 1

32
(3− r)2 +

11
64

(3− r)+
567
128

Thus, r5 =
1
4 and X5 =

(11
32 ,

21
16

)
.

Iteration 6:

∇ f (X5) =

(
0,

1
16

)
The process can be terminated at this stage as ∇ f (X5 ≈ 0. The approximate maximum obtained
is X5 =

(11
32 ,

21
16

)
= (0.3438,1.3125). Note that the exact optimum was given to be X∗=

(1
3 ,

4
3

)
=

(0.3333,1.3333). �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

4.2 Constrained Algorithms

The general constrained nonlinear programming problem is defined as

Maximize (or Minimize) z = f (X)

subject to
g(X)≤ 0.

The non-negativity conditions X≥ 0 are part of the constraints. Since it is a nonlinear problem,
at least one of the functions f (X) and g(X) is nonlinear. In addition, all the functions are
continuously differentiable.

PS04EMTH30 2017-18



§4.2. Constrained Algorithms 117

4.2.1 Separable Programming

Before describing the method to solve a non-linear (separable) problem, we first define a
separable function.

Definition 4.2.1 (Separable function). A function f (x1,x2, . . . ,xn) is separable if it can be
expressed as the sum of n single variable functions f1(x1), f2(x2), . . . , fn(xn), i.e.

f (x1,x2, . . . ,xn) = f1(x1)+ f2(x2)+ · · ·+ fn(xn).

For example, any linear function is clearly separable. On the other hand, a function of the form

h(x1,x2,x3) = x2
1 + x1 sin(x2 + x3)+ x2ex3

is not separable as it cannot be written as sum of single variable functions.
Some nonlinear functions can be made separable using appropriate substitutions. For example,

consider the case of maximizing the function z = x1x2. In this case, we take y = x1x2 and so
taking logarithm on both sides, we get lny = lnx1 + lnx2. Consequently, the separable problem
can be framed as

Maximize z = y

subject to
lny = lnx1 + lnx2.

The substitution assumes that x1 and x2 are positive variables as logarithm cannot be defined for
non-positive values. We can consider the case where x1 and x2 can assume zero values by taking
the approximations

w1 = x1 +δ1 > 0
w2 = x2 +δ2 > 0.

The constants δ1 and δ2 are arbitrarily small positive values.

In this section, we shall see how an approximate solution for any separable problem can be
obtained using linear approximation and simple method of LP. The single-variable function
f (x) can be approximated by a piece-wise linear function using a method called mixed integer
programming.

Now, suppose the function f (x) is approximate over the interval [a,b]. Define ak, k =
1,2, . . . ,K as the kth break point on the x-axis such that a1 < a2 < · · ·< aK , where a1 = a and
aK = b. Thus, f (x) is approximated as

f (x)≈
K

∑
k=1

f (ak)wk

x =
K

∑
k=1

akwk.

The non-negative weights wk must satisfy the condition

K

∑
k=1

wk = 1, wk ≥ 0, k = 1,2, . . . ,K.
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A valid approximate solution can be obtained by mixed integer programming by imposing
the following two additional conditions:

1. At most two wk are positive.
2. If wk is positive, then only an adjacent wk+1 or wk−1 can assume a positive value (adjacency

requirement).
Consider a separable problem

Maximize (or minimize) z =
n

∑
j=1

f j(x j)

subject to
n

∑
j=1

gi j(x j)≤ bi, i = 1,2, . . . ,m.

Let

a jk = breakpoint k for variable x j

w jk = weight with breakpoint k of variable x j

}
k = 1,2, . . . ,K j, j = 1,2, . . . ,n.

This approximation model can also be solved by another method which is the regular simplex
method with restricted basis. The restricted basis modifies the optimality condition of the
simplex method by selecting the entering variable w j with the best z-coefficient (most negative
for maximization problems and most positive for minimization problems) that does not violate
the adjacency requirement of the w-variables with positive values.

The process is repeated until the optimality condition is satisfied or until it is impossible to
satisfy the restricted basis condition, whichever happens first.

Example 4.2.2. Consider the separable nonlinear problem

Maximize z = x1 + x4
2

subject to

3x1 +2x2
2 ≤ 9

x1, x2 ≥ 0.

The exact optimum solution (solved by computer program) is given to be x1 = 0, x2 = 2.12132
and z∗ = 20.25. Find the approximate solution.

Solution. Consider the separable functions

f1(x1) = x1

f2(x2) = x4
2

g1(x1) = 3x1

g2(x2) = 2x2
2

The variable x1 is not approximated as the functions f1(x1) and g1(x1) of variable x1 are
already linear. The functions f2(x2) and g2(x2) are nonlinear in the variable x2 and hence we
approximate x2. Let a21 = 0,a22 = 1,a23 = 2,a24 = 3 be four breakpoints of x2. Given x2 ≤ 3,
we have
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k a2k f2(a2k) = a4
2k g2(a2k) = a2

2k

1 0 0 0
2 1 1 2
3 2 16 8
4 3 81 18

Thus, f2 is approximated as

f2(x2)≈ w21 f2(a21)+w22 f2(a22)+w23 f2(a23)+w24 f2(a24)

≈ 0w21 +1w22 +16w23 +81w24 = w22 +16w23 +81w24.

Similarly, we have
g2(x2)≈ 2w22 +8w23 +18w24.

The approximation problem thus becomes,

Maximize z = x1 +w22 +16w23 +81w24

subject to

3x1 +2w22 +8w23 +18w24 ≤ 9
w21 +w22 +w23 +w24 = 1

x1 ≥ 0, w2k ≥ 0, k = 1,2,3,4,

where the values w2k (k = 1,2,3,4) must satisfy the restricted basis condition. A slack variable
s1 is added to the first constraint and since w21 is not present in the objective function, it is treated
as a slack variable in the second constraint to give the starting solution. The starting simplex
table is as follows:

Basic x1 w22 w23 w24 s1 w21 Solution

z −1 −1 −16 −81 0 0 0

s1 3 2 8 18 1 0 9
w21 0 1 1 1 0 1 1

Clearly w24 is the entering variable. The ratios indicate that s1 is leaving variable. But this is
not possible as w21 is already basic with positive value. Both w21 and w24 cannot simultaneously
assume positive value because it will violate adjacency condition.

The next best choice of entering variable is w23 which makes w21 as the leaving variable. This
is possible and the next simplex table thus becomes

Basic x1 w22 w23 w24 s1 w21 Solution

z −1 15 0 −65 0 16 16

s1 3 −6 0 10 1 −8 1
w23 0 1 1 1 0 1 1
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Next, w24 is the entering variable which is allowed as w23 is positive. The feasibility condition
shows that s1 is the leaving variable. The resultant table is given as follows:

Basic x1 w22 w23 w24 s1 w21 Solution

z 37
2 −24 0 0 13

2 −36 45
2

w24
3
10 − 6

10 0 1 1
10 − 8

10
1

10
w23 − 3

10
16
10 1 0 − 1

10
18
10

9
10

The above table shows that w21 is the entering variable which is not possible as it is neither
adjacent to w23 or w24. Next possibility for entering variable is w22. This gives w23 is the leaving
variable which is not possible as w22 and w24 cannot simultaneously assume positive values.

Thus, the above table is the best restricted-basis solution for the given problem. The optimum
solution is

x1 = 0
x2 ≈ a21w21 +a22w22 +a23w23 +a24w24

x2 ≈ 2w23 +3w24 = 2
(

9
10

)
+3
(

1
10

)
= 2.1

z = 0+(2.1)4 = 19.45

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

4.2.2 Quadratic Programming

A quadratic programming model is defined as

Maximize z = CX+XT DX

subject to
AX≤ b, X≥ 0,

where

X = (x1,x2, . . . ,xn)
T

C = (c1,c2, . . . ,cn)

b = (b1,b2, . . . ,bn)
T

A =

a11 · · · a1n
...

...
...

am1 · · · amn



D =

d11 · · · d1n
...

...
...

dn1 · · · dnn


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The function XT DX defined a quadratic form. The matrix D is assumed to be symmetric and
negative definite.

The quadratic programming problem is considered for the maximization case. Conversion of
minimization problem to maximization problem is straightforward.

Example 4.2.3. Express the following problem in matrix form:

Maximize z = 4x1 +6x2−2x2
1−2x1x2−2x2

2

subject to

x1 +2x2 ≤ 2
x1, x2 ≥ 0.

Solution. Here,

X =

(
x1

x2

)
C = (c1,c2) = (4,6)

D =

(
−2 −1
−1 −2

)
A = (1,2)

The problem can be put in the matrix form as follows:

Maximize z = (4,6)

(
x1

x2

)
+(x1,x2)

(
−2 −1
−1 −2

)(
x1

x2

)
subject to

(1,2)

(
x1

x2

)
≤ 2

x1, x2 ≥ 0.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

Example 4.2.4. Express the following quadratic programming problem in the matrix form:

Maximize z = 6x1 +3x2−4x1x2−2x2
1−3x2

2

subject to

x1 + x2 ≤ 1
2x1 +3x2 ≤ 4

x1, x2 ≥ 0.

Solution. The problem can be put into matrix form as follows:

Maximize z = (6,3)

(
x1

x2

)
+(x1,x2)

(
−2 −2
−2 −3

)(
x1

x2

)
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subject to (
1 1
2 3

)(
x1

x2

)
≤

(
1
4

)
x1, x2 ≥ 0.

�
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.

4.2.3 Linear Combinations Method

The linear combinations method is useful in solving the nonlinear problems in which all the
constraints are linear. Consider such a problem of the form:

Maximize z = f (X)

subject to
AX≤ b, X≥ 0.

The procedure is based on the steepest-ascent method (i.e. the gradient method) as seen in the
unconstrained case. The method is modified for the constrained case as follows:

Let Xk be the feasible point at iteration k. The objective function f (X) can be expanded in
the neighborhood of Xk using Taylor’s series as

f (X)≈ f (Xk)+∇ f (Xk)(X−Xk) = ( f (Xk)−∇ f (Xk)Xk)+∇ f (Xk)X.

The process determines a feasible point X = X∗ such that f (X) is maximized subject to the
given linear constraints. Note that, the term f (Xk)−∇ f (Xk)Xk is constant. Hence, the problem
for determining the point X∗ reduces to finding solution of the following linear programming
problem:

Maximize wk(X) = ∇ f (Xk)X
subject to

AX≤ b, X≥ 0.
Given that wk(X∗)> wk(Xk), there must exists a point Xk+1 on the line segment (Xk,X∗) such
that f (Xk+1)> f (Xk). The objective is to determine Xk+1. Define

Xk+1 = rX∗+(1− r)Xk = Xk + r(X∗−Xk), 0 < r ≤ 1.

This means that Xk+1 is a linear combination of Xk and X∗ and it is determined such that f (X)
is maximized. Because Xk+1 is a function of r only, it is determined by maximizing

h(r) = f (Xk + r(X∗−Xk)).

The process is repeated until, at the kth iteration, we have wk(X∗)≤ wk(Xk) and at this stage Xk
is the best solution point.

Example 4.2.5. Consider the quadratic programming as seen in the above example

Maximize f (X) = 4x1 +6x2−2x2
1−2x1x2−2x2

2

subject to

x1 +2x2 ≤ 2
x1, x2 ≥ 0.

Let the initial trial point be X0 =
(1

2 ,
1
2

)
.
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Solution. Here,
∇ f (X) = (4−4x1−2x2,6−2x1−4x2)

Iteration 1. ∇ f (X0) = (1,3).

The associated linear program is

w1 = x1 +3x2

subject to the constraints of the original problem. The optimal solution (obtained by graphical
method) of this problem is X∗ = (0,1). Now, since

w1(X0) = w1
(1

2 ,
1
2

)
= 2 < w1(X∗) = w1(0,1) = 3

the next point X1 is to be determined. We have

X1 = rX∗+(1− r)X+0 = r(0,1)+(1− r)
(1

2 ,
1
2

)
=
(1−r

2 , 1+r
2

)
.

Therefore,

h(r) = f
(1−r

2 , 1+r
2

)
= 4

(1−r
2

)
+6
(1+r

2

)
−2
(1−r

2

)2−2
(1−r

2

)(1+r
2

)
−2
(1+r

2

)2

= − r2

2 + r+ 7
2 .

To determine the step size r, we take h′(r) = 0⇒−r+1 = 0⇒ r = 1. Substituting this value of
r in X1, we get X1 = (0,1).

Iteration 2. ∇ f (X1) = (2,2)

The objective function of the new linear programming problem is w2 = 2x1 + 2x2 and the
optimum solution subject to the given constraints is X∗ = (2,0). Now, since

w1(X1) = 2 < 4 = w1(X∗)

new trial point X2 must be determined. Thus,

X2 = r(2,0)+(1− r)(0,1) = (2r,1− r).

The maximization of the function

h(r) = f (2r,1− r)

as above gives r = 1
6 . This gives X2 =

(1
3 ,

5
6

)
and f (X2)≈ 4.16.

Iteration 3. ∇ f (X2) = (1,2)

The corresponding objective function of the linear problem is w3 = x1 +2x2. This problem
has alternative optima, X∗ = (0,1) and X∗ = (2,0). The value of w3 at both these points is 2
which is same as the value of w3 at X2. Thus,

w3(X∗)≤ w3(X2).

Hence, no further improvement is possible and the point X2 =
(1

3 ,
5
6

)
is optimum with optimum

value f (X2)≈ 4.16. �
Dr. Jay Mehta,
Department of
Mathematics,
Sardar Patel
University.
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Exercises

Exercise 4.1
Carry out five iterations for each of the following problems using the method of steepest descent

(ascent). Assume that the initial point X0 = 0 in each case.
(a) min f (X) = (x2− x2

1)
2 +(1− x1)

(b) max f (X) = cX+XT AX, where

c = (1,3,5)

A =

−5 −3 −1
2

−3 −2 0
−1

2 0 −1
2


(c) min f (X) = x1− x2 + x2

1− x1x2

Exercise 4.2
Approximate the following problem using the restricted basis method.

Maximize z = e−x1 + x1 +(x2 +1)2

subject to

x2
1 + x2 ≤ 3
x1, x2 ≥ 0

Exercise 4.3
Show how the following problem can be made separable.

Maximize z = x1x2 + x3 + x1x3

subject to

x1x2 + x2+x1x3 ≤ 10
x1, x2x3 ≥ 0.

Exercise 4.4
Show how the following problem can be made separable.

Maximize z = e2x1+x2
2 +(x3−2)2

subject to

x1 + x2+x3 ≤ 6
x1, x2x3 ≥ 0.

PS04EMTH30 2017-18



Exercises 125

Exercise 4.5
Show how the following problem can be made separable.

Maximize z = ex1x2 + x2
2x3 + x4

subject to

x1+x2x3 + x3 ≤ 10
x1, x2, x3 ≥ 0

x4 unrestricted.

Exercise 4.6
Put the following problem in the matrix form

Minimize z = 2x2
1 +2x2

2 +3x2
3 +2x1x2 +2x2x3 + x1−3x2−5x3

subject to

x1 + x2 + x3 ≥ 1
3x1 +2x2 + x3 ≤ 6

x1, x2, x3 ≥ 0.
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